
 McCann, D. A. J., Eder, K. I., & Oswald, M. E. (2016). Characterising and
Comparing the Energy Consumption of Side Channel Attack
Countermeasures and Lightweight Cryptography on Embedded Devices. In
Proceedings of 2015 International Workshop on Secure Internet of Things
(SIoT): Proceedings of a meeting held 21-25 September 2015 at Vienna,
Austria. (pp. 65-71). Institute of Electrical and Electronics Engineers (IEEE).
DOI: 10.1109/SIOT.2015.11

Peer reviewed version

Link to published version (if available):
10.1109/SIOT.2015.11

Link to publication record in Explore Bristol Research
PDF-document

This is the accepted author manuscript (AAM). The final published version (version of record) is available online
via Institute of Electrical and Electronics Engineers at DOI: 10.1109/SIOT.2015.11. Please refer to any
applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/73982263?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/SIOT.2015.11
http://research-information.bristol.ac.uk/en/publications/characterising-and-comparing-the-energy-consumption-of-side-channel-attack-countermeasures-and-lightweight-cryptography-on-embedded-devices(634ea5f4-8bb2-4a0c-9315-c4e8279ee556).html
http://research-information.bristol.ac.uk/en/publications/characterising-and-comparing-the-energy-consumption-of-side-channel-attack-countermeasures-and-lightweight-cryptography-on-embedded-devices(634ea5f4-8bb2-4a0c-9315-c4e8279ee556).html

Characterising and Comparing the Energy
Consumption of Side Channel Attack

Countermeasures and Lightweight Cryptography
on Embedded Devices

David McCann, Kerstin Eder, Elisabeth Oswald

University of Bristol
Department of Computer Science

Merchant Venturers Building, Woodland Road, BS8 1UB, Bristol, UK
{David.Mccann, Kerstin.Eder, Elisabeth.Oswald}@bristol.ac.uk

Abstract. This paper uses an Instruction Set Architecture (ISA) based
statistical energy model of an ARM Cortex-M4 microprocessor to eval-
uate the energy consumption of an implementation of AES with differ-
ent side channel attack (SCA) countermeasures and an implementation
of lightweight ciphers PRESENT, KLEIN and ZORRO with and with-
out Boolean first order masking. In this way, we assess the additional
energy consumption of using different SCA countermeasures and using
lightweight block ciphers on 32 bit embedded devices. In addition to this,
we provide a methodology for developing an ISA based energy model for
cryptographic software with an accuracy of ±5%. In addition to pro-
viding our methodology for developing this model, we also show that
using variations of instructions that reduce the size of code can reduce
the energy consumption by as much as 30% − 40% and that memory
instructions reduce the predictability of our energy model.

1 Introduction

Cryptography is a vital application for authenticating and securing data com-
munications and secure systems. It is widely used in the Internet, smart cards,
authentication systems and many other security related applications and is be-
coming more relevant as more things become interconnected digitally.

To secure such systems, symmetric key cryptography is widely deployed
on embedded devices. AES is the most popular symmetric key cipher [2].
Lightweight ciphers are a group of symmetric ciphers designed to provide cryp-
tography for constrained environments (such as size, speed or power), often at
the cost of security. Given the well known threat that side channel attacks pose
on embedded systems running cryptographic applications, such implementations
often need to be hardened against side channel attacks using countermeasures,
such as masking or hiding.

There are many different kinds of processors which are relevant for practical
embedded systems. In this work, we focus on a the ARM Cortex-M4 processor

which has a 32-bit architecture and runs Thumb and Thumb-2 assembly [13].
As demonstrated by the emergence of lightweight ciphers in recent years, fac-
tors such as power consumption and energy efficiency have become an important
design consideration for cryptographic primitives, as cryptography can be a com-
putationally demanding application and is used on many mobile devices where
energy efficiency is extremely important for extending battery life [14]. This has
become particularly important for the Internet of Things (IoT), where many in-
terconnected mobile devices will interact each other, making security and energy
consumption both important design considerations. In this context,sistance of
IoT devices against DPA-style side channel attacks may also be an important
design consideration to ensure the security of devices.

