220 research outputs found

    Characterizing the entanglement of bipartite quantum systems

    Get PDF
    We derive a separability criterion for bipartite quantum systems which generalizes the already known criteria. It is based on observables having generic commutation relations. We then discuss in detail the relation among these criteria.Comment: 5 pages, 2 figures. Revised versio

    The OD,D geometry of string theory

    Get PDF
    We construct an action for double field theory using a metric connection that is compatible with both the generalised metric and the O_{D,D} structure. The connection is simultaneously torsionful and flat. Using this connection one may construct a proper covariant derivative for double field theory. We then write the doubled action in terms of the generalised torsion of this connection. This action then exactly reproduces that required for doubled field theory and gauged supergravity.Comment: 26 pages, latex, v2 typos corrected and references adde

    Amnion as a surrogate tissue reporter of the effects of maternal preeclampsia on the fetus

    Get PDF
    We described the study design, detailed analytical methods, and verification results in the supporting information file. (DOCX 21.2 MB

    Time-Dependent Vacuum Energy Induced by D-Particle Recoil

    Get PDF
    We consider cosmology in the framework of a `material reference system' of D particles, including the effects of quantum recoil induced by closed-string probe particles. We find a time-dependent contribution to the cosmological vacuum energy, which relaxes to zero as 1/t2\sim 1/ t^2 for large times tt. If this energy density is dominant, the Universe expands with a scale factor R(t)t2R(t) \sim t^2. We show that this possibility is compatible with recent observational constraints from high-redshift supernovae, and may also respect other phenomenological bounds on time variation in the vacuum energy imposed by early cosmology.Comment: 14 pages LATEX, no figure

    Phenomenology of the Gowdy Universe on T3×RT^3 \times R

    Full text link
    Numerical studies of the plane symmetric, vacuum Gowdy universe on T3×RT^3 \times R yield strong support for the conjectured asymptotically velocity term dominated (AVTD) behavior of its evolution toward the singularity except, perhaps, at isolated spatial points. A generic solution is characterized by spiky features and apparent ``discontinuities'' in the wave amplitudes. It is shown that the nonlinear terms in the wave equations drive the system generically to the ``small velocity'' AVTD regime and that the spiky features are caused by the absence of these terms at isolated spatial points.Comment: 19 pages, 21 figures, uses Revtex, psfi

    Meaning, Truth, and Physics

    Get PDF
    A physical theory is a partially interpreted axiomatic formal system (L,S), where L is a formal language with some logical, mathematical and physical axioms, and with some derivation rules, and the semantics S is a relationship between the formulas of L and some states of affairs in the physical world. In our ordinary discourse, the formal system L is regarded as an abstract object or structure, the semantics S as something which involves the mental/conceptual realm. This view is of course incompatible with physicalism. How can physical theory be accommodated in a purely physical ontology? The aim of this paper is to outline an account for meaning and truth of physical theory, within the philosophical framework spanned by three doctrines: physicalism, empiricism, and the formalist philosophy of mathematics

    Thermal conductivity of amorphous carbon thin films

    Get PDF
    Thermal conductivities Λ\Lambda of amorphous carbon thin films are measured in the temperatures range 80--400 K using the 3ω3\omega method. Sample films range from soft a-C:H prepared by remote-plasma deposition (Λ=0.20\Lambda = 0.20 W m1^{-1} K1^{-1} at room temperature) to amorphous diamond with a large fraction of sp3sp^3 bonded carbon deposited from a filtered-arc source (Λ=2.2\Lambda = 2.2 W m1^{-1} K1^{-1}). Effective-medium theory provides a phenomenological description of the variation of conductivity with mass density. The thermal conductivities are in good agreement with the minimum thermal conductivity calculated from the measured atomic density and longitudinal speed of sound.Comment: 4 pages, 4 figure

    Entangling macroscopic oscillators exploiting radiation pressure

    Full text link
    It is shown that radiation pressure can be profitably used to entangle {\it macroscopic} oscillators like movable mirrors, using present technology. We prove a new sufficient criterion for entanglement and show that the achievable entanglement is robust against thermal noise. Its signature can be revealed using common optomechanical readout apparatus.Comment: 4 pages, 2 eps figures, new separability criterion added, new figure 2, authors list change
    corecore