273 research outputs found

    Unfolding simulations reveal the mechanism of extreme unfolding cooperativity in the kinetically stable alpha-lytic protease.

    Get PDF
    Kinetically stable proteins, those whose stability is derived from their slow unfolding kinetics and not thermodynamics, are examples of evolution's best attempts at suppressing unfolding. Especially in highly proteolytic environments, both partially and fully unfolded proteins face potential inactivation through degradation and/or aggregation, hence, slowing unfolding can greatly extend a protein's functional lifetime. The prokaryotic serine protease alpha-lytic protease (alphaLP) has done just that, as its unfolding is both very slow (t(1/2) approximately 1 year) and so cooperative that partial unfolding is negligible, providing a functional advantage over its thermodynamically stable homologs, such as trypsin. Previous studies have identified regions of the domain interface as critical to alphaLP unfolding, though a complete description of the unfolding pathway is missing. In order to identify the alphaLP unfolding pathway and the mechanism for its extreme cooperativity, we performed high temperature molecular dynamics unfolding simulations of both alphaLP and trypsin. The simulated alphaLP unfolding pathway produces a robust transition state ensemble consistent with prior biochemical experiments and clearly shows that unfolding proceeds through a preferential disruption of the domain interface. Through a novel method of calculating unfolding cooperativity, we show that alphaLP unfolds extremely cooperatively while trypsin unfolds gradually. Finally, by examining the behavior of both domain interfaces, we propose a model for the differential unfolding cooperativity of alphaLP and trypsin involving three key regions that differ between the kinetically stable and thermodynamically stable classes of serine proteases

    Cooperative role of thrombopoietin and vascular endothelial growth factor-a in the progression of liver cirrhosis to hepatocellular carcinoma

    Get PDF
    Primary thrombopoietic mediator thrombopoietin (THPO) is mainly produced by the liver; it may act as a growth factor for hepatic progenitors. Principal angiogenesis inducer vascular endothelial growth factor-A (VEGF-A) is critical for the complex vascular network within the liver architecture. As a cross-regulatory loop between THPO and VEGF-A has been demonstrated in the hematopoietic system, the two growth factors were hypothesized to cooperatively contribute to the progression from liver cirrhosis (LC) to hepatocellular carcinoma (HCC). The mRNA and protein expression levels of THPO, VEGF-A, and their receptors were examined, compared, and correlated in paired cancerous and LC tissues from 26 cirrhosis-related HCC patients, using qRT-PCR and immunohistochemistry. THPO and VEGF-A were alternatively silenced by small interfering RNA (siRNA) in human liver cancer cell lines Huh7 and HepG2. THPO and VEGF-A expressions significantly increased in tumor versus LC tissues. HCC and paired LC cells expressed similar levels of THPO receptor (R), whereas vascular endothelial growth factor receptor (VEGFR) -1 and VEGFR-2 levels were higher in HCC than in corresponding LC tissue samples. A significant linear correlation emerged between THPO and VEGF-A transcripts in HCC and, at the protein level, THPO and THPOR were significantly correlated with VEGF-A in tumor tissues. Both HCC and LC expressed similar levels of gene and protein hypoxia inducible factor (HIF)-1α. Positive cross-regulation occurred with the alternative administration of siRNAs targeting THPO and those targeting VEGF-A in hypoxic liver cancer cell lines. These results suggest THPO and VEGF-A might act as interdependently regulated autocrine and/or paracrine systems for cellular growth in HCC. This might be clinically interesting, since new classes of THPOR agonistic/antagonistic drugs may provide novel therapeutic options to correct the frequent hemostatic abnormality seen in HCC patients

    Airway epithelium respiratory illnesses and allergy (AERIAL) birth cohort: Study protocol