Measuring energy consumption, however, traditionally requires custom in-
strumentation of the hardware; a barrier that prevents energy consumption from
being treated as a first class software design goal. As cryptographic implemen-
tations for software are often developed directly in assembly language and are
relatively simple, power models that work on the ISA level would seem to be ideal
for profiling, understanding and improving their energy consumption. One type
of energy model that works on this level is a statistical model proposed by Ti-
wari et al. [18] that uses measured information about the energy cost of different
instruction sequences to derive a model for estimating and giving transparency
to the energy consumption of any given piece of assembly code.

1.1 Previous Work

Previous work in this area has been done in [4], [5] and [8]. [4] examines the
design of an optimisation methodology that uses its own split masking method
as an alternative reduced energy consumption masking countermeasure for an
embedded device. [5] proposes a masking method based on an increased number
of lookup tables to provide a more energy efficient masking method against
higher order attacks. This work focuses on the design of its own type of masking
aimed at reducing the energy consumption overhead at the expense of other
factors (such as memory in [5]).

[8] looks at the energy cost, and other features, of lightweight cryptography
in hardware. The work provides a good insight into the energy consumption of
lightweight ciphers however focuses only on hardware implementations and does
not asses the additional energy of using side channel attack countermeasures.

1.2 Our Contributions

This paper provides a methodology of the development of a static energy model
for an assembly instruction set typically used in symmetric key cryptography on
a processor that is commonly used in practice (ARM Cortex-M4). The accuracy
of this model is shown and then used to profile AES with a number of different
SCA countermeasures and three lightweight ciphers (PRESENT, KLEIN and
ZORRO) with and without a first order Boolean masking SCA countermeasure.

The static energy model developed uses the statistical method outlined by
Tiwari et al. [18] to develop an energy model for the instruction set commonly
used in symmetric key cryptography. In doing so we demonstrate that this type
of energy model provides results with a ±5% error margin, and so could be
used to accurately profile and improve the energy consumption of cryptographic
software on a typically deployed processor. We find that memory instructions
result in greater unpredictability and thus more error in estimating the energy
consumption of any given piece of assembly code, and that variations of in-
structions that reduce the number of instructions required (such as shifting an
operand of an ALU instruction) significantly reduce the energy consumption of
instructions by around 30/40%.

We show that for our implementation of AES adding Boolean first order
masking to AES increases the energy consumption by 56% and adding Boolean
first order masking and hiding roughly doubles the energy consumption. Adding
only affine or Boolean second order masking has a much higher energy consump-
tion overhead of 6 and 6.7 times respectively.

We show that for the an implementation of PRESENT, KLEIN and ZORRO
on the 32 bit ARM Cortex-M4 processor, these lightweight ciphers consume a
higher amount of energy than AES. This is largely due to the implementation
of the ciphers on a 32 bit architecture when they are designed with another
implementation platform in mind (in particular hardware for PRESENT) or the
”lightness” of the cipher being designed for size or higher order masking efficiency
(as in the case of KLEIN and ZORRO respectively). In this way we demonstrate
that designing lightweight ciphers for speed will produce ciphers that are more
energy efficient. However, optimising for size through reducing the size of look
up tables (as in the case of PRESENT and KLEIN) provides a significantly lower
energy overhead for implementing Boolean first order masking (half as much as
for AES).

The following section of this paper gives a background introduction to im-
plementing masking, hiding and lightweight blockciphers. We then describe our
energy modelling methodology before using the model on our implementations
of AES. We then go on to analyse the energy consumption of the lightweight
ciphers with respect to AES with and without Boolean first order masking.

2 Background

2.1 Masking

Since 1999, when Kocher et al. [9] showed that the secret data (such as cryp-
tographic keys) of cryptographic algorithms could be recovered by monitoring
the timing, power consumption or electromagnetic field of the device performing
the cryptography (known as side channel attacks), software implementations of
cryptographic algorithms such as AES have also become more involved, as the
code running on the processor can no longer be viewed as a black box but must
be designed to resist these sorts of attacks. A very powerful type of SCA is known

as Differential Power Analysis (DPA) which uses the correlation between points
on many different execution traces to recover the cryptographic key. Examples
of this type of attack have been practically proven possible against symmetric
key ciphers [9, 11].

