169 research outputs found

    Forest Health Diagnostics Facebook Page: Impact and Natural Resources Programming Implications

    Get PDF
    The Southern Forest and Tree Health Diagnostics Facebook page, managed by Extension and forestry professionals in the southeastern United States, is designed to deliver forest and tree heath information to the public via a web-based, crowdsourced diagnostic service. We conducted an online survey to quantify the page\u27s impact by identifying audience demographics, engagement levels, and perceptions of the page\u27s value. Results indicated that stakeholders consider the Southern Forest and Tree Health Diagnostics page to be an effective diagnostics service and a valuable educational tool. This model could be used in other natural resources program areas to increase the reach of Extension professionals

    Poly(2-oxazoline) based micelles with high capacity for 3rd generation taxoids: Preparation, in vitro and in vivo evaluation

    Get PDF
    The clinically and commercially successful taxanes, paclitaxel and docetaxel suffer from two major drawbacks, namely their very low aqueous solubility and the risk of developing resistance. Here, we present a method that overcomes both drawbacks in a very simple manner. We formulated 3rd generation taxoids, able to avoid common drug resistance mechanisms with doubly amphiphilic poly(2-oxazoline)s (POx), a safe and highly efficient polymer for the formulation of extremely hydrophobic drugs. We found excellent solubilization of different 3rd generation taxoids irrespective of the drug's chemical structures with essentially quantitative drug loading and final drug to polymer ratios around unity. The small, highly loaded micelles with a hydrodynamic diameter of less than 100 nm are excellently suited for parenteral administration. Moreover, a selected formulation with the taxoid SB-T-1214 is about one to two orders of magnitude more active in vitro than paclitaxel in the multidrug resistant breast cancer cell line LCC6-MDR. In contrast, in wild-type LCC6, no difference was observed. Using a q4d x 4 dosing regimen, we also found that POx/SB-T-1214 significantly inhibits the growth of LCC6-MDR orthotropic tumors, outperforming commercial paclitaxel drug Taxol and Cremophor EL formulated SB-T-1214

    Preclinical development of G1T38: A novel, potent and selective inhibitor of cyclin dependent kinases 4/6 for use as an oral antineoplastic in patients with CDK4/6 sensitive tumors

    Get PDF
    Inhibition of the p16INK4a/cyclin D/CDK4/6/RB pathway is an effective therapeutic strategy for the treatment of estrogen receptor positive (ER+) breast cancer. Although efficacious, current treatment regimens require a dosing holiday due to severe neutropenia potentially leading to an increased risk of infections, as well as tumor regrowth and emergence of drug resistance. Therefore, a next generation CDK4/6 inhibitor that can inhibit proliferation of CDK4/6-dependent tumors while minimizing neutropenia could reduce both the need for treatment holidays and the risk of inducing drug resistance

    Age-related differences in human skin proteoglycans

    Get PDF
    Previous work has shown that versican, decorin and a catabolic fragment of decorin, termed decorunt, are the most abundant proteoglycans in human skin. Further analysis of versican indicates that four major core protein species are present in human skin at all ages examined from fetal to adult. Two of these are identified as the V0 and V1 isoforms, with the latter predominating. The other two species are catabolic fragments of V0 and V1, which have the amino acid sequence DPEAAE as their carboxyl terminus. Although the core proteins of human skin versican show no major age-related differences, the glycosaminoglycans (GAGs) of adult skin versican are smaller in size and show differences in their sulfation pattern relative to those in fetal skin versican. In contrast to human skin versican, human skin decorin shows minimal age-related differences in its sulfation pattern, although, like versican, the GAGs of adult skin decorin are smaller than those of fetal skin decorin. Analysis of the catabolic fragments of decorin from adult skin reveals the presence of other fragments in addition to decorunt, although the core proteins of these additional decorin catabolic fragments have not been identified. Thus, versican and decorin of human skin show age-related differences, versican primarily in the size and the sulfation pattern of its GAGs and decorin in the size of its GAGs. The catabolic fragments of versican are detected at all ages examined, but appear to be in lower abundance in adult skin compared with fetal skin. In contrast, the catabolic fragments of decorin are present in adult skin, but are virtually absent from fetal skin. Taken together, these data suggest that there are age-related differences in the catabolism of proteoglycans in human skin. These age-related differences in proteoglycan patterns and catabolism may play a role in the age-related changes in the physical properties and injury response of human ski