    Get PDF
    Introduction: Recurrent wheezing disorders including asthma are complex and heterogeneous diseases that affect up to 30% of all children, contributing to a major burden on children, their families, and global healthcare systems. It is now recognized that a dysfunctional airway epithelium plays a central role in the pathogenesis of recurrent wheeze, although the underlying mechanisms are still not fully understood. This prospective birth cohort aims to bridge this knowledge gap by investigating the influence of intrinsic epithelial dysfunction on the risk for developing respiratory disorders and the modulation of this risk by maternal morbidities, in utero exposures, and respiratory exposures in the first year of life. Methods: The Airway Epithelium Respiratory Illnesses and Allergy (AERIAL) study is nested within the ORIGINS Project and will monitor 400 infants from birth to 5 years. The primary outcome of the AERIAL study will be the identification of epithelial endotypes and exposure variables that influence the development of recurrent wheezing, asthma, and allergic sensitisation. Nasal respiratory epithelium at birth to 6 weeks, 1, 3, and 5 years will be analysed by bulk RNA-seq and DNA methylation sequencing. Maternal morbidities and in utero exposures will be identified on maternal history and their effects measured through transcriptomic and epigenetic analyses of the amnion and newborn epithelium. Exposures within the first year of life will be identified based on infant medical history as well as on background and symptomatic nasal sampling for viral PCR and microbiome analysis. Daily temperatures and symptoms recorded in a study-specific Smartphone App will be used to identify symptomatic respiratory illnesses. Discussion: The AERIAL study will provide a comprehensive longitudinal assessment of factors influencing the association between epithelial dysfunction and respiratory morbidity in early life, and hopefully identify novel targets for diagnosis and early intervention

    The seafloor from a trait perspective:A comprehensive life history dataset of soft sediment macrozoobenthos

    Get PDF
    Biological trait analysis (BTA) is a valuable tool for evaluating changes in community diversity and its link to ecosystem processes as well as environmental and anthropogenic perturbations. Trait-based analytical techniques like BTA rely on standardised datasets of species traits. However, there are currently only a limited number of datasets available for marine macrobenthos that contain trait data across multiple taxonomic groups. Here, we present an open-access dataset of 16 traits for 235 macrozoobenthic species recorded throughout multiple sampling campaigns of the Dutch Wadden Sea; a dynamic soft bottom system where humans have long played a substantial role in shaping the coastal environment. The trait categories included in this dataset cover a variety of life history strategies that are tightly linked to ecosystem functioning and the resilience of communities to (anthropogenic) perturbations and can advance our understanding of environmental changes and human impacts on the functioning of soft bottom systems

    Airway epithelium respiratory illnesses and allergy (AERIAL) birth cohort: study protocol

    Get PDF
    IntroductionRecurrent wheezing disorders including asthma are complex and heterogeneous diseases that affect up to 30% of all children, contributing to a major burden on children, their families, and global healthcare systems. It is now recognized that a dysfunctional airway epithelium plays a central role in the pathogenesis of recurrent wheeze, although the underlying mechanisms are still not fully understood. This prospective birth cohort aims to bridge this knowledge gap by investigating the influence of intrinsic epithelial dysfunction on the risk for developing respiratory disorders and the modulation of this risk by maternal morbidities, in utero exposures, and respiratory exposures in the first year of life.MethodsThe Airway Epithelium Respiratory Illnesses and Allergy (AERIAL) study is nested within the ORIGINS Project and will monitor 400 infants from birth to 5 years. The primary outcome of the AERIAL study will be the identification of epithelial endotypes and exposure variables that influence the development of recurrent wheezing, asthma, and allergic sensitisation. Nasal respiratory epithelium at birth to 6 weeks, 1, 3, and 5 years will be analysed by bulk RNA-seq and DNA methylation sequencing. Maternal morbidities and in utero exposures will be identified on maternal history and their effects measured through transcriptomic and epigenetic analyses of the amnion and newborn epithelium. Exposures within the first year of life will be identified based on infant medical history as well as on background and symptomatic nasal sampling for viral PCR and microbiome analysis. Daily temperatures and symptoms recorded in a study-specific Smartphone App will be used to identify symptomatic respiratory illnesses.DiscussionThe AERIAL study will provide a comprehensive longitudinal assessment of factors influencing the association between epithelial dysfunction and respiratory morbidity in early life, and hopefully identify novel targets for diagnosis and early intervention

    Geographical distribution and prevalence of podoconiosis in Rwanda: a cross-sectional country-wide survey

