90 research outputs found

    Sustained delivery of bioactive TGF-β1 from self-assembling peptide hydrogels induces chondrogenesis of encapsulated bone marrow stromal cells

    Get PDF
    Tissue engineering strategies for cartilage defect repair require technology for local targeted delivery of chondrogenic and anti-inflammatory factors. The objective of this study was to determine the release kinetics of transforming growth factor β1 (TGF-β1) from self-assembling peptide hydrogels, a candidate scaffold for cell transplant therapies, and stimulate chondrogenesis of encapsulated young equine bone marrow stromal cells (BMSCs). Although both peptide and agarose hydrogels retained TGF-β1, fivefold higher retention was found in peptide. Excess unlabeled TGF-β1 minimally displaced retained radiolabeled TGF-β1, demonstrating biologically relevant loading capacity for peptide hydrogels. The initial release from acellular peptide hydrogels was nearly threefold lower than agarose hydrogels, at 18% of loaded TGF-β1 through 3 days as compared to 48% for agarose. At day 21, cumulative release of TGF-β1 was 32–44% from acellular peptide hydrogels, but was 62% from peptide hydrogels with