123 research outputs found

    Regular binary thermal lattice-gases

    Full text link
    We analyze the power spectrum of a regular binary thermal lattice gas in two dimensions and derive a Landau-Placzek formula, describing the power spectrum in the low-wavelength, low frequency domain, for both the full mixture and a single component in the binary mixture. The theoretical results are compared with simulations performed on this model and show a perfect agreement. The power spectrums are found to be similar in structure as the ones obtained for the continuous theory, in which the central peak is a complicated superposition of entropy and concentration contributions, due to the coupling of the fluctuations in these quantities. Spectra based on the relative difference between both components have in general additional Brillouin peaks as a consequence of the equipartition failure.Comment: 20 pages including 9 figures in RevTex

    Understanding Nanopore Window Distortions in the Reversible Molecular Valve Zeolite RHO

    Get PDF
    Molecular valves are becoming popular for potential biomedical applications. However, little is known concerning their performance in energy and environmental areas. Zeolite RHO shows unique pore deformations upon changes in hydration, cation siting, cation type, or temperature-pressure conditions. By varying the level of distortion of double eight-rings, it is possible to control the adsorption properties, which confer a molecular valve behavior to this material. We have employed interatomic potentials-based simulations to obtain a detailed atomistic view of the structural distortion mechanisms of zeolite RHO, in contrast with the averaged and space group restricted information provided by diffraction studies. We have modeled four aluminosilicate structures, containing Li+^+, Na+^+, K+^+, Ca2+^{2+}, and Sr2+^{2+} cations. The distortions of the three different zeolite rings are coupled, and the six- and eight-membered rings are largely flexible. A large dependence on the polarizing power of the extra-framework cations and with the loading of water has been found for the minimum aperture of the eight-membered rings that control the nanovalve effect. The calculated energy barriers for moving the cations across the eight-membered rings are very high, which explains the experimentally observed slow kinetics of the phase transition as well as the appearance of metastable phases

    The effect of framework flexibility on diffusion of small molecules in the metal-organic framework IRMOF-1

    Get PDF
    Many efforts have been made to model adsorption and diffusion processes in metalorganic frameworks (MOFs) in the past several years. In most of these studies, the framework has been kept rigid. In this study, we examine the effect of using a flexible framework model on the self-diffusion coefficients and activation energies calculated for several short n-alkanes and benzene in IRMOF-1 from molecular dynamics simulations. We find only minor differences between flexible and rigid framework results. The selfdiffusion coefficients calculated in the flexible framework are 20-50% larger than the ones calculated in the rigid framework, and the activation energies differ by only 10-20%

    Coupling of thermal and mass diffusion in regular binary thermal lattice-gases

    Full text link
    We have constructed a regular binary thermal lattice-gas in which the thermal diffusion and mass diffusion are coupled and form two nonpropagating diffusive modes. The power spectrum is shown to be similar in structure as for the one in real fluids, in which the central peak becomes a combination of coupled entropy and concentration contributions. Our theoretical findings for the power spectra are confirmed by computer simulations performed on this model.Comment: 5 pages including 3 figures in RevTex

    First light with HiPERCAM on the GTC

    Get PDF
    HiPERCAM is a quintuple-beam imager that saw first light on the 4.2 m William Herschel Telescope (WHT) in October 2017 and on the 10.4 m Gran Telescopio Canarias (GTC) in February 2018. The instrument uses re- imaging optics and 4 dichroic beamsplitters to record ugriz (300–1000 nm) images simultaneously on its five CCD cameras. The detectors in HiPERCAM are frame-transfer devices cooled thermo-electrically to 90°C, thereby allowing both long-exposure, deep imaging of faint targets, as well as high-speed (over 1000 windowed frames per second) imaging of rapidly varying targets. In this paper, we report on the as-built design of HiPERCAM, its first-light performance on the GTC, and some of the planned future enhancements

    The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI): instrument and pre-launch testing

    Get PDF
    This paper describes the Heterodyne Instrument for the Far-Infrared (HIFI), to be launched onboard of ESA's Herschel Space Observatory, by 2008. It includes the first results from the instrument level tests. The instrument is designed to be electronically tuneable over a wide and continuous frequency range in the Far Infrared, with velocity resolutions better than 0.1 km/s with a high sensitivity. This will enable detailed investigations of a wide variety of astronomical sources, ranging from solar system objects, star formation regions to nuclei of galaxies. The instrument comprises 5 frequency bands covering 480-1150 GHz with SIS mixers and a sixth dual frequency band, for the 1410-1910 GHz range, with Hot Electron Bolometer Mixers (HEB). The Local Oscillator (LO) subsystem consists of a dedicated Ka-band synthesizer followed by 7 times 2 chains of frequency multipliers, 2 chains for each frequency band. A pair of Auto-Correlators and a pair of Acousto-Optic spectrometers process the two IF signals from the dual-polarization front-ends to provide instantaneous frequency coverage of 4 GHz, with a set of resolutions (140 kHz to 1 MHz), better than < 0.1 km/s. After a successful qualification program, the flight instrument was delivered and entered the testing phase at satellite level. We will also report on the pre-flight test and calibration results together with the expected in-flight performance

    Enantioselective adsorption of ibuprofen and lysine in metal–organic frameworks

    Get PDF
    This study reveals the efficient enantiomeric separation of bioactive molecules in the liquid phase. Chiral structure HMOF-1 separates racemic mixtures whereas heteroselectivity is observed for scalemic mixtures of ibuprofen using non-chiral MIL-47 and MIL-53. Lysine enantiomers are only separated by HMOF-1. These separations are controlled by the tight confinement of the molecules
    • 

    corecore