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Abstract

The clinically and commercially successful taxanes, paclitaxel and docetaxel suffer from two 

major drawbacks, namely their very low aqueous solubility and the risk of developing resistance. 

Here, we present a method that overcomes both drawbacks in a very simple manner. We 

formulated 3rd generation taxoids, able to avoid common drug resistance mechanisms with doubly 

amphiphilic poly(2-oxazoline)s (POx), a safe and highly efficient polymer for the formulation of 

extremely hydrophobic drugs. We found excellent solubilization of different 3rd generation 
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taxoids irrespective of the drug's chemical structures with essentially quantitative drug loading and 

final drug to polymer ratios around unity. The small, highly loaded micelles with a hydrodynamic 

diameter of less than 100 nm are excellently suited for parenteral administration. Moreover, a 

selected formulation with the taxoid SB-T-1214 is about one to two orders of magnitude more 

active in vitro than paclitaxel in the multidrug resistant breast cancer cell line LCC6-MDR. In 

contrast, in wild-type LCC6, no difference was observed. Using a q4d x 4 dosing regimen, we also 

found that POx/SB-T-1214 significantly inhibits the growth of LCC6-MDR orthotropic tumors, 

outperforming commercial paclitaxel drug Taxol and Cremophor EL formulated SB-T-1214.

Abstract
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1. Introduction

Taxanes can arrest cells in the G2/M phase upon binding to the β-tubulin subunits to 

promote their polymerization and stabilize microtubules, which leads to apoptosis through 

cell-signal cascades. Several commercially successful and clinically significant taxoids have 

been developed, such as paclitaxel (PTX), docetaxel (DTX), and cabazitaxel (CBZ)[1]. They 

are heavily used in the treatment of breast, lung and ovarian cancer as well as other 

malignancies [2,3]. Unfortunately, these taxoids suffer from two major setbacks.

The first problem is that these compounds are very poorly water soluble [4] and require the 

use of toxic excipients in their clinical formulations, such as Cremophor EL (now 

commercialized as Kolliphor EL) and ethanol in Taxol (PTX), or Polysorbate 80 and ethanol 

in Taxotere (DTX), or Jevtana (CBZ). These excipients can cause severe hypersensitivity 

reactions [5]. Therefore, to reduce this toxicity the patients receiving these medications must 

be pre-treated with antihistamine, corticosteroid and H2 antagonist and be immediately 

removed from therapy if the hypersensitivity reactions are observed. Although many, 

potentially safer formulations have been developed for PTX and other taxanes [5-22], 

including the protein-drug nanoparticle, Abraxane and the polymeric micelle drug, Genexol-

PM, the drug payload in these formulations remains relatively low and does not exceed 10% 

[23] for Abraxane, 17% [24] for Genexol-PM and 23% [25] for NK105. Also, significant 

improvement of the therapeutic outcome and patient survival, for example for treatment with 

Abraxane, remains to be verified [26].
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The second problem is the development of drug resistance in response to the therapy with 

taxanes. Specifically, cancer cells resistance to PTX, DTX and CBZ can involve 

overexpression of ABC transporters (i.e. P-glycoprotein, Pgp; multidrug resistance-

associated protein 1, MRP1), or point mutations in tubulin [27]. This problem was 

extensively discussed in the literature [27,28]. Thus, the “2nd-generation taxoids” were 

developed in which the C-3-phenyl group in taxoids was replaced with an alkenyl or alkyl 

group and the C-10 position was modified with various acyl groups [29]. Such 2nd-

generation taxoids were shown to be one to two orders of magnitude more potent than the 

parent drugs against drug-resistant human breast cancer cells [29]. Additional substitution (t-

Boc group) at the C-3'N position of the 2nd-generation taxoids further enhanced their 

potency against drug-resistant cancer cell lines (specifically Pgp+ mediated MDR and 

tubulin mutations). Examples of such compounds, termed “3rd generation taxoids”, include 

SB-T-1213, SB-T-121302, SB-T-121303, SB-T-1214, SB-T-121402, SB-T-1216, and SB-

T-121602 (Figure 1A,B) and were investigated in the present contribution. The new-

generation taxoids were shown to be effective in LCC6-MDR (Pgp+ human breast cancer 

cell line); NCI/ADR-RES (Pgp+ human ovarian cancer cell line); 1A9PTX10 and 

1A9PTX22 (human ovarian cancer cells originated from A2780 cell line possessing point 

mutations in class I-tubulin), as well as CFPAC-1, PANC-1, MIA PaCa-2 and BxPC-3 

(human pancreatic cancer cell lines overexpressing multidrug resistance genes mdr1, mrp1, 

mrp2, and lrp). Furthermore, the taxoid SB-T-1214 was evaluated and demonstrated its 

efficacy against Pgp+ DLD-1 human colon tumor xenografts in severe combined immune-

deficient (SCID) mice [29].