In order to design code that is resistant to SCAs, complete control over the
instructions executed by the processor is essential to ensure that no secret infor-
mation is inadvertently made recoverable by DPA style attacks. This means that
secure cryptographic implementations for embedded systems are often written
directly in assembly code which include countermeasures to ensure side channel
resilience. One of these countermeasures is known as masking which combines
the algorithm’s secret information with random data, known as a mask, in such
a way that it makes it very difficult for an adversary to derive the state or key
of the algorithm given the masked state or key, which could be obtained using
a DPA style attack [11, 12]. Masking schemes are widely used in many cryp-
tographic implementations in practice, as demonstrated by papers on masking
published by industry, such as [15].

There are a number of different masking methods that provide different levels
of security. Three of these methods are Boolean first order, affine and Boolean
second order masking. The first and third of these both use addition to add the
random mask to the secret information, where addition is modulo two, carried
out with the x-or operation. The second method, affine, uses multiplication and
addition of the form ax + b over GF (28), where a and b are random and x is
the state being masked. Boolean first order and affine provide security against
first order attacks (where a less powerful adversary is considered) with affine
being around 30-40 times more resistant than first order Boolean masking [3].
Boolean second order is considered a more secure implementation as it can give
security against second order attacks (where a more powerful adversary is con-
sidered) [17].

2.2 Hiding

Another type of countermeasure is known as hiding. Hiding is a technique that
aims to make the power consumption of a device independent of the intermediate
values or operations performed such that the power consumption of each clock
cycle is either random or equal. Hiding countermeasures split into two groups:
one that aims to hide the sensitive data by altering the time dimension (these
include randomly inserting dummy operations or shuffling the operations of the
algorithm) and one that aims to hide it in the amplitude dimension (such as by
increasing the level of noise or reducing the the signal). [11].

One way of implementing hiding in the time dimension in software implemen-
tations is by using a random shuffling method. This method seeks to randomly
change the sequence in which the operations of an algorithm are performed. In
AES, for example, the order in which the S-Box look up is carried out on each of
the 16 bytes of the state does not affect the state of the algorithm at the end of
SubBytes. This kind of shuffling can be done either by selecting a random start

index for loops or by permuting the state bytes of the algorithm before entering
the loop [19].

2.3 Lightweight Blockciphers

Lightweight blockciphers are blockciphers designed to work in constrained en-
vironments, often at the cost of security. They can generally be optimised for
different things depending on the nature of the constraint they aim to over-
come, such as size, speed or power. Three of these lightweight blockciphers are
PRESENT, KLEIN and ZORRO.

PRESENT is a popular lightweight cipher that has a key size of either 80
bits or 128 bits and a block size of 64 bits. PRESENT was designed to be
implemented efficiently in hardware where it can be engineered to have a very
low gate count (1570 GE, which is competitive with leading compact stream
ciphers) and high speed for each block (32 clock cycles). The cipher consists of
an SP network, comprising a four bit sbox and a permutation layer. There are
32 rounds and a key schedule is used to derive 32 round keys each of which is
64 bits long [1].

KLEIN is another lightweight cipher that was developed primarily for re-
source constrained RFID tags. KLEIN has a 64 bit block length and can be used
with either 64, 80 or 96 bit key lengths. The structure of KLEIN has a very sim-
ilar structure to AES with the AddKey, SubBytes, ShiftRows and MixColumns
primitives being the same but working on nibbles rather than bytes [7]. Conse-
quently, the SBox is 16 nibbles in size (rather than the 256 bytes of the AES
SBox), significantly reducing the required memory. In order to make up for the
lower security achieved through the smaller SBox and other design features, the
cipher has 16 rounds as opposed to the 10 for AES.

ZORRO was developed primarily as a cipher that could be masked easily for
higher order masking by reducing the total number of non-linear operations in
the cipher. The structure is very similar to AES with the main difference being
the values of the S-Box and number of bytes substituted with the SBox values,
both designed to reduce the level of non-linearity thus making the masking of
the cipher easier. Other differences between ZORRO and AES is the absence
of the KeySchedule, with the same key being used for each round, the round
counter is also x-ored into the state after ShiftRows. To account for the lower
security of the changed SBox and absence of the KeySchedule, 24 rounds are
implemented instead of the 10 for AES [6].