    Identification of Jun loss promotes resistance to histone deacetylase inhibitor entinostat through Myc signaling in luminal breast cancer

    Get PDF
    Abstract Background Based on promising phase II data, the histone deacetylase inhibitor entinostat is in phase III trials for patients with metastatic estrogen receptor-positive breast cancer. Predictors of sensitivity and resistance, however, remain unknown. Methods A total of eight cell lines and nine mouse models of breast cancer were treated with entinostat. Luminal cell lines were treated with or without entinostat at their IC50 doses, and MMTV/Neu luminal mouse tumors were untreated or treated with entinostat until progression. We investigated these models using their gene expression profiling by microarray and copy number by arrayCGH. We also utilized the network-based DawnRank algorithm that integrates DNA and RNA data to identify driver genes of resistance. The impact of candidate drivers was investigated in The Cancer Genome Atlas and METABRIC breast cancer datasets. Results Luminal models displayed enhanced sensitivity to entinostat as compared to basal-like or claudin-low models. Both in vitro and in vivo luminal models showed significant downregulation of Myc gene signatures following entinostat treatment. Myc gene signatures became upregulated on tumor progression in vivo and overexpression of Myc conferred resistance to entinostat in vitro. Further examination of resistance mechanisms in MMTV/Neu tumors identified a portion of mouse chromosome 4 that had DNA copy number loss and low gene expression. Within this region, Jun was computationally identified to be a driver gene of resistance. Jun knockdown in cell lines resulted in upregulation of Myc signatures and made these lines more resistant to entinostat. Jun-deleted samples, found in 17ā€“23% of luminal patients, had significantly higher Myc signature scores that predicted worse survival. Conclusions Entinostat inhibited luminal breast cancer through Myc signaling, which was upregulated by Jun DNA loss to promote resistance to entinostat in our models. Jun DNA copy number loss, and/or high MYC signatures, might represent biomarkers for entinostat responsiveness in luminal breast cancer

    Weight loss reduces basal-like breast cancer through kinome reprogramming

    Get PDF
    Additional file 1. Tumor burden and growth were not affected by diet. a. Tumor burden was quantified at sacrifice. b. Tumor volume was measured by calipers at detection and sacrifice. (NĀ =Ā 28 10Ā %; NĀ =Ā 31 60Ā %; NĀ =Ā 29, 60ā€“10Ā %)

    Differential response to exercise in claudin-low breast cancer

    Get PDF
    Exposure to exercise following a breast cancer diagnosis is associated with reductions in the risk of recurrence. However, it is not known whether breast cancers within the same molecular-intrinsic subtype respond differently to exercise. Syngeneic mouse models of claudin-low breast cancer (i.e., EO771, 4TO7, and C3(1)SV40Tag-p16-luc) were allocated to a uniform endurance exercise treatment dose (forced treadmill exercise) or sham-exercise (stationary treadmill). Compared to sham-controls, endurance exercise treatment differentially affected tumor growth rate: 1- slowed (EO771), 2- accelerated (C3(1)SV40Tag-p16-luc), or 3- was not affected (4TO7). Differential sensitivity of the three tumor lines to exercise was paralleled by effects on intratumoral Ki-67, Hif1-Ī±, and metabolic programming. Inhibition of Hif1-Ī± synthesis by the cardiac glycoside, digoxin, completely abrogated exercise-accelerated tumor growth in C3(1)SV40Tag-p16-luc. These results suggest that intratumoral Hif1-Ī± expression is an important determinant of claudin-low breast cancer adaptation to exercise treatment

    PSMA-PET follow-up to assess response in patients not receiving PSMA therapy: Is there value beyond localization of disease?