Unfortunately, the 3rd generation taxoids remain very poorly water soluble and require the 

use of appropriate drug carrier systems. We have recently discovered a novel polymeric 

drug carrier system, based on block copolymers of hydrophilic poly(2-methyl-2-oxazoline) 

(PMeOx) and mildly hydrophobic poly(2-butyl-2-oxazoline) (PBuOx). Interestingly, despite 

the low hydrophobic character of PBuOx, we have found that block copolymers (in 

particular triblock copolymers) of PMeOx and PBuOx exhibit a surprisingly high efficacy 

(both relative and absolute) for the solubilization of extremely hydrophobic drugs, including 

taxanes [14,21,22]. The capacity of POx micelles with respect to such taxanes is 

unprecedented. For example, POx/PTX micelles have ca. 4 to 5 times higher loading and ca. 

10 to 20 times higher drug concentration in injectable formulations than the clinical 

alternatives of Taxol, Genexol-PM, and Abraxane. Poly(2-oxazoline)s (POx) in general have 

received increasing attention recently as alternatives to polyethylene glycol based systems 

[30-34] and first-in-man studies are expected to commence in 2015 [35,36]. Here, we 

combine the possibilities of our POx-based drug delivery platform for safe and efficient drug 

formulation and delivery with the advantages of 3rd-generation taxoids, which can overcome 

multidrug resistance mechanisms. Thereby we set out to develop a formulation, which safely 

addresses the pressing clinical challenge of drug resistance in cancer patients.
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2. Materials and methods

2.1. Materials

Reagents and monomers for polymer synthesis as well as (3-[4,5-dimethylthiazol-2-yl]-2,5-

diphenyltetrazolium bromide) (MTT) was obtained from Sigma-Aldrich Inc. (St. Louis, MO 

or Steinheim, Germany). PTX and DTX were purchased from LC Laboratories (Woburn, 

MA). All other materials were from Fisher Scientific Inc. (Fairlawn, NJ), and all reagents 

were HPLC grade. MDA435/LCC6 (LCC6-WT) and MDA/LCC6mdr1 (LCC6-MDR) cells 

were obtained from Dr. R. Clarke, Georgetown University Medical School, Washington, 

DC. LCC6-MDR cells, which express high levels of Pgp, were derived from LCC6-WT 

cells transfected with a retrovirus engineered to constitutively express the mdr1 gene [37]. 

Cells were cultured in DMEM medium (Gibco 11965-092) supplemented with 10% FBS 

and 1% penicillin–streptomycin. The T11 orthotopic syngeneic transplant model is derived 

from the p53 null strain described by Medina et al. [38]. The T11 tumors were originally 

developed by serial orthotopic transplantation of a murine breast tumor derived from a p53-

null mouse into a syngeneic p53 competent recipient, carrying sporadic, somatic K-Ras 

mutation and exhibiting an RNA expression pattern characteristic of the human claudin-low 

disease. Tumors growing out of this GEM were evaluated through RNA Microarray analysis 

as described recently [39]. Most tumors were determined to be of the triple-negative 

phenotype and T11 was chosen as the most representative claudin-low. T11 cells were 

cultured in RPMI medium containing 10% FBS and 1% penicillin/streptomycin. Nude mice 

were purchased from NCI and housed in UNC DLAM animal facility.

2.2. Preparation and characterization of POx/taxoids micelles

The amphiphilic triblock copolymers [P(MeOx33-b-BuOx26-b-MeOx45), Mn = 10.0 kg/mol, 

PDI (ĐM = 1.14)], were synthesized by living cationic ring-opening polymerization as 

described previously [22] and used to prepare formulations of the 3rd-generation taxoids in 

polymeric micelles. Drug loaded POx micelles were prepared using the thin film hydration 

method [14]. Briefly, predetermined amounts of POx and drugs (stock solution 10–20 g/L in 

ethanol) were combined with small amount of ethanol and mixed well. Following a 

complete removal of ethanol (first, by drying the solution under a stream of air and second, 

in vacuo), the formed thin film was rehydrated with appropriate amounts of deionized (DI) 

water or saline and heated at 50 –60 °C for 5–20 min (heating time was dependent on the 

drug concentration). Samples were allowed to cool to room temperature (r.t.) and 

centrifuged at 10,000 rpm for 3 min (Sorvall Legend Micro 21R Centrifuge, Thermo 

Scientific) to remove residual solid (if present). Only the transparent supernatant solution 

was used for the subsequent experiments. The hydrodynamic diameter and polydispersity 

index (PDI) of the micelles were determined by dynamic light scattering (DLS) using a 

Malvern Nanosizer and monitored for up to 9 days at r.t. for stability test.

2.3. HPLC Analysis of drugs in POx micelles

The amounts of drugs solubilized in POx micelles were quantified via reverse-phase high-

performance liquid chromatography (HPLC) using an Agilent Technologies 1200 series 

HPLC system using a Nucleosil C18 5μm column (250 mm × 4.6 mm). The sample was 

diluted 20 times using mobile phase (specified below) and injected (20 μL) into the HPLC 
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system. A mixture of acetonitrile (ACN)/water (55/45, v/v) was used as the mobile phase. 

The flow rate was 1.0 mL/min, and column temperature 30° C. Detection wavelength was 

228 nm.

