913 research outputs found

    Measurement of myocardial blood flow by cardiovascular magnetic resonance perfusion: comparison of distributed parameter and Fermi models with single and dual bolus

    Get PDF
    Background Mathematical modeling of cardiovascular magnetic resonance perfusion data allows absolute quantification of myocardial blood flow. Saturation of left ventricle signal during standard contrast administration can compromise the input function used when applying these models. This saturation effect is evident during application of standard Fermi models in single bolus perfusion data. Dual bolus injection protocols have been suggested to eliminate saturation but are much less practical in the clinical setting. The distributed parameter model can also be used for absolute quantification but has not been applied in patients with coronary artery disease. We assessed whether distributed parameter modeling might be less dependent on arterial input function saturation than Fermi modeling in healthy volunteers. We validated the accuracy of each model in detecting reduced myocardial blood flow in stenotic vessels versus gold-standard invasive methods. Methods Eight healthy subjects were scanned using a dual bolus cardiac perfusion protocol at 3T. We performed both single and dual bolus analysis of these data using the distributed parameter and Fermi models. For the dual bolus analysis, a scaled pre-bolus arterial input function was used. In single bolus analysis, the arterial input function was extracted from the main bolus. We also performed analysis using both models of single bolus data obtained from five patients with coronary artery disease and findings were compared against independent invasive coronary angiography and fractional flow reserve. Statistical significance was defined as two-sided P value <0.05. Results Fermi models overestimated myocardial blood flow in healthy volunteers due to arterial input function saturation in single bolus analysis compared to dual bolus analysis (P < 0.05). No difference was observed in these volunteers when applying distributed parameter-myocardial blood flow between single and dual bolus analysis. In patients, distributed parameter modeling was able to detect reduced myocardial blood flow at stress (<2.5 mL/min/mL of tissue) in all 12 stenotic vessels compared to only 9 for Fermi modeling. Conclusions Comparison of single bolus versus dual bolus values suggests that distributed parameter modeling is less dependent on arterial input function saturation than Fermi modeling. Distributed parameter modeling showed excellent accuracy in detecting reduced myocardial blood flow in all stenotic vessels

    Recent star formation in nearby galaxies from GALEX imaging:M101 and M51

    Full text link
    The GALEX (Galaxy Evolution Explorer) Nearby Galaxies Survey is providing deep far-UV and near-UV imaging for a representative sample of galaxies in the local universe. We present early results for M51 and M101, from GALEX UV imaging and SDSS optical data in five bands. The multi-band photometry of compact stellar complexes in M101 is compared to population synthesis models, to derive ages, reddening, reddening-corrected luminosities and current/initial masses. The GALEX UV photometry provides a complete census of young compact complexes on a approximately 160pc scale. A galactocentric gradient of the far-UV - near-UV color indicates younger stellar populations towards the outer parts of the galaxy disks, the effect being more pronounced in M101 than in M51.Comment: This paper will be published as part of the Galaxy Evolution Explorer (GALEX) Astrophysical Journal Letters Special Issue. Full paper available from http://dolomiti.pha.jhu.edu . Links to full set of papers will be available at http://www.galex.caltech.edu/PUBLICATIONS/ after November 22, 200

    The Star Formation Rate Function of the Local Universe

    Full text link
    We have derived the bivariate luminosity function for the far ultraviolet (1530Angstroms) and far infrared (60 microns). We used matched GALEX and IRAS data, and redshifts from NED and PSC-z. We have derived a total star formation luminosity function phi(L_{tot}), with L_{tot} = L_{FUV}+L_{FIR}. Using these, we determined the cosmic ``star formation rate'' function and density for the local universe. The total SFR function is fit very well by a log-normal distribution over five decades of luminosity. We find that the bivariate luminosity function phi(L_{FUV},L_{FIR}) shows a bimodal behavior, with L_{FIR} tracking L_{FUV} for L_{TOT}< 10^10 L_sun, and L_{FUV} saturating at 10^10 L_sun, while L_{TOT} L_{FIR} for higher luminosities. We also calculate the SFR density and compare it to other measurements.Comment: This paper will be published as part of the Galaxy Evolution Explorer (GALEX) Astrophysical Journal Letters Special Issue. Links to the full set of papers will be available at http:/www.galex.caltech.edu/PUBLICATIONS/ after November 22, 200

    The On-Orbit Performance of the Galaxy Evolution Explorer

    Full text link
    We report the first year on-orbit performance results for the Galaxy Evolution Explorer (GALEX), a NASA Small Explorer that is performing a survey of the sky in two ultraviolet bands. The instrument comprises a 50 cm diameter modified Ritchey-Chretien telescope with a 1.25 degree field of view, selectable imaging and objective grism spectroscopic modes, and an innovative optical system with a thin-film multilayer dichroic beam splitter that enables simultaneous imaging by a pair of photon counting, microchannel plate, delay line readout detectors. Initial measurements demonstrate that GALEX is performing well, meeting its requirements for resolution, efficiency, astrometry, bandpass definition and survey sensitivity.Comment: This paper will be published as part of the Galaxy Evolution Explorer (GALEX) Astrophysical Journal Letters Special Issu