2.4 Energy Modelling

The method of analysing the energy consumption of the ARM Cortex-M4 pro-
cessor is one proposed by Tiwari et al. [18]. This method models the energy
consumption of a processor on the ISA level, and can be used to estimate the
energy consumption of a given sequence of assembly instructions. It does so by
taking statistical energy measurements of the processor for each instruction, for
every possible pair of instructions, and for external effects.

More specifically, the energy consumption (Ep) of a sequence of assembly in-
structions is calculated as the base cost of each instruction (Bi) multiplied by the
number of times the instruction occurs (Ni), combined with an inter-instruction
switching overhead from instruction i to instruction j, (Oi,j) multiplied by the
number of occurrences of this switch (Ni,j) as well as the cost of external effects,
such as cache misses and resource constraints, (k). This is expressed in Eq. 1
which is taken from [18].

Ep =
∑
i

(Bi ·Ni) +
∑
i,j

(Oi,j ·Ni,j) +
∑
k

Ek (1)

3 Characterisation of Base and
Inter-Instruction Costs

3.1 Setup and Profiling Approach

For the model developed for the ARM Cortex-M4 processor (clocked at 16MhZ),
the base and switching costs were measured using an open source power measure-
ment board [10]. The measurement board consists of an STM-Discovery board
with an ARM Cortex-M4 processor (of the same specification as the board that
was tested) with an additional measurement board that is mounted on top of the
Discovery board. This additional measurement board receives the input of the
power source of the board that is being tested to derive the energy consumption
over a period of time given by a trigger signal.

To measure the base and inter-instruction energy costs, a set containing
each instruction that was used in the masked implementations of AES and each
possible pair of instructions was identified. Each set of instructions and pair of
instructions was then triggered with random 32 bit data, applying constraints to
that data if necessary, and the energy measured. The registers being read from
and written to were also changed at several intervals to ensure any impact of
reading from and writing to different registers was balanced out in the average.
The average of 20,000 measurements for each instruction/pair was calculated to
account for any noise or measurement errors.

3.2 Choice of Instructions

The number of instructions used in the implementations of the ciphers is very
small, consisting of eor, ldr, str, lsl, ror, and, sub, mul, b, cmp and add

instructions. Within the ISA of the Cortex-M4 processor, however, many vari-
ations of these instructions are offered to provide increased speed and ease of
programming - such as loading and storing a single byte (ldrb and strb) or
including an extra addition or shift. These variations of instructions are used
extensively in the implementations, so these were also included in the model.
In total 28 instructions were characterised, 17 of which are variations of parent
instructions.

3.3 Resulting Model

Energy consumption of ALU instructions was seen to be roughly the same, cost-
ing on average 1.65nJ . The instructions that used the least energy were the mov

and cmp instructions which used 1.19nj and 1.20nJ respectively. Memory in-
structions such as ldr, str use significantly more energy at 2.78nJ and 2.66nJ .
The energy cost of storing a single byte (strb) is significantly less than a normal
store at 1.53nJ (-45%). However, loading a single byte (ldrb) is significantly
higher at 3.90nJ (+47%). A non-conditional branch instruction showed an en-
ergy cost of 3.45nJ . Adding a condition that is false to a branch instruction uses
0.9nJ less energy than a non-conditional branch. When the condition is true, the
energy consumption is roughly equal to a non-conditional branch instruction.