The following equations were used to calculate the drug loading capacity (LC), loading 

efficiency (LE):

(1)

(2)

where mdrug and mexcipient are the weight amounts of the solubilized drug and polymer 

excipient in the solution, while mdrug added is the weight amount of the drug added to the 

dispersion. Drug concentration (DC) was determined by HPLC and calculated against free 

PTX standards.

2.4. In vitro drug release

The drug release from POx micelles was studied using the membrane dialysis method 

against phosphate buffered saline (PBS), pH 7.4 at 37 °C. Briefly, the drug loaded POx 

micelle formulations were diluted with PBS to yield solutions of approximately 0.1 mg/mL 

of each drug. Then the resulting solutions (100 μL) were placed in 100 μL floatable Slide-A-

Lyzer MINI dialysis devices with a MWCO of 3.5 kDa (Thermo Scientific) and suspended 

in 20 mL of PBS. One device was used for every time point. At each time point the sample 

was withdrawn from the dialysis device and the remaining drug amount of sample was 

quantified by HPLC.

2.5. In vitro cytotoxicity assay

In vitro cytotoxicity of drug-loaded POx micelles was determined using MTT assay. Four 

formulations, namely Taxol, Abraxane, POx/PTX and POx/SB-T-1214 were compared 

using each cell line. Briefly, cells were seeded in 96-well plates at a density of 4000 cells/

well 48 h prior to drug treatment. Cells were treated for 24 h with respective drug 

formulations each prepared at series of dilutions in the full medium. After this incubation, 

medium was removed and cells were further incubated with fresh medium for another 72 h. 

Subsequently, the medium was again removed and 100 μL of fresh medium with MTT (100 

μg/well) reagent was added for additional 4 h incubation at 37 °C. Finally, the medium was 

discarded, and the formed formazan salt was dissolved in 100 μL of DMSO and absorbance 

was read at 562 nm using a plate reader (SpectraMax M5, Molecular Devices). Cell survival 

was calculated as normalized to control untreated wells. Data is presented as means (n = 6) 

± standard error means (SEM). The mean drug concentration required for 50% growth 

inhibition (IC50) was determined using Graphpad Prism 5 software.
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2.6. In vivo maximum tolerated dose (MTD) of drug-loaded POx micelles

All animal experiments were carried out with approval of the University of North Carolina 

Institutional Animal Care and Use Committee. MTD evaluation for POx/SB-T-1214 

micellar formulations was performed in dose escalation study in 6-8 week old female NCI 

nu/nu mice. Animals (n = 3 per group) received i.v. injections (tail vein) of 20, 40, 60, 90, 

and 120 mg/kg of SB-T-1214 in POx micelles using a q4d x 4 regimen (total 4 times 

repeated dosing, every 4th day with saline as a control). Mice survival and changes in body 

weight were observed daily over two weeks in all groups following the last injection. The 

highest dose that did not cause animal death or noticeable toxicity (as defined by a median 

body weight loss of 15% of the control or abnormal behavior including hunched posture and 

rough coat) was used as MTD for efficacy experiment.

2.7. In vivo efficacy study

The efficacy of POx/SB-T-1214 polymeric micelles was evaluated in LCC6-MDR 

orthotopic breast cancer model. Briefly, 100 μL of cell solution containing 50 % (v/v) 8×106 

LCC6-MDR cells suspended in DMEM medium (vide supra) and 50 % (v/v) Matrigel are 

implanted into mammary fat pad of 8-week-old female nude mice using a 25 G needle. 

Every 4 days, perpendicular tumor diameters were measured by digital caliper and used to 

calculate tumor volume according to the formula: volume = Dd2/2, where D equals larger 

diameter and d equals smaller diameter. When tumor volumes reached about 300 mm3, 

animals were treated with all formulations by q4d x 4 regimen. Following treatment groups 

(n = 7) were compared: 1) Saline; 2) POx Polymer; 3) Taxol (20 mg/kg PTX); 4) Abraxane 

(80 mg/kg PTX); 5) Cremorphor EL(CRE)/SB-T-1214 (20 mg/kg); and 6) POx/SB-T-1214 

micelles (20 mg/kg). Tumor volume and animal survival were monitored 2 times per week. 

Mice were sacrificed when the tumor reached a volume of 2000 mm3 or developed ascites 

metastasis.

The efficacy of POx/SB-T-1214 micelles was also investigated in T11 murine breast cancer 

orthotopic syngeneic transplant (OST) model (claudin-low subtype). Tumor volumes 

reached about 10-50 mm3 on 5th day following T11 cell transplant. This was defined as day 

0. On day 4, we started to treat animals with all formulations by q4d regimen until tumor 

remission or experimental endpoints. The following treatment groups (n = 10) were 

compared: 1) Saline; 2) Taxol (20 mg/kg PTX); 3) Cremophor EL (CRE)/SB-T-1214 (20 

mg/kg, MTD dose); and 4) POx/SB-T-1214 micelles (20 mg/kg). Tumor volume and 

survival were monitored 3 times per week. Mice were sacrificed when the tumor reached a 

volume of 3500 mm3 or upon signs of ulceration.