    Get PDF
    Background Podoconiosis is a type of tropical lymphoedema that causes massive swelling of the lower limbs. The disease is associated with both economic insecurity, due to long-term morbidity-related loss of productivity, and intense social stigma. Reliable and detailed data on the prevalence and distribution of podoconiosis are scarce. We aimed to fill this data gap by doing a nationwide community-based study to estimate the number of cases throughout Rwanda. Methods We did a population-based cross-sectional survey to determine the national prevalence of podoconiosis. A podoconiosis case was defined as a person with bilateral, asymmetrical lymphoedema of the lower limb present for more than 1 year, who tested negative for Wuchereria bancrofti antigen (determined by Filariasis Test Strip) and specific IgG4 (determined by Wb123 test), and had a history of any of the associated clinical signs and symptoms. All adults (aged ≥15 years) who resided in any of the 30 districts of Rwanda for 10 or more years were invited at the household level to participate. Participants were interviewed and given a physical examination before Filariasis Test Strip and Wb123 testing. We fitted a binomial mixed model combining the site-level podoconiosis prevalence with continuous environmental covariates to estimate prevalence at unsampled locations. We report estimates of cases by district combining our mean predicted prevalence and a contemporary gridded map of estimated population density. Findings Between June 12, and July 28, 2017, 1 360 612 individuals—719730 (53%) women and 640 882 (47%) men— were screened from 80 clusters in 30 districts across Rwanda. 1143 individuals with lymphoedema were identified, of whom 914 (80%) had confirmed podoconiosis, based on the standardised diagnostic algorithm. The overall prevalence of podoconiosis was 68·5 per 100000 people (95% CI 41·0–109·7). Podoconiosis was found to be widespread in Rwanda. District-level prevalence ranged from 28·3 per 100 000 people (16·8–45·5, Nyarugenge, Kigali province) to 119·2 per 100 000 people (59·9–216·2, Nyamasheke, West province). Prevalence was highest in districts in the North and West provinces: Nyamasheke, Rusizi, Musanze, Nyabihu, Nyaruguru, Burera, and Rubavu. We estimate that 6429 (95% CI 3938–10088) people live with podoconiosis across Rwanda. Interpretation Despite relatively low prevalence, podoconiosis is widely distributed geographically throughout Rwanda. Many patients are likely to be undiagnosed and morbidity management is scarce. Targeted interventions through a well coordinated health system response are needed to manage those affected. Our findings should inform national level planning, monitoring, and implementation of interventions

    Atomic structures of TDP-43 LCD segments and insights into reversible or pathogenic aggregation.

    Get PDF
    The normally soluble TAR DNA-binding protein 43 (TDP-43) is found aggregated both in reversible stress granules and in irreversible pathogenic amyloid. In TDP-43, the low-complexity domain (LCD) is believed to be involved in both types of aggregation. To uncover the structural origins of these two modes of β-sheet-rich aggregation, we have determined ten structures of segments of the LCD of human TDP-43. Six of these segments form steric zippers characteristic of the spines of pathogenic amyloid fibrils; four others form LARKS, the labile amyloid-like interactions characteristic of protein hydrogels and proteins found in membraneless organelles, including stress granules. Supporting a hypothetical pathway from reversible to irreversible amyloid aggregation, we found that familial ALS variants of TDP-43 convert LARKS to irreversible aggregates. Our structures suggest how TDP-43 adopts both reversible and irreversible β-sheet aggregates and the role of mutation in the possible transition of reversible to irreversible pathogenic aggregation

    Hand2 delineates mesothelium progenitors and is reactivated in mesothelioma.

    Get PDF
    The mesothelium lines body cavities and surrounds internal organs, widely contributing to homeostasis and regeneration. Mesothelium disruptions cause visceral anomalies and mesothelioma tumors. Nonetheless, the embryonic emergence of mesothelia remains incompletely understood. Here, we track mesothelial origins in the lateral plate mesoderm (LPM) using zebrafish. Single-cell transcriptomics uncovers a post-gastrulation gene expression signature centered on hand2 in distinct LPM progenitor cells. We map mesothelial progenitors to lateral-most, hand2-expressing LPM and confirm conservation in mouse. Time-lapse imaging of zebrafish hand2 reporter embryos captures mesothelium formation including pericardium, visceral, and parietal peritoneum. We find primordial germ cells migrate with the forming mesothelium as ventral migration boundary. Functionally, hand2 loss disrupts mesothelium formation with reduced progenitor cells and perturbed migration. In mouse and human mesothelioma, we document expression of LPM-associated transcription factors including Hand2, suggesting re-initiation of a developmental program. Our data connects mesothelium development to Hand2, expanding our understanding of mesothelial pathologies
    • …
    corecore