Variations of instructions (by having an extra addition or shift) give a slightly
higher energy cost in most cases. The effect of having extra addition or shifting
with a mov instruction showed an increase of around 0.37nJ . Extra addition on
a ldr, str, ldrb or strb has an extra energy cost of around 0.30nJ more for
each instruction. Having shifting with ALU instructions has no observable ef-
fect on energy consumption; it gives an energy cost roughly equal to the main
ALU instruction. For memory instructions this is slightly different, with an ex-
tra shift having no effect on the energy consumption of a ldr, but having an
extra cost of around 1nJ for a str. has no extra energy cost compared to the
standard ALU instruction. Performing an eor instruction and lsl instruction,
for example, could be achieved using two instructions, an eor (1.66nJ) and an
lsr (1.62nJ) leads to a total energy cost of 2.81nJ , while doing this as a single
instruction that performs the lsr operation on the second operand to be x-ored
has the same energy cost as the eor instruction (1.66nJ), thus showing an en-
ergy saving of 41%. Having a variation of a memory instruction that includes an
extra addition on the second operand also makes a significant saving over using
two instructions (a ldr and an add) of 29.5% (reducing from 4.34nJ to 3.06nJ).
This confirms that using such variations of instructions instead of separate in-
structions produces a significant improvement in energy efficiency, and is thus in
line with the findings in [16]. The additional energy cost of the inter-instruction
effects varies slightly for the individual instructions with an overall average over-
head of 0.26nJ for each instruction switch. ALU operations typically provide a
switching cost of around 0.16nJ . When combining the instructions with an ex-
tra addition or shift, the results are typically far higher at around 0.22nJ . The
results become more varied when loading, storing and branching instructions are
considered. ldr and str instructions have a far higher switching cost than other
instructions of around 0.45nJ and show a fairly consistent switching cost. ldrb
and strb have a switching energy cost similar to that of the ldr and str instruc-
tions, however show slightly more variability with their results. Including extra
additions or shifts in load and store instructions increases the switching cost to
around 0.50nJ . Branching instructions, and in particular conditional branching
where the condition is true, provide more anomalous results, giving negative
values in many instances which would not be expected [18].

3.4 Validating and Calibrating the Model

To validate the model, a large variety of test data was used. Validation was
performed by profiling tests using the energy consumption model and compar-
ing the results with the energy measured when running the tests on the target
hardware. The random test data contained sequences of instructions with and
without any loads and stores, high and low frequencies of switching, longer and
shorter sequences of instructions and a varying number of branches. The results
showed that the model typically overestimated the total energy cost in all sce-
narios but that the error increased when loading and storing were present and in
particular when the ldrb instruction was present (rising as high as 18% where
7500 instructions were used with 16% of the instructions being ldrb compared to
an error of 6% where no ldrb were used with the same number of instructions).

The effect of switching was also observed to be greater than the model indi-
cated. Another interesting observation is that when the number of instructions
in the sequence increases, the error gets larger. These results are likely to be
due to external effects (

∑
k Ek) which take into account the effect of communi-

cation with cache memory (with cache hits or misses causing the energy results
of memory instructions to show more unpredictability, hence the greater error
when memory instructions are included in the test code) and other effects which
could occur in the pipeline of the processor.

To increase the accuracy of the model, the base and switching energy costs
were calibrated to take the observations of the causes of error into account. These
calibrations include reducing the cost of all instructions by 1% and ldrb by 15%
and raising the energy cost of switches by 15%.

4 Application to AES with SCA
Countermeasures

Four software implementations of masked/unmasked AES were developed in
ARM assembly: one without masking and the other three with Boolean first
order, affine and Boolean second order masking respectively. The main differ-
ence between the masked and unmasked implementations of AES is that the
pre-computation of the masked S-box stage is required in the masked implemen-
tations to pre-compute the S-box so that the S-box lookup table will be correct
for the masked state that needs to be looked up. In addition to this additional
S-box pre-computation stage, the AddRoundKey, SubBytes and MixColumns
stages are also implemented slightly differently in the masked implementations
with only the ShiftRows stage remaining the same.

The numbers of instructions (Inst.s), numbers of different instruction pairs
(Swit.s), modelled energy consumption and measured (on the hardware) energy
consumption of each of the implementations of AES is shown in Table 1.

Table 1. Modelled and measured energy consumption of AES with different masking
countermeasures.

Implementation Inst.s Swit.s Model Measured Error
(µJ) (µJ) (%)

No Mask 3808 3405 9.72 9.80 -0.78

Boolean First 6204 5229 15.17 15.26 -0.59
Order

Affine 25055 20552 58.14 57.19 1.67

Boolean Second 25681 19032 65.03 62.37 4.25
Order

Examining the results for the modelled energy consumption in Table 1 shows
that adding Boolean first order masking to AES increases its energy consumption
by around 55%, from 9.72µJ to 15.17µJ , rising with the increased number of
instructions (63% increase). Implementing affine masking has a substantially
larger increase in energy consumption (6 times greater than unmasked AES).
Our implementation of Boolean second order masking has the highest energy
consumption of 65.03µJ , 6.7 times greater than the un-masked implementation
and 12% higher than the affine masked implementation - although with only 2%
more instructions due to the higher proportion of memory instructions (49.3%
compared to 21.1% for the affine implementation) which require more energy.

