40 research outputs found

    Cambrian small shelly fossils from the Çal Tepe Formation, Taurus Mountains, Turkey

    Get PDF
    Lower and Middle Cambrian carbonate rocks of the Çal Tepe Formation, cropping out in the western Taurus Mountains, yielded a large number of microfossil remains. Small shelly fossils from a single level in the upper Lower Cambrian represent a high diversity biota that could be related to the «Cambrian explosion». Microfossil association from the lower Middle Cambrian sediments of the Çal Tepe Formation is taxonomically very reduced and a dominant taxon is Hadimopanella GEDIK. This sudden change could be attributed to a deepening of the basin during the early Middle Cambrian transgression. [RESUMEN] Los sedimentos carbonatados de la Formación Çal Tepe (Montes Taurus occidentales) que corresponden al techo del Cámbrico Inferior y base del Cámbrico Medio, han proporcionado un gran número de restos paleontológicos. Los más antiguos, atestiguan la existencia de una paleobiota muy diversificada que puede vincularse a la «explosión cámbrica». En tanto que los sedimentos del Cámbrico Medio contienen una asociación de fósiles que se caracteriza por una diversidad muy baja en la cual el elemento dominante es Hadimopanella GEDIK. Este cambio dramático registrado por los fósiles estudiados, puede atribuirse a una profundización de la cuenca que sería coincidente con la transgresión de la base del Cámbrico Medio

    Hydrogeochemical variability of the acidic springs in the Rio Tinto headwaters

    Get PDF
    This research was funded by MICINN grant PID2019-1048126GB-I00.Peña de Hierro, located in southwest Spain, encompasses the springs and headwaters for the Rio Tinto River that emerge above normal faults and has been mined for its rich sulfide ore since 2500 BC. The springs are typically characterized by an orange coloration, typical pH of ~2.33, and contain elevated concentrations of heavy metals that are produced by acid rock drainage (ARD). ARD is a natural phenomenon that results from chemolithoautotrophs metabolizing the sulfide ore. Mining has amplified the magnitude of the acidity and concentrations of heavy metals evidenced within sedimentary cores from the Huelva estuary. Acidity, redox state, hydrochemistry and isotopic analyses were examined for the purpose of characterizing the subsurface flows and determining the interconnectivity of the groundwaters. Previous studies have documented the geochemistry of the springs, dating a select few, yet many springs remain uncharacterized. Acidity presented spatial variability throughout the field area, caused by extensive sulfide interactions which generated and modified the pH. Redox exhibited a large range of values due to oxygen diffusivity though the fracture network. The surrounding geology is highly heterogeneous because of intensive deformation during the Variscan and Tertiary periods, and this heterogeneity is shown in the varied aqueous chemistry. Fractionation patterns observed in δ2H and δ18O values predominantly reflected enrichment by intensive evaporation and depletion in δ18O as a result of the proposed sulfatic-water model for Rio Tinto’s hydrogeology. The analysis illustrates minimal hydrologic interconnectivity, evidenced by the extensive physical and chemical contrasts within such a small proximity.Publisher PDFPeer reviewe

    The molecular record of metabolic activity in the subsurface of the Río Tinto Mars analog

    Full text link
    In the subsurface, the interplay between microbial communities and the surrounding mineral substrate, potentially used as an energy source, results in different mineralized structures. The molecular composition of such structures can record and preserve information about the metabolic pathways that have produced them. To characterize the molecular composition of the subsurface biosphere, we have analyzed some core samples by time-of-flight secondary ion mass spectrometry (ToF-SIMS) that were collected in the borehole BH8 during the operations of the Mars Analog and Technology Experiment (MARTE) project. The molecular analysis at a micron-scale mapped the occurrence of several inorganic complexes bearing PO3-, SOx(2to4)-, NOx(2,3)-, FeOx(1,2)- SiO2-, and Cl-. Their distribution correlates with organic molecules that were tentatively assigned to saturated and monounsaturated fatty acids, polyunsaturated fatty acids, saccharides, phospholipids, sphingolipids, and potential peptide fragments. SOx- appear to be mineralizing some microstructures larger than 25 microns, which have branched morphologies, and that source SO3-bearing adducts. PO3-rich compounds occur in two different groups of microstructures which size, morphology, and composition are different. While a group of >40-micron sized circular micronodules lacks organic compounds, an ovoidal microstructure is associated with m/z of other lipids. The NO2-/NO3- and Cl- ions occur as small microstructure clusters (<20 microns), but their distribution is dissimilar to the mineralized microstructures bearing PO3-, and SO3-. However, they have a higher density in areas with more significant enrichment in iron oxides that are traced by different Fe-bearing anions like FeO2-. The distribution of the organic and inorganic negative ions, which we suggest, resulted from the preservation of at least three microbial consortia (PO4-, and NO2-/NO3-mineralizers PO4-lipid bearing microstructures), would have resulted from different metabolic and preservation pathway