3. Results

3.1. Formulation of new taxoids in POx micelles

Here, we employed an amphiphilic triblock copolymer [P(MeOx33-b-BuOx26-b-MeOx45), 

Mn = 10.0 kg/mol, ĐM = Mw/Mn = 1.14)] for polymeric micelle formulations of 3rd 

generation taxoids using a thin-film approach. The chemical structures of investigated 

taxoids and PTX are depicted in Fig. 1A-C. Stock solutions of these drugs and the polymer 

were prepared and combined in appropriate ratios. The solvent was removed and the 
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resulting polymer film was hydrated using deionized water or USP saline (Fig. 1D), 

resulting in the formation of the drug loaded polymer micelles. The polymer concentration 

in the final formulation was set to 10 g/L, while the drug concentration was varied from 5 

g/L to 15 g/L. The actual maximum loading capacity, LC that was achieved for the different 

drugs was between 40 and 50 wt.% for 10 g/L or 12 g/L (15 g/L in one case (SB-

T-121602)), respectively (Fig. 1E). Similar to previous studies [14,22], the drug loading 

efficiency, LE were high, until the maximal LC values were achieved, after which LC 

dropped considerably for all taxoids investigated (Table 1). Due to the limited amounts of 

compounds available, no extensive stability tests were performed. However, during our 

experiments, we did not encounter any stability issues and the stability of PTX in POx 

micelles has been shown to be extraordinarily high in previous studies [14,22].

3.2. Physicochemical characterization and drug release of POx/SB-T-1214 micelles

According to previous studies [27,29], SB-T-1214, a 3rd generation taxoid, is an excellent 

candidate to overcome drug resistance. It exhibited high activity in vitro against many drug 

resistant cancer cell lines including LCC6-MDR, NCI/ADR-RES, 1A9PTX10, 1A9PTX22, 

CFPAC-1, PANC-1, MIA PaCa-2, BxPC-3, and CFPAC-1. Furthermore, its anti-tumor 

activity was also evaluated in vivo using a Pgp+ human colon cancer DLD-1 xenograft 

tumor model [29]. In this study, Tween 80/ethanol was used as excipients for solubilizing 

the drug.

Here, we solubilized SB-T-1214 in POx polymeric micelles for further in vitro and in vivo 

activity studies. In order to scale up the formulation for in vivo studies, we set the polymer 

concentration at 50 g/L and used 10, 20 and 45 g/L as the initial drug feeding 

concentrations. Even at such high concentrations, the drug incorporation into the micelles 

was nearly quantitative and the LC values achieved were excellent with 16 wt% (10 g/L), 28 

wt.% (19.2 g/L) and 46 wt.% (41.8 g/L), respectively. These formulations will be denoted 

50/10, 50/20 and 50/40, respectively. Noteworthy, the highest achieved drug concentration 

of 41.8 g/L in the POx micelles is ca. 9500 fold of the intrinsic solubility of SB-T-1214 in 

water at room temperature (4.4 mg/L, determined by optimized shake-flask method). The 

size of the drug-loaded POx micelles was determined by DLS. The data suggested that the 

size (z-average hydrodynamic diameter Dz) of the drug-loaded micelles depends on the 

loading but remains below 100 nm: 15 nm, 26 nm and 75 nm for 50/10, 50/20 and 50/40 

formulations, respectively. Moreover, the drug-loaded micelles were found to be well 

defined with a relatively small PDI (<0.2) (Fig. 2A) and of spherical morphology as 

evidenced by transmission electron microscopy (TEM) (Fig. 2B,C). These results 

correspond well to our previous results with PTX formulations [22]. We monitored the 

formulations by DLS for 9 days at r.t. and observed no significant changes in the particle 

size and PDI (Fig. 2D,E), suggesting that the micelles were stable at r.t. for at least 9 days. 

Also, no drug crystallization or precipitation was observed by visual inspection of the 

micellar nanoformulation. This is important to note, since taxoids typically exhibit a 

tendency for crystallization and it is often difficult to obtain formulations that are stable in 

aqueous media.
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In contrast, as we applied sink conditions in a dialysis experiment to test the potential 

release of the drug from the micelles, the drug was continuously released, with > 80% of 

released drug after 24 h. Under the present experimental conditions, a burst release was 

observed. The release was essentially identical for both 50/20 and 50/40 formulations. 

However, the release of the drug from the 50/10 formulation was significantly slower with 

less of a burst release character (Fig. 2F). Accordingly, there was little concern that the drug 

would not be released, despite the excellent stability in the absence of sink conditions.

3.3. In vitro cytotoxicity of POx/SB-T-1214 micelles in cancer cells

Since SB-T-1214 was known to be effective against multidrug resistance cell lines that 

overexpress Pgp [29], we evaluated the in vitro drug efficacy of the 50/40 formulation and 

compared it to Abraxane, Taxol and POx/PTX formulations in wild-type LCC6-WT and 

multidrug resistant LCC6-MDR cells using MTT assay.

In multidrug resistant LCC6-MDR cells, the cytotoxicity profile of POx/SB-T-1214 clearly 

shifted to lower concentrations as compared to the other three formulations of PTX. IC50 

value was determined as 34.6 ng/mL for POx/SB-T-1214, which was much lower than 769, 

536, and 1385 ng/mL, determined for Abraxane, Taxol and POx/PTX, respectively (Fig. 