The results also show that the energy model provides an accurate estimate of
the actual energy cost measured on the hardware. The accuracy of the model is
shown by all results having less than 5% error with three of the results showing
less than 2% error. Boolean second order implementation shows by far the highest
error of 4.25%, due to the increased proportion of memory instructions (which
produce less predictable results).

To understand the additional energy consumption of side channel attack
countermeasures, hiding was implemented alongside Boolean first order mask-
ing in AES. The hiding countermeasure implemented was based on randomly
shuffling the initial order of the state bytes. Adding the hiding countermea-
sure requires 1380 more instructions (22.4% more than the original first order
Boolean masking implementation). The hiding implementation was profiled us-
ing the energy model. The results are compared with the first order Boolean
masking implementation without hiding in Table 2, which shows that the imple-
mentation with hiding has a 31.11% higher energy cost. This is higher than the
22.4% increase in the number of instructions due to the proportion of additional
memory instructions required for the hiding countermeasure.

5 Energy Consumption of
Lightweight Blockciphers

Here we examine the difference between the energy consumption of AES and
three lightweight blockciphers, PRESENT-80, KLEIN-80 and ZORRO. We im-

Table 2. Comparison between Boolean first order implementation of AES with and
without hiding.

Implementation Calibrated Model
(µJ)

Boolean First Order 15.17

Boolean First Order with Hiding 19.89

plement a version of these lightweight ciphers in ARM assembly with and without
Boolean first order masking and use the energy model developed in this paper
to analyse their energy consumption with respect to AES. We did not examine
implementations with affine masking, higher order Boolean masking or hiding
for the lightweight implementations as Boolean first order masking is used most
commonly in practice and we aim to understand the energy overhead of imple-
menting this countermeasure on lightweight ciphers.

For KLEIN and ZORRO the implementations were based on the original im-
plementation of AES with the differences described in Section 2.3. PRESENT
was designed differently due to its great distinction from AES. The implementa-
tion of PRESENT derives the 32 round keys at the beginning of the cipher and
computes the bit permutation arithmetically, rather than using a look up table.
First order Boolean masking was implemented in the same way as AES for all
ciphers. Table 3 shows a comparison of the energy consumption of these three
ciphers and AES with and without masking.

Table 3. Energy consumption of lightweight ciphers with and without Boolean first
order masking (Boolean).

Cipher Masking Inst.s Swit.s Energy
(µJ)

AES None 3808 3405 9.80

AES Boolean 6204 5229 15.26

PRESENT None 33010 30398 68.68

PRESENT Boolean 34333 31483 71.91

KLEIN None 5832 5317 14.82

KLEIN Boolean 6822 6822 17.04

ZORRO None 4006 3692 9.81

ZORRO Boolean 6591 5800 16.00

Table 3 shows that the lightweight ciphers consume more energy than the
implementation of AES. This is primarily due to the design of the cipher being
for hardware (as in the case of PRESENT), or the cipher being designed to be
optimised for size (as in the case of KLEIN) or higher order masking efficiency
(ZORRO). PRESENT is shown to use 7 times more energy than AES for this
implementation, lower than the 8.5 times the number of instructions due to the
amount of arithmetic instructions used in the permutation layer. KLEIN can be

seen to use around 50% more energy than AES and ZORRO around the same
as AES. Boolean first order masking schemes similar to the one implemented for
AES were implemented on the different lightweight ciphers.