    Microbial mediated formation of Fe-carbonate minerals under extreme acidic conditions

    Get PDF
    Discovery of Fe-carbonate precipitation in Rio Tinto, a shallow river with very acidic waters, situated in Huelva, South-western Spain, adds a new dimension to our understanding of carbonate formation. Sediment samples from this low-pH system indicate that carbonates are formed in physico-chemical conditions ranging from acid to neutral pH. Evidence for microbial mediation is observed in secondary electron images (Fig. 1), which reveal rod-shaped bacteria embedded in the surface of siderite nanocrystals. The formation of carbonates in Rio Tinto is related to the microbial reduction of ferric iron coupled to the oxidation of organic compounds. Herein, we demonstrate for the first time, that Acidiphilium sp. PM, an iron-reducing bacterium isolated from Rio Tinto, mediates the precipitation of siderite (FeCO3) under acidic conditions and at a low temperature (306C). We describe nucleation of siderite on nanoglobules in intimate association with the bacteria cell surface. This study has major implications for understanding carbonate formation on the ancient Earth or extraterrestrial planetsThis work was supported by the European research project ERC-250350/IPBSL. A.S.-N. acknowledges support from the P11-RNM-7067 (Junta de Andalucía-C.E.I.C.-S.G.U.I.T.) projec

    Astrobiological field campaign to a volcanosedimentary mars analogue methane producing subsurface protected ecosystem: Imuruk Lake (Alaska)

    Get PDF
    Viking missions reported adverse conditions for life in Mars surface. High hydrogen signal obtained by Mars orbiters has increased the interest in subsurface prospection as putative protected Mars environment with life potential. Permafrost has attracted considerable interest from an astrobiological point of view due to the recently reported results from the Mars exploration rovers. Considerable studies have been developed on extreme ecosystems and permafrost in particular, to evaluate the possibility of life on Mars and to test specific automated life detection instruments for space missions. The biodiversity of permafrost located on the Bering Land Bridge National Preserve has been studied as an example of subsurface protected niche of astrobiological interest. Different conventional (enrichment and isolation) and molecular ecology techniques (cloning, fluorescence >in situ> probe hybridization, FISH) have been used for isolation and bacterial identification.The expedition to Imuruk Lake was supported by Centro de Astrobiologia-INTA (Spain). The laboratory experimental procedures were supported by Grant AYA 2010–2013 “Desarrollo de Tecnología para la identificación de vida de forma automática” from the Spanish Government.Peer Reviewe

    Microbial mediated formation of Fe-carbonate minerals under extreme acidic conditions

    Get PDF
    Discovery of Fe-carbonate precipitation in Rio Tinto, a shallow river with very acidic waters, situated in Huelva, South-western Spain, adds a new dimension to our understanding of carbonate formation. Sediment samples from this low-pH system indicate that carbonates are formed in physico-chemical conditions ranging from acid to neutral pH. Evidence for microbial mediation is observed in secondary electron images (Fig. 1), which reveal rod-shaped bacteria embedded in the surface of siderite nanocrystals. The formation of carbonates in Rio Tinto is related to the microbial reduction of ferric iron coupled to the oxidation of organic compounds. Herein, we demonstrate for the first time, that Acidiphilium sp. PM, an iron-reducing bacterium isolated from Rio Tinto, mediates the precipitation of siderite (FeCO3) under acidic conditions and at a low temperature (30°C). We describe nucleation of siderite on nanoglobules in intimate association with the bacteria cell surface. This study has major implications for understanding carbonate formation on the ancient Earth or extraterrestrial planets.European research project ERC-250350/IPBSL. A.S.-N.acknowledges support from the P11-RNM-7067 (Junta de Andaluc a-C.E.I.C.-S.G.U.I.T.) projectPeer Reviewe