3A). We also performed MTT assays in LCC6-WT cells and observed IC50 values of the 

same order of magnitude for all four formulations, specifically 5.8 for POx/SB-T-1214 and 

9.4, 18.4 and 17.8 ng/mL for Abraxane, Taxol and POx/PTX, respectively (Fig. 3B). When 

comparing the effectiveness of the drug formulations in resistant vs. wild-type cells using 

the Resistance factor (R/S) = (IC50 for drug resistant cell line, R)/(IC50 for drug-sensitive 

cell line, S), we found that POx/SB-T-1214 had R/S value of ca. 6 while for Abraxane, 

Taxol and POx/PTX values of around 82, 29 and 78, respectively were obtained. This result 

indicates that POx/SB-T-1214 is very potent against both non-resistant wild-type and MDR 

cells, while the other three formulations containing PTX are only active against wild-type 

and are less efficient against MDR cells (Table 2).

In addition, we tested the extremely aggressive T11 murine cancer cell line, which is 

characterized as a claudin-low subtype of triple negative breast cancer (TNBC) and known 

for its extremely poor prognosis. Similar to the result observed using LCC6-MDR cells, the 

IC50 was about 23 times lower for POx/SB-T-1214 (43 ng/mL) as compared to POx/PTX 

(983 ng/mL) (Fig. 3C; Table 2).

3.4. In vivo MTD studies

The MTD evaluation was performed in a dose escalation manner in healthy 6-8 week old 

female nude mice, which received 20, 30, 40, and 60 mg/kg of POx/SB-T-1214 (50/40) 

micelles using a q4d x 4 regimen. At 30 mg/kg dose, the animal lost more than 15% of their 

body weight after the second dosing. Therefore, the MTD was determined as 20 mg/kg at 

this dosing regimen (Fig. 4A).

We hypothesized that at higher polymer content, the drug release might be slower 

(analogous to our in vitro results) and thus, the MTD might be higher. Therefore, we 

investigated whether changes in the formulation or the dosing regimen would lead to an 
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increase of MTD. However, adjustments of the formulations were not successful in this 

respect. Since changes of the polymer/drug ratio in the formulation (50/10 or 50/20 at 40 

mg/kg, Fig. 4B) did not improve the MTD in any way, we modified the treatment regimen 

by increasing dose intervals to a weekly injection for 4 weeks (q7d x 4). This improved the 

situation slightly. Mice body weight loss remained below 15% until the third injection at day 

21. Thus, we concluded that MTD was less than 40 mg/kg under this weekly dosing regimen 

(Fig. 4B).

3.5. In vivo efficacy in the LCC6-MDR model

In vivo efficacy of POx/SB-T-1214 was evaluated in the orthotopic LCC6-MDR mouse 

model using MTD doses for all groups to achieve the best therapeutic effects possible (Fig. 

5 and Supporting Fig. S1). The Cremophor EL(CRE)/SB-T-1214 treatment group displayed 

a similar growth rate as groups treated with saline and POx polymer alone groups - all 

showing a tumor volume increase from ca. 300 to 2,000 mm3 within 4 weeks. Taxol slightly 

decreased the rate of the tumor growth but the difference was not statistically significant as 

compared to saline, CRE/SB-T-1214 and POx groups. In contrast, in the POx/SB-T-1214 

treatment group, the tumor volume reached only ca. 700 mm3 on the 28 day (Fig. 5A). 

Abraxane at 80 mg/kg (MTD dose) also showed significant tumor inhibition compared to 

CRE/SB-T-1214. However, while the tumor growth for the Abraxane-treated group was 

similar to that in the POx/SB-T-1214 group, no statistically significant difference in survival 

was observed between the Abraxane and saline groups (Fig. 5B). In contrast, treatment with 

POx/SB-T-1214 significantly extended the survival time with a median survival of 67 days 

(p = 0.0003). Median survival in Abraxane, CRE/SB-T-1214, Taxol and saline groups were 

37, 46, 37 and 33 days, respectively. Representative images of mice at day 26 with 

orthotopic tumors clearly show the differences in the tumor burden between these groups 

with a visibly reduced tumor burden in the POx/SB-T-1214-treated mice (Fig. 5C).

Body weight loss over 15% or other signs of severe toxicity were not observed in any 

treatment group, although the animals in the CRE/SB-T-1214 and POx/SB-T-1214 groups 

showed about 10% weight loss after four injections, which was regained after 3 weeks (Fig. 

5D). Injection site inflammation and sometimes prompt shock upon injections (animals 

eventually recovered) were seen in Taxol and CRE/SB-T-1214 groups, which was probably 

associated with the excipient Cremophor EL.