    Get PDF
    Introduction: Prostate Specific Membrane Antigen Positron Emission Tomography (PSMA-PET) is routinely used for the staging of patients with prostate cancer, but data on response assessment are sparse and primarily stem from metastatic castration-resistant prostate cancer (mCRPC) patients treated with PSMA radioligand therapy. Still, follow-up PSMA-PET is employed in earlier disease stages in case of clinical suspicion of disease persistence, recurrence or progression to decide if localized or systemic treatment is indicated. Therefore, the prognostic value of PSMA-PET derived tumor volumes in earlier disease stages (i.e., hormone-sensitive prostate cancer (HSPC) and non-[177Lu]Lu-PSMA-617 (LuPSMA) therapy castration resistant prostate cancer (CRPC)) are evaluated in this manuscript. Methods: A total number of 73 patients (6 primary staging, 42 HSPC, 25 CRPC) underwent two (i.e., baseline and follow-up, median interval: 379 days) whole-body [68Ga]Ga-PSMA-11 PET/CT scans between Nov 2014 and Dec 2018. Analysis was restricted to non-LuPSMA therapy patients. PSMA-PETs were retrospectively analyzed and primary tumor, lymph node-, visceral-, and bone metastases were segmented. Body weight-adjusted organ-specific and total tumor volumes (PSMAvol: sum of PET volumes of all lesions) were measured for baseline and follow-up. PSMAvol response was calculated as the absolute difference of whole-body tumor volumes. High metastatic burden (>5 metastases), RECIP 1.0 and PSMA-PET Progression Criteria (PPP) were determined. Survival data were sourced from the cancer registry. Results: The average number of tumor lesions per patient on the initial PET examination was 10.3 (SD 28.4). At baseline, PSMAvol was strongly associated with OS (HR 3.92, p <0.001; n = 73). Likewise, response in PSMAvol was significantly associated with OS (HR 10.48, p < 0.005; n = 73). PPP achieved significance as well (HR 2.19, p <0.05, n = 73). Patients with hormone sensitive disease and poor PSMAvol response (upper quartile of PSMAvol change) in follow-up had shorter outcome (p < 0.05; n = 42). PSMAvol in bones was the most relevant parameter for OS prognostication at baseline and for response assessment (HR 31.11 p < 0.001; HR 32.27, p < 0.001; n = 73). Conclusion: PPP and response in PSMAvol were significantly associated with OS in the present heterogeneous cohort. Bone tumor volume was the relevant miTNM region for OS prognostication. Future prospective evaluation of the performance of organ specific PSMAvol in more homogeneous cohorts seems warranted

    Aerosol-assisted fabrication of tin-doped indium oxide ceramic thin films from nanoparticle suspensions

    Get PDF
    Sn-doped In2O3 (ITO) thin films were fabricated on float glass substrates from a nanoparticle suspension using a new and inexpensive aerosol-assisted chemical transport (AACT) process. The influence of the solvent type, loading level and film deposition time on the structural, electrical and optical properties of the deposited thin films was investigated. In addition, the effect of post-deposition heat-treatment of ITO films on the film resistivity and transparency was investigated using microwave radiation and compared with more conventional radiant heat-treated films. The SEM images of the films prepared using a 30 min deposition time with 0.20% (wt/vol%) methanolic ITO suspension provided better surface coverage compared to the other deposition times investigated. The optimised ITO films were heat-treated after deposition by either conventional radiant or microwave assisted heating methods in order to improve the inter-particle connections and film adherence. The films heat-treated after deposition by microwave annealing exhibited an average transmittance of >85% in the visible region with a resistivity of 12 ā„¦ cm and a carrier concentration of -3.7 x 1016 cm 3 , which was superior to films that were heat-treated using more conventional thermal processing (despite the shorter processing time for the microwave process). The resistivity of ITO films was further decreased to 6.0 x 10-2 ā„¦ cm with increased carrier concentration of -8.0 x 1018 cm 3 when ethyl cellulose was added to the ITO suspension prior to the AACT deposition. The enhanced conductivity of this film is due to the improved particle-particle and particle-substrate connections as observed by SEM imaging
    • ā€¦
    corecore