    Orbital evidence for clay and acidic sulfate assemblages on Mars based on mineralogical analogs from Rio Tinto, Spain

    Get PDF
    Outcrops of hydrated minerals are widespread across the surface of Mars, with clay minerals and sulfates being commonly identified phases. Orbitally-based reflectance spectra are often used to classify these hydrated components in terms of a single mineralogy, although most surfaces likely contain multiple minerals that have the potential to record local geochemical conditions and processes. Reflectance spectra for previously identified deposits in Ius and Melas Chasma within the Valles Marineris, Mars, exhibit an enigmatic feature with two distinct absorptions between 2.2 and 2.3 µm. This spectral ‘doublet’ feature is proposed to result from a mixture of hydrated minerals, although the identity of the minerals has remained ambiguous. Here we demonstrate that similar spectral doublet features are observed in airborne, field, and laboratory reflectance spectra of rock and sediment samples from Rio Tinto, Spain. Combined visible-near infrared reflectance spectra and X-ray diffraction measurements of these samples reveal that the doublet feature arises from a mixture of Al-phyllosilicate (illite or muscovite) and jarosite. Analyses of orbital data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) shows that the martian spectral equivalents are also consistent with mixtures of Al-phyllosilicates and jarosite, where the Al-phyllosilicate may also include kaolinite and/or halloysite. A case study for a region within Ius Chasma demonstrates that the relative proportions of the Al-phyllosilicate(s) and jarosite vary within one stratigraphic unit as well as between stratigraphic units. The former observation suggests that the jarosite may be a diagenetic (authigenic) product and thus indicative of local pH and redox conditions, whereas the latter observation may be consistent with variations in sediment flux and/or fluid chemistry during sediment deposition.Organismic and Evolutionary Biolog

    Astrobiological field campaign to a volcanosedimentary mars analogue methane producing subsurface protected ecosystem: Imuruk Lake (Alaska)

    Get PDF
    Viking missions reported adverse conditions for life in Mars surface. High hydrogen signal obtained by Mars orbiters has increased the interest in subsurface prospection as putative protected Mars environment with life potential. Permafrost has attracted considerable interest from an astrobiological point of view due to the recently reported results from the Mars exploration rovers. Considerable studies have been developed on extreme ecosystems and permafrost in particular, to evaluate the possibility of life on Mars and to test specific automated life detection instruments for space missions. The biodiversity of permafrost located on the Bering Land Bridge National Preserve has been studied as an example of subsurface protected niche of astrobiological interest. Different conventional (enrichment and isolation) and molecular ecology techniques (cloning, fluorescence "in situ" probe hybridization, FISH) have been used for isolation and bacterial identificationThe expedition to Imuruk Lake was supported by Centro de Astrobiología-INTA (Spain). The laboratory experimental procedures were supported by Grant AYA 2010–20213 “Desarrollo de Tecnología para la identificación de vida de forma automática” from the Spanish Governmen

    Protection of Possessors in Classical Roman Law -From the Viewpoint of Buyer Protection- (2)

    Get PDF
    We studied the formation of Mg-rich carbonate in culture experiments using different aerobic bacterial strains and aqueous Mg/Ca ratios (2 to 11.5) at Earth surface conditions. These bacteria promoted the formation of microenvironments that facilitate the precipitation of mineral phases (dolomite, huntite, high Mg-calcite and hydromagnesite) that were undersaturated in the bulk solution or kinetically inhibited. Dolomite, huntite, high Mg-calcite, hydromagnesite and struvite precipitated in different proportions and at different times, depending on the composition of the medium. The Mg content of dolomite and calcite decreased with an increasing Ca concentration in the medium. The stable carbon isotope composition of the Mg-rich carbonate precipitates reflected the isotope composition of the organic compounds present in the media, suggesting that microbial metabolism strongly influenced the carbon isotope composition of biomediated carbonates. We observed that Ca-enriched carbonate precipitates have relatively low carbon isotope composition. These results provide insights into the mechanism(s) of carbonate formation in natural systems, and they are of fundamental importance for understanding modern environments in which carbonate minerals form as a window into the geologic past
    corecore