We also tested our POx/SB-T-1214 (50/40) formulation in the very aggressive T11 

orthotopic syngeneic transplant (OST) model. At 20 mg/kg, POx/SB-T-1214 was able to 

suppress the tumor growth to some extent. The treatment outcomes in the CRE/SB-T-1214 

and Taxol groups differed significantly. In the CRE/SB-T-1214 treatment groups the tumors 

rapidly proliferated to 3,000 mm3 within 20 days and no effect of the treatment was 

observed compared to the control (Fig. 6A). The Kaplan-Meier survival plots (Fig. 6B) 

show that 90% of mice in this treatment group needed to be sacrificed at day 19, which is a 

worse outcome as compared to saline control. The animals treated with Taxol fared only 

little better, if at all. In contrast, POx/SB-T-1214 significantly improved the survival time 

such that, at day 20, only one mouse had to be sacrificed. The survival curve declined 

gradually and 30% of mice survived until day 27.

He et al. Page 9

J Control Release. Author manuscript; available in PMC 2016 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4. Discussion

New and clinically relevant formulations of taxanes and taxoids remain a matter of 

considerable interest. For instance, an amphiphilic block copolymer consisting of 

poly(ethylene glycol) (PEG) and 4-phenyl-1-butanol modified poly(aspartate) was designed 

to physically entrap PTX. During the self-assembly process, the polymer forms micelles, 

which incorporate PTX into their core through hydrophobic interactions between the drug 

and modified poly(aspartate) (hydrophobic segment). This formulation, designated as 

NK105, can incorporate 23% (w/w) PTX and has shown less toxicity and enhanced efficacy 

compared to free drug in the preclinical and clinical development [40,41]. Another example 

is the targeted PEG-poly(D,L-lactide-coglycolide) (PLGA) polymer formulation of DTX 

using an RNA aptamer A10 as targeting moiety that binds to the extracellular domain of the 

prostate-specific membrane antigen on the surface of prostate cancer cells [42]. It has been 

shown that the targeted nanoparticles enhance cellular uptake compared to their non-targeted 

counterparts in vitro and in vivo. However, use of this delivery system may be limited 

because of its rather large particle size (160-290 nm) and its very low drug loading (<1%).

Similar to our previous work on POx polymeric micelles for PTX [14,21,43], we used the 

triblock copolymer with a central hydrophobic BuOx block and two flanking hydrophilic 

MeOx blocks in this study. The molar mass of the polymer is approximately 10 kg/mol. 

Therefore, while the polymer micelles (> 10 nm) are likely to be well above the renal 

excretion threshold, the unimers are well below this threshold and thus expected to be 

rapidly excreted by renal filtration [44]. Since the synthesis of POx is based on a living 

cationic ring-opening polymerization, the polymers are well defined and accessible in a 

reproducible manner. In addition, POx (co)polymers alone displayed very little, if any, 

toxicity up to concentrations of 10 g/L in various cell lines [14,45-48]. We have previously 

demonstrated the extremely high loading capacity of the POx micelles for several 

hydrophobic drugs [14,21,22]. In the present work, for all taxoids studies LC values between 

45 and 50% were achieved while SB-T-121303 could be loaded at over 50%.

Similar to previous studies [21,22] the drug loaded spherical micelles were found to be well 

defined (PDI <0.2) and relatively small with Dz of 15 to 75 nm, which did not change in size 

over 9 days at r.t.. The morphology and size of the loaded micelles during drug release has 

not been determined so far. In a recent study [22], we investigated the morphology of the 

micelles in dependence of different PTX concentrations. Based on these results, it can be 

expected that for the low drug concentrated formulation (50/20 and 50/10) no change in 

micelle size should occur during drug release. Comparing the results of Schulz et al. and 

present study, we deduce that the micelle size and likely the morphology are very similar, 

whether PTX or other taxoids are loaded. On the other hand, for the high loaded micelles a 

decrease in size might be likely with decreasing drug concentration. For the formulation 

50/20 and 50/40 there might be also a change in morphology upon complete release of the 

drug. In the above mentioned study a change of morphology of the micellar core towards a 

raspberry-like shape was observed via SANS at 9wt% PTX and higher. There is also the 

possibility of formation of wormlike micelles at very low PTX concentration. However, we 

would also like to note that such studies of size and morphology were obviously not 

performed in vivo. Such an endeavor would be virtually impossible at the current state of art. 
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Relevance of in vitro release and size and morphology for in vivo performance is in any way 

questionable.

In the present study, the POx micelle formulation of taxoid SB-T-1214 improved the drug 

efficacy in the LCC6-MDR model as compared to PTX formulation or SB-T-1214 

formulated with Cremophor EL and ethanol, the vehicle used in the commercial Taxol 

formulation. The reason for this increased efficacy remains unknown to date. A detailed 

pharmacokinetic study may help to elucidate this matter, but this was outside the scope of 

the present study. We also found that Abraxane effectively reduced the tumor growth, but 

did not prolong the survival. It is noteworthy that Abraxane was much less effective than 

SB-T-1214 in vitro but at MTD exhibited similar tumor growth inhibition as SB-T-1214 in 

vivo. In this regard we would like to point out that a correlation between in vitro tumor 

growth inhibition and in vivo efficacy is not straightforward and generally should not be 

expected. In this regard in vitro experiments performed on cell monolayers may only reflect 

that a researched compound is pharmacologically active. In contrast, the in vivo efficacy 

accounts for a much more complex set of factors including tumor a drug distribution to the 

tumor, cancer cells heterogeneity, interactions with the tumor microenvironment and 

contribution of the off-target side effects at the level of the whole organism. The “mismatch” 

between in vitro and in vivo activities is well documented in the literature for many drugs. 