Table 3 also shows the additional energy cost required to provide a Boolean
first order masking countermeasure for the lightweight ciphers in comparison
to AES. The lightweight ciphers PRESENT and KLEIN require significantly
less additional energy to provide this security, (3.32µJ and 2.22µJ more respec-
tively). This is primarily due to the much smaller SBox (16 bytes rather than
256 bytes) which is required to be masked at the beginning of encryption/de-
cryption. This however is not true for ZORRO which requires the most energy
(6.19µJ , 0.73µJ more than AES). The reason for this is the overhead in energy
consumption for masking mix columns. As there are more rounds where mix
columns is implemented in ZORRO, this gives rise to a higher energy cost of
masking when compared with AES, even in the absence of the key schedule.

These results demonstrate that lightweight ciphers that have been optimised
for speed will provide implementations that require less energy, however for our
implementations in software on a 32 bit architecture, more instructions are re-
quired to encrypt a block and therefore more energy is required. Increased speed
can often be achieved through the use of lookup tables, this is true of PRESENT
for example where the permutation value could be taken from a lookup table
rather than being computed arithmetically. This however will significantly in-
crease the size requirement of the program thus providing a greater overhead
in terms of energy consumption for masking, as the lookup tables will need to
be masked. This is demonstrated by the lower additional cost of implementing
Boolean first order masking with the lightweight ciphers PRESENT and KLEIN
(which require less memory) than AES.

6 Conclusions

We have presented results that indicate that accurate energy consumption es-
timations for cryptographic software can be obtained from statistical energy
models. We have shown how to build a statistical model and that calibrating
the model with a variety of test data can be used to increase the accuracy of the
model.

We note that for the ARM Cortex-M4 processor, the ALU instruction costs
are roughly equal and that using extensions to these instructions (such as add
or shift) produces a small increase in energy cost, but that this is significantly
less (∼ 30% − 40%) than using two instructions to achieve the same result. In
this way, optimising the code for speed will produce code optimised for energy
consumption. It is also noted that avoiding switching instructions where possible
and reducing the number of loads and stores (in particular loading a single byte)
is also an effective means of reducing the overall energy consumption.

We give insight into how implementing masking and hiding SCA countermea-
sures affect the energy consumption of an implementation of AES. Measuring
the energy consumption of our implementations shows that there is a 56% in-

crease in energy consumption when adding Boolean first order masking to AES
compared to an increase of 6 and 6.7 times for adding affine and Boolean second
order masking respectively. We then analyse the overhead of adding hiding and
Boolean first order masking to AES and show that there is roughly a doubling
of the energy consumption compared to AES with no SCA countermeasures.

In addition to this, we model the energy consumption of three lightweight
blockciphers (PRESENT, KLEIN and ZORRO) with and without Boolean first
order masking and show that, for the software implementations on the 32 bit
ARM Cortex-M4 processor, the energy consumption is significantly higher for
PRESENT (7 times higher) and slightly higher for KLEIN (50% higher) than
that of AES however the additional energy required to include Boolean first order
masking is around half as much as for AES. ZORRO however has a very similar
energy consumption to AES when no masking is present, however uses slightly
more energy when masked due to the overhead of MixColumns, which is exe-
cuted 14 times more in ZORRO. This information demonstrates that lightweight
ciphers optimised for speed will lead to ciphers being more energy efficient, how-
ever ciphers optimised for size (with the absence of, or smaller, look up tables)
will require less additional energy to mask.

References

1. Bogdanov, A., Knudsen, L. R., Leander, G., Paar, C., Poschmann, A.,
Robshaw, M. J. B., Seurin, Y., and Vikkelsoe, C. PRESENT: an ultra-
lightweight block cipher. In Cryptographic Hardware and Embedded Systems -
CHES 2007, 9th International Workshop, Vienna, Austria, September 10-13, 2007,
Proceedings (2007), P. Paillier and I. Verbauwhede, Eds., vol. 4727 of Lecture Notes
in Computer Science, Springer, pp. 450–466.

2. Daemen, J., and Rijmen, V. The Design of Rijndael: AES - The Advanced
Encryption Standard. Information Security and Cryptography. Springer, 2002.

3. Fumaroli, G., Martinelli, A., Prouff, E., and Rivain, M. Affine Masking
against Higher-Order Side Channel Analysis. In Selected Areas in Cryptography
(2010), A. Biryukov, G. Gong, and D. R. Stinson, Eds., vol. 6544 of Lecture Notes
in Computer Science, Springer, pp. 262–280.