    UV emission and Star Formation in Stephan's Quintet

    Full text link
    we present the first GALEX UV images of the well known interacting group of galaxies, Stephan's Quintet (SQ). We detect widespread UV emission throughout the group. However, there is no consistent coincidence between UV structure and emission in the optical, H\alpha, or HI. Excluding the foreground galaxy NGC7320 (Sd), most of the UV emission is found in regions associated with the two spiral members of the group, NGC7319 and NGC7318b, and the intragroup medium starburst SQ-A. The extinction corrected UV data are analyzed to investigate the overall star formation activity in SQ. It is found that the total star formation rate (SFR) of SQ is 6.69+-0.65 M_\sun/yr. Among this, 1.34+-0.16 M_sun/yr is due to SQ-A. This is in excellent agreement with that derived from extinction corrected H\alpha luminosity of SQ-A. The SFR in regions related to NGC 7319 is 1.98+-0.58 M_\sun/yr, most of which(68%) is contributed by the disk. The contribution from the 'young tail' is only 15%. In the UV, the 'young tail' is more extended (~100 kpc) and shows a loop-like structure, including the optical tail, the extragalactic HII regions recently discovered in H\alpha, and other UV emission regions discovered for the first time. The UV and optical colors of the 'old tail' are consistent with a single stellar population of age t ~10^{8.5+-0.4} yrs. The UV emission associated with NGC 7318b is found in a very large (~80 kpc) disk, with a net SFR of 3.37+-0.25 M_sun/yr. Several large UV emission regions are 30 -- 40 kpc away from the nucleus of NGC7318b. Although both NGC7319 and NGC7318b show peculiar UV morphology, their SFR is consistent with that of normal Sbc galaxies, indicating that the strength of star formation activity is not enhenced by interactions.Comment: This paper will be published as part of the Galaxy Evolution Explorer(GALEX) Astrophysical Journal Letters Special Issue. Links to the full set of papers will be available at http:/www.galex.caltech.edu/PUBLICATIONS/ after November 22, 200

    GALEX Ultraviolet Photometry of Globular Clusters in M31

    Full text link
    We present ultraviolet photometry for globular clusters (GCs) in M31 from 15 square deg of imaging using the Galaxy Evolution Explorer (GALEX). We detect 200 and 94 GCs with certainty in the near-ultraviolet (NUV; 1750 - 2750 Angstroms) and far-ultraviolet (FUV; 1350 - 1750 Angstroms) bandpasses, respectively. Our rate of detection is about 50% in the NUV and 23% in the FUV, to an approximate limiting V magnitude of 19. Out of six clusters with [Fe/H]>-1 seen in the NUV, none is detected in the FUV bandpass. Furthermore, we find no candidate metal-rich clusters with significant FUV flux, because of the contribution of blue horizontal-branch (HB) stars, such as NGC 6388 and NGC 6441, which are metal-rich Galactic GCs with hot HB stars. We show that our GALEX photometry follows the general color trends established in previous UV studies of GCs in M31 and the Galaxy. Comparing our data with Galactic GCs in the UV and with population synthesis models, we suggest that the age range of M31 and Galactic halo GCs are similar.Comment: This paper will be published as part of the Galaxy Evolution Explorer (GALEX) Astrophysical Journal Letters Special Issue. Links to the full set of papers will be available at http://www.galex.caltech.edu/PUBLICATIONS/ after November 22, 200

    Cost-effectiveness of HBV and HCV screening strategies:a systematic review of existing modelling techniques

    Get PDF
    Introduction: Studies evaluating the cost-effectiveness of screening for Hepatitis B Virus (HBV) and Hepatitis C Virus (HCV) are generally heterogeneous in terms of risk groups, settings, screening intervention, outcomes and the economic modelling framework. It is therefore difficult to compare cost-effectiveness results between studies. This systematic review aims to summarise and critically assess existing economic models for HBV and HCV in order to identify the main methodological differences in modelling approaches. Methods: A structured search strategy was developed and a systematic review carried out. A critical assessment of the decision-analytic models was carried out according to the guidelines and framework developed for assessment of decision-analytic models in Health Technology Assessment of health care interventions. Results: The overall approach to analysing the cost-effectiveness of screening strategies was found to be broadly consistent for HBV and HCV. However, modelling parameters and related structure differed between models, producing different results. More recent publications performed better against a performance matrix, evaluating model components and methodology. Conclusion: When assessing screening strategies for HBV and HCV infection, the focus should be on more recent studies, which applied the latest treatment regimes, test methods and had better and more complete data on which to base their models. In addition to parameter selection and associated assumptions, careful consideration of dynamic versus static modelling is recommended. Future research may want to focus on these methodological issues. In addition, the ability to evaluate screening strategies for multiple infectious diseases, (HCV and HIV at the same time) might prove important for decision makers

