1,699 research outputs found

    Getting the most out of citizen science for endangered species such as whale shark

    Get PDF
    Citizen science by which the general public is enlisted to participate in data collection programmes, can shed light on the biology and ecology of enigmatic species. The whale shark Rhincodon typus, the world’s largest fish, is listed as Endangered in the IUCN Red List of Threatened Species due to continued population declines, particularly in the Indo-Pacific region. The species is highly mobile, capable of crossing international boundaries, yet the species’ movements in Southeast Asia remain poorly understood. Citizen science has been used broadly in the region and beyond, to understand the species’ biology and ecology. Here, we report the first international movement of a whale shark between the Philippines and Malaysia as determined through photo-ID and citizen science. A juvenile female whale shark, P-1159, was first identified in Oslob, Cebu, Philippines in December 2017 by ongoing research at the site, and resighted in Pulau Sipadan, Sabah, Malaysia, in October 2019 by a citizen scientist. Pulau Sipadan is one of Southeast Asia’s most popular diving destinations, yet whale shark sightings are uncommon. Citizen scientists ready to collect and share data with ongoing research plays a key role in monitoring enigmatic species. Protocols should be developed to systematically collect unique sightings and behaviours accessible to divers as citizen scientists that would otherwise be lost to science

    Contrast-enhanced micro-CT imaging in murine carotid arteries : a new protocol for computing wall shear stress

    Get PDF
    Background: Wall shear stress (WSS) is involved in the pathophysiology of atherosclerosis. The correlation between WSS and atherosclerosis can be investigated over time using a WSS-manipulated atherosclerotic mouse model. To determine WSS in vivo, detailed 3D geometry of the vessel network is required. However, a protocol to reconstruct 3D murine vasculature using this animal model is lacking. In this project, we evaluated the adequacy of eXIA 160, a small animal contrast agent, for assessing murine vascular network on micro-CT. Also, a protocol was established for vessel geometry segmentation and WSS analysis. Methods: A tapering cast was placed around the right common carotid artery (RCCA) of ApoE(-/-) mice (n = 8). Contrast-enhanced micro-CT was performed using eXIA 160. An innovative local threshold-based segmentation procedure was implemented to reconstruct 3D geometry of the RCCA. The reconstructed RCCA was compared to the vessel geometry using a global threshold-based segmentation method. Computational fluid dynamics was applied to compute the velocity field and WSS distribution along the RCCA. Results: eXIA 160-enhanced micro-CT allowed clear visualization and assessment of the RCCA in all eight animals. No adverse biological effects were observed from the use of eXIA 160. Segmentation using local threshold values generated more accurate RCCA geometry than the global threshold-based approach. Mouse-specific velocity data and the RCCA geometry generated 3D WSS maps with high resolution, enabling quantitative analysis of WSS. In all animals, we observed low WSS upstream of the cast. Downstream of the cast, asymmetric WSS patterns were revealed with variation in size and location between animals. Conclusions: eXIA 160 provided good contrast to reconstruct 3D vessel geometry and determine WSS patterns in the RCCA of the atherosclerotic mouse model. We established a novel local threshold-based segmentation protocol for RCCA reconstruction and WSS computation. The observed differences between animals indicate the necessity to use mouse-specific data for WSS analysis. For our future work, our protocol makes it possible to study in vivo WSS longitudinally over a growing plaque

    Identifying Priority and “Bright-Spot” Counties for Diabetes Preventive Care in Appalachia: An Exploratory Analysis

    Get PDF
    Introduction: Type 2 diabetes mellitus (T2DM) prevalence and mortality in Appalachian counties is substantially higher when compared to non-Appalachian counties, although there is significant variation within Appalachia. Purpose: The objectives of this research were to identify low-performing (priority) and high-performing (bright spot) counties with respect to improving T2DM preventive care. Methods: Using data from the Centers for Medicare and Medicaid (CMS), the Dartmouth Atlas of Health Care, and the Appalachia Regional Commission, conditional maps were created using county-level estimates for T2DM prevalence, mortality, and annual hemoglobin A1c (HbA1c) testing rates. Priority counties were identified using the following criteria: top 33rd percentile for T2DM mortality; top 33rd percentile for T2DM prevalence; bottom 50th percentile for A1c testing rates. Bright spot counties were identified as counties in the bottom 33rd percentile for T2DM mortality, the top 33rd percentile for T2DM prevalence; and the top 50th percentile for HbA1c testing rates. Results: Forty-one priority counties were identified (those with high T2DM mortality, high T2DM prevalence, and low HbA1c testing rates), which were located primarily in Central and North Central Appalachia; and 17 bright spot counties were identified (high T2DM prevalence, low T2DM mortality, and high HbA1c testing rates), which were scattered throughout Appalachia. Eight of the 17 bright spot counties were adjacent to priority counties. Implications: By employing conditional mapping to T2DM, multiple variables can be summarized into a single, easily interpretable map. This could be valuable for T2DM-prevention programs seeking to prioritize diagnostic and intervention resources for the management of T2DM in Appalachia

    HO-3867, a STAT3 inhibitor induces apoptosis by inactivation of STAT3 activity in BRCA1-mutated ovarian cancer cells