4. Gebotys, C. H. A split-mask countermeasure for low-energy secure embedded
systems. ACM Trans. Embedded Comput. Syst. 5, 3 (2006), 577–612.

5. Gebotys, C. H. A table masking countermeasure for low-energy secure embedded
systems. IEEE Trans. VLSI Syst. 14, 7 (2006), 740–753.

6. Gérard, B., Grosso, V., Naya-Plasencia, M., and Standaert, F. Block
ciphers that are easier to mask: How far can we go? In Cryptographic Hardware and
Embedded Systems - CHES 2013 - 15th International Workshop, Santa Barbara,
CA, USA, August 20-23, 2013. Proceedings (2013), G. Bertoni and J. Coron, Eds.,
vol. 8086 of Lecture Notes in Computer Science, Springer, pp. 383–399.

7. Gong, Z., Nikova, S., and Law, Y. W. KLEIN: A new family of lightweight block
ciphers. In RFID. Security and Privacy - 7th International Workshop, RFIDSec
2011, Amherst, USA, June 26-28, 2011, Revised Selected Papers (2011), A. Juels
and C. Paar, Eds., vol. 7055 of Lecture Notes in Computer Science, Springer, pp. 1–
18.

8. Kerckhof, S., Durvaux, F., Hocquet, C., Bol, D., and Standaert, F. To-
wards green cryptography: A comparison of lightweight ciphers from the energy
viewpoint. In Cryptographic Hardware and Embedded Systems - CHES 2012 -
14th International Workshop, Leuven, Belgium, September 9-12, 2012. Proceedings
(2012), E. Prouff and P. Schaumont, Eds., vol. 7428 of Lecture Notes in Computer
Science, Springer, pp. 390–407.

9. Kocher, P. C., Jaffe, J., and Jun, B. Differential Power Analysis. In CRYPTO
(1999), M. J. Wiener, Ed., vol. 1666 of Lecture Notes in Computer Science,
Springer, pp. 388–397.

10. MAGEEC. Energy Measurement Infrastructure. Available at:
http://mageec.org/2014/04/23/energy-measurement-infrastructure/, 2013.

11. Mangard, S., Oswald, E., and Popp, T. Power analysis attacks - revealing the
secrets of smart cards. Springer, 2007.

12. Messerges, T. S. Securing the AES Finalists Against Power Analysis Attacks.
In FSE (2000), B. Schneier, Ed., vol. 1978 of Lecture Notes in Computer Science,
Springer, pp. 150–164.

13. Microelectronics, S. Stm32f405xx stm32f407xx datasheet. Tech. rep., ST Mi-
croelectronics, June 2013.

14. Núñez-Yáñez, J. L., and Lore, G. Enabling accurate modeling of power and
energy consumption in an ARM-based System-on-Chip. Microprocessors and Mi-
crosystems - Embedded Hardware Design 37, 3 (2013), 319–332.

15. Prouff, E., Rivain, M., and Roche, T. On the Practical Security of a Leakage
Resilient Masking Scheme. In Topics in Cryptology - CT-RSA 2014 - The Cryptog-
rapher’s Track at the RSA Conference 2014, San Francisco, CA, USA, February
25-28, 2014. Proceedings (2014), J. Benaloh, Ed., vol. 8366 of Lecture Notes in
Computer Science, Springer, pp. 169–182.

16. Roy, K., and Johnson, M. C. Low Power Design in Deep Submicron Electronics.
Kluwer Academic Publishers, 1997, ch. Software Design for Low Power, pp. 433–
460.

17. Schramm, K., and Paar, C. Higher Order Masking of the AES. In CT-RSA
(2006), D. Pointcheval, Ed., vol. 3860 of Lecture Notes in Computer Science,
Springer, pp. 208–225.

18. Tiwari, V., Malik, S., and Wolfe, A. Power analysis of embedded software:
a first step towards software power minimization. IEEE Trans. VLSI Syst. 2, 4
(1994), 437–445.

19. Tunstall, M., Whitnall, C., and Oswald, E. Masking Tables - An Underes-
timated Security Risk. IACR Cryptology ePrint Archive 2013 (2013), 735.