    Elicitation of Neutralizing Antibodies Directed against CD4-Induced Epitope(s) Using a CD4 Mimetic Cross-Linked to a HIV-1 Envelope Glycoprotein

    Get PDF
    The identification of HIV-1 envelope glycoprotein (Env) structures that can generate broadly neutralizing antibodies (BNAbs) is pivotal to the development of a successful vaccine against HIV-1 aimed at eliciting effective humoral immune responses. To that end, the production of novel Env structure(s) that might induce BNAbs by presentation of conserved epitopes, which are otherwise occluded, is critical. Here, we focus on a structure that stabilizes Env in a conformation representative of its primary (CD4) receptor-bound state, thereby exposing highly conserved “CD4 induced” (CD4i) epitope(s) known to be important for co-receptor binding and subsequent virus infection. A CD4-mimetic miniprotein, miniCD4 (M64U1-SH), was produced and covalently complexed to recombinant, trimeric gp140 envelope glycoprotein (gp140) using site-specific disulfide linkages. The resulting gp140-miniCD4 (gp140-S-S-M64U1) complex was recognized by CD4i antibodies and the HIV-1 co-receptor, CCR5. The gp140-miniCD4 complex elicited the highest titers of CD4i binding antibodies as well as enhanced neutralizing antibodies against Tier 1 viruses as compared to gp140 protein alone following immunization of rabbits. Neutralization against HIV-27312/V434M and additional serum mapping confirm the specific elicitation of antibodies directed to the CD4i epitope(s). These results demonstrate the utility of structure-based approach in improving immunogenic response against specific region, such as the CD4i epitope(s) here, and its potential role in vaccine application

    Panoramic GALEX FUV and NUV imaging of M31 and M33

    Full text link
    We present Galaxy Evolution Explorer (GALEX) far-UV and near-UV mosaic observations covering the entirety of M31 and M33. For both targets, we measure the decline of surface brightness (in FUV and NUV) and changes in FUV--NUV color as a function of galactocentric radius. These UV radial profiles are compared to the distribution of ionized gas traced by H-alpha emission. We find that the extent of the UV emission, in both targets, is greater than the extent of the observed HII regions and diffuse ionized gas. We determine the ultraviolet diffuse fraction in M33 using our FUV observations and compare it to the H-alpha diffuse fraction obtained from wide-field narrow-band imaging. The FUV diffuse fraction appears to be remarkably constant near 0.65 over a large range in galactocentric radius, with departures to higher values in circumnuclear regions and, most notably, at the limit of the H-alpha disk. We suggest that the increase in FUV diffuse fraction at large galactocentric radii could indicate that a substantial portion of the diffuse emission beyond this point is not generated in situ but rather scattered from dust, after originating in the vicinity of the disk's outermost HII regions. Radial variation of the H-alpha diffuse fraction was also measured. We found the H-alpha diffuse fraction generally near 0.4 but rising toward the galaxy center, up to 0.6. We made no attempt to correct our diffuse fraction measurements for position-dependent extinction, so the quoted values are best interpreted as upper limits given the plausibly higher extinction for stellar clusters relative to their surroundings.Comment: This paper will be published as part of the Galaxy Evolution Explorer (GALEX) Astrophysical Journal Letters Special Issue. Links to the full set of papers will be available at http://www.galex.caltech.edu/PUBLICATIONS/ after November 22, 2004. Individual high-resolution figures can be found at http://dolomiti.pha.jhu.edu/publgoto.htm

    Number Counts of GALEX Sources in FUV (1530A) and NUV (2310A) Bands

    Full text link
    Number Counts of galaxies in two GALEX bands (FUV: 1530A and NUV: 2310A, both in AB magnitudes) are reported. They provide for the first time in the literature homogeneously calibrated number counts of UV galaxies covering continuously a very wide range of UV magnitude (14 -- 23.8). Both the FUV and NUV counts are inconsistent with a non-evolution model, while they are in good agreement with evolution models (essentially luminosity evolution) derived from the high-z UV luminosity functions of Arnouts et al. (2004). It is found that the contribution from galaxies detected by GALEX to the UV background is 0.68+-0.10 nW m-2 sr-1 at 1530A and 0.99+-0.15 nW m-2 sr-1 at 2310A. These are 66+-9% and 44+-6% of the total contributions of galaxies to the the UV background at 1530A, respectively, as estimated using the evolution models. ...Comment: This paper will be published as part of the Galaxy Evolution Explorer (GALEX) Astrophysical Journal Letters Special Issue. Links to the full set of papers will be available at http:/www.galex.caltech.edu/PUBLICATIONS/ after November 22, 200
    corecore