For example, two highly selective progesterone receptor modulators showed 4-fold potency 

difference in vitro, while exhibiting similar efficacy in rats against mutagen 7,12-

dimethylbenz[a]anthracene induced breast tumor [49]. Another example involves the 

derivatives of statin-class drugs. One such derivative cerivastatin, is 6 to 7 times more potent 

than another derivative, pitavastatin in vitro in U87 glioma and MDA-432 breast cancer cell 

lines. However, cerivastatin demonstrated similar, if not worse, tumor inhibition compared 

pitavastatin in vivo [50]. Moreover, a mismatch between in vitro and in vivo efficacy was 

also reported for different formulations of paclitaxel, specifically, Taxol and Abraxane. 

Thus, Demeure et al. reported that Abraxane has similar in vitro inhibition (IC50 = 0.33 μM 

= 282 ng/mL) in H295R cells, as Taxol (IC50 = 0.35 μM = 299 ng/mL). However, Abraxane 

showed a significantly better efficacy than Taxol in vivo in H295R xenograft adrenocortical 

cancer model. Another example also suggests that Abraxane has similar in vitro activity as 

Taxol but outperforms the latter in tumor inhibition in vivo in pediatric solid tumors [51]. 

Overall, the improved efficacy and higher response rate to Abraxane in preclinical and 

clinical studies compared to other drug formulations [23] may be attributed to the gp60 

mediated transport of paclitaxel-loaded albumin into tumor cells or its binding to an 

extracellular matrix protein, SPARC (secreted protein acidic rich in cysteine), which 

increases Abraxane accumulation in the tumor. We also would like to point out that in our 

work Abraxane is used in vivo at its MTD dose (80 mg/kg), and is much more efficient in 

tumor inhibition than Taxol at 20 mg/kg while having comparable efficacy to POx/SB-

T-1214 micelles at 20 mg/kg. At the same time the effect of Abraxane on the animal's 

lifespan non-significant compared to Taxol and both agents are much less effective in this 

regard than POx/SB-T-1214 micelles.

In addition to LCC6-MDR tumors, we also evaluated our POx/SB-T-1214 formulation using 

the T11 murine cancer model. This is an extremely aggressive cancer model that faithfully 
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recapitulates claudin-low breast cancer, a subtype of TNBC recently classified via gene 

expression profiling, exhibiting particularly poor prognosis [39,52]. It is an OST model, 

which was established via isolating cells from the mammary gland of genetically engineered 

balb/c mice which were null for p53, and genetically engineering them to tumor cells 

carrying claudin-low subtype and subsequently transplanting the cells orthotopically. 

Abraxane was excluded in this set of studies due to expected immunogenicity upon injection 

of human albumin to immuno-competent mice. It should be noted that most previously 

tested chemotherapeutic drugs were not effective in this model and typically tumor growth 

curves of groups treated with a single drug show no difference to control [52].

The in vitro MTT results suggested that SB-T-1214 is more active than PTX in T11 cells. 

The T11 cells might be intrinsically resistant to chemotherapy with agents such as PTX. 

Despite the inability to produce long-term survivors, the performance of our formulation in 

vivo is very promising when one takes into account the inability for other single drug 

chemotherapeutic regimens to achieve any efficacy in this cancer model [52]. Although 

these aggressive tumors will ultimately continue to grow, combination therapies [17] that 

involve the POx micelle delivery system and new generation taxoids along with other 

anticancer drugs are worth exploring in the future. The present platform readily allows for 

combination therapy [21] and is therefore very well suited for exploring new treatments of 

such challenging cancer models.

5. Conclusion

We presented the first example of formulation of 3rd generation taxoids using amphiphilic 

POx block copolymer. All taxoids studied could be incorporated at a nearly 1/1 ratio 

(wtaxoid/wpolymer) resulting in stable formulation with 50 %wt. of active drug. The micellar 

size of the nanoformulation remained around or below 100 nm as evidenced by DLS and 

transmission electron microscopy. The efficacy of the selected 3rd generation taxoid SB-

T-1214 in vitro against MDR cancer cell lines was higher than that of PTX, while no 

difference was observed in the non-resistant cell line. Although the MTD of SB-T-1214 

formulated with Cremophor EL and the POx block copolymer were identical, the tumor 

inhibition using the POx/SB-T-1214 polymeric micelles was enhanced in two orthotopic 

multidrug resistant tumor models, LCC6-MDR and T11. The latter model is characterized as 

a particularly faithful and clinically relevant model TNBC. Survival in this model may be 

further improved by using synergistic drug combinations, for which the POx polymeric 

micelle platform is ideally suited.
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Fig. 1. 
Preparation of POx/taxoid micellar nanoformulations. (A,B) Chemical structures of 3rd 

generation taxoids. (C) Chemical structure of PTX/DTX (D) Schematic showing of 

formation of POx/taxoid micelles formed through self-assembly. (E) Drug loading of 

taxoids in POx micelles. POx concentration was fixed at 10 g/L while taxoid feeds were 5, 

10, 12 and 15 g/L (light gray bars in background), respectively.
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Fig. 2. 
Physicochemical properties of various POx/SB-T-1214 polymeric micelle formulations. (A) 

Size (z-average, Dz) and size distribution of POx/SB-T-1214 at 50/40 and 50/20 ratios 

measured by DLS. (B,C) TEM micrograph of POx/SB-T-1214 at 50/40 and 50/20 ratios. 