    Get PDF
    BRCA1 plays an important role in DNA damage and repair, homologous recombination, cell-cycle regulation and apoptosis. BRCA-mutated ovarian cancer often presents at an advanced stage, however, tend to have better response to platinum-based chemotherapy as compared with sporadic cases of epithelial ovarian cancer (EOC). In spite of this, most patients will develop a recurrence and eventually succumb to the disease. Preclinical studies are currently investigating natural compounds and their analogs for tumor-directed targets in ovarian cancer. The aim of this study is to investigate whether the STAT3 inhibitor HO-3867, a novel curcumin analog, has a therapeutic effect on BRCA1-mutated ovarian cancer. Our novel agent, HO-3867 and a commercial STAT3 inhibitor, STATTIC, significantly inhibited BRCA-mutated ovarian cancer cells in vitro in a dose- and time-dependent manner. BRCA-mutated ovarian cancer cells treated with HO-3867 exhibited a significant degree of apoptosis with elevated levels of cleaved caspase-3, caspase-7 and PARP. HO-3867 treatment induced more reactive oxygen species (ROS) in BRCA-mutated cells compared with wild-type cells, however, there was no increased ROS when benign ovarian surface epithelial cells were treated with HO-3867. BRCA1-mutated cancer cells had higher expression of Tyrosine-phosphorylated STAT3 (pTyr705) as compared with other STAT proteins. Furthermore, treatment of these cells with HO-3867 resulted in decreased expression of pTyr705 and its downstream targets cyclin D1, Bcl-2 and survivin. In addition, overexpression of STAT3 cDNA provided resistance to HO-3867-induced apoptosis. Our results show that HO-3867, a potent STAT3 inhibitor, may have a role as a biologically targeted agent for BRCA1-mutated cancers either as an adjunct to cytotoxic chemotherapy or as a single agent

    Ultrafast laser-induced surface structuring of anti-fouling steel surfaces for biomedical applications

    Get PDF
    Metallic surfaces are increasingly used in medical applications due to their favorable material properties such as high strength and biocompatibility. In medical applications antifouling properties are an important requirement especially for implants and medical devices which come into contact with different types of fluid streams. These should be anti-fouling in order to prevent contamination and corrosion. Laser processing methods such as ultrafast laser processing is a one-step and scalable process for surface texturing. This process can be used to produce well-defined surface nano- and microscale superficial textures such as Laser-induced Periodic Surface Structures (LIPSS) which can enhance the anti-fouling capability of the surface. In this study, micro and nano scaled LIPSS structures are manufactured on a biocompatible grade stainless steel 316L substrate using an ultrafast (<370 fs) and low power (<4 W) laser system. With an aim to optimize the anti-fouling properties, laser process parameters such as pulse energy, pulse repetition rate and beam scanning speed were varied to produce microstructures on the stainless-steel surface of varying dimensions. Surface roughness was analyzed using a laser surface profilometer and changes in the hydrophobicity were examined using water contact angle goniometry

    The International Space Station Solar Alpha Rotary Joint Anomaly Investigation

    Get PDF
    The Solar Alpha Rotary Joint (SARJ) is a single-axis pointing mechanism used to orient the solar power generating arrays relative to the sun for the International Space Station (ISS). Approximately 83 days after its on-orbit installation, one of the two SARJ mechanisms aboard the ISS began to exhibit high drive motor current draw. Increased structural vibrations near the joint were also observed. Subsequent inspections via Extravehicular Activity (EVA) discovered that the nitrided case hardened steel bearing race on the outboard side of the joint had extensive damage to one of its three rolling surfaces. A far-reaching investigation of the anomaly was undertaken. The investigation included metallurgical inspections, coupon tests, traction kinematics tests, detailed bearing measurements, and thermal and structural analyses. The results of the investigation showed that anomaly had most probably been caused by high bearing edge stresses that resulted from inadequate lubrication of the rolling contact. The profile of the roller bearings and the metallurgical properties of the race ring were also found to be significant contributing factors. To mitigate the impact of the damage astronauts cleaned and lubricated the race ring surface with grease. This corrective action led to significantly improved performance of the mechanism both in terms of drive motor current and induced structural vibration

    Microscopic Polarization in Bilayer Graphene

    Full text link
    Bilayer graphene has drawn significant attention due to the opening of a band gap in its low energy electronic spectrum, which offers a promising route to electronic applications. The gap can be either tunable through an external electric field or spontaneously formed through an interaction-induced symmetry breaking. Our scanning tunneling measurements reveal the microscopic nature of the bilayer gap to be very different from what is observed in previous macroscopic measurements or expected from current theoretical models. The potential difference between the layers, which is proportional to charge imbalance and determines the gap value, shows strong dependence on the disorder potential, varying spatially in both magnitude and sign on a microscopic level. Furthermore, the gap does not vanish at small charge densities. Additional interaction-induced effects are observed in a magnetic field with the opening of a subgap when the zero orbital Landau level is placed at the Fermi energy

    The beginning of time? Evidence for catastrophic drought in Baringo in the early nineteenth century

    Get PDF
    New developments in the collection of palaeo-data over the past two decades have transformed our understanding of climate and environmental history in eastern Africa. This article utilises instrumental and proxy evidence of historical lake-level fluctuations from Baringo and Bogoria, along with other Rift Valley lakes, to document the timing and magnitude of hydroclimate variability at decadal to century time scales since 1750. These data allow us to construct a record of past climate variation not only for the Baringo basin proper, but also across a sizable portion of central and northern Kenya. This record is then set alongside historical evidence, from oral histories gathered amongst the peoples of northern Kenya and the Rift Valley and from contemporary observations recorded by travellers through the region, to offer a reinterpretation of human activity and its relationship to environmental history in the nineteenth century. The results reveal strong evidence of a catastrophic drought in the early nineteenth century, the effects of which radically alters our historical understanding of the character of settlement, mobility and identity within the Baringo–Bogoria basin
    corecore