Scale bar = 100 nm. Stability of the POx/SB-T-1214 micelles at r.t. as determined by the 

size (D) and PDI (E) measurements over time. (F) Drug release profiles of SB-T-1214 from 

POx micelles at different polymer/drug ratios of 50/40, 50/20 and 50/10. The drug release 

study was performed at 37 °C in PBS buffer at pH 7.4.
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Fig. 3. 
In vitro cytotoxicity of various PTX and SB-T-1214 formulation in (A) LCC6-MDR cells, 

(B) LCC6-WT, and (C) T11 cells (mean ± SEM, n = 6).
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Fig. 4. 
Establishment of the safe dose of SB-T-1214 in nude mice. (A) MTD of POx/SB-T-1214 = 

50/40 formulation using a q4d x 4 treatment regimen in escalating doses from 20-60mg/kg. 

(B) MTD of POx/SB-T-1214 = 50/20 and 50/10 using a q4d x 4 regimen or 50/40, 40 mg/kg 

using a q7d x 4 regimen.
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Fig. 5. 
Efficacy of various drug formulations at MTD doses in LCC6-MDR tumors. (A) Tumor 

growth inhibition of POx/SB-T-1214=50/40 formulation (20 mg/kg) compared to Taxol (20 

mg/kg), Abraxane (80 mg/kg) and CRE/SB-T-1214 (20 mg/kg), saline as well as POx 

polymer alone (equivalent polymer amount as POx/SB-T-1214 micelle formulation). Each 

formulation was injected on days 0, 4, 8, 12. Data is expressed as mean ± SEM, n = 7. *** p 

< 0.001 (vs. saline group). (B) Kaplan-Meier survival plot for all groups. (C) A 
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representative image of treated mice at day 26. Left, saline group; middle, CRE/SB-T-1214 

group; right, POx/SB-T-1214 group. (D) Body weight loss for each treatment group.
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Fig. 6. 
Efficacy of various drug formulations in T11 OST tumors. (A) Tumor growth inhibition of 

POx/SB-T-1214 = 50/40 formulation compared to Taxol, CRE/SB-T-1214 as well as saline. 

Each formulation was injected on days 2, 6, 10, 14 and 18. Data is expressed as mean ± 

SEM, n = 10, ** p < 0.01. (B) Kaplan-Meier survival plot for all groups.
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Table 1

Data of solubilization experiments. Polymer concentration was set to 10 g/L. Data is presented in means ± 

standard deviation (n = 3).

5 g/L 10 g/L

Drug ID DC (g/L) LE (%) LC (%wt) DC (g/L) LE (%) LC (%wt)

SB-T-1213 4.9±0.1 98 33 8.4±0.4 84 46

SB-T-1214 4.2±0.2 84 30 8.6±0.3 86 46

SB-T-1216 4.8±0.1 96 32 8.2±1.0 82 45

SB-T-121302 4.3±0.1 86 30 8.6±0.2 86 46

SB-T-121303 4.2±0.1 84 30 7.3±0.4 73 42

SB-T-121402 4.5±0.1 90 31 7.5±0.6 75 43

SB-T-121602 4.1±0.1 82 29 9.0±0.2 90 47

Doxetaxel 4.5±0.1 88 31 9.0±0.3 90 47

Drug ID 12 g/L 15 g/L

SB-T-1213 8.2±0.4 68 45 8.3±1.0 55 45

SB-T-1214 9.2±0.7 77 48 9.1±0.9 61 48

SB-T-1216 8.3±0.6 69 45

SB-T-121302 8.9±0.9 74 47

SB-T-121303 10.4±1.C 87 51 5.6±0.7 37 36

SB-T-121402 9.9±0.5 83 50 9.2±0.4 61 48

SB-T-121602 9.2±1.0 77 48 9.6±0.2 64 49

Doxetaxel 9.8±0.2 82 49 3.1±3.3 71 24

Note: DC, final loaded drug concentration; LE, loading efficiency (loaded drug concentration/initial drug feeding concentration*100%); LC, 
loading capacity (final drug wt./total micelles wt.*100%).
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Table 2

IC50 values of POx/SB-T-1214 micelles vs. other PTX formulations

Formulations
IC50 (ng/mL)

Resistance factor (R/S) IC50 (ng/mL) T11
LCC6-MDR LCC6-WT

P0x/SB-T-1214 34.6 5.8 6 43

POx/PTX 1385 17.8 78 983

Abraxane 769 9.4 82 N/A

Taxol 536 18.4 29 N/A

Note: Resistance factor R/S=(IC50 for drug resistant cell line LCC6-MDR, R)/(IC50 for drug-sensitive cell line LCC6-WT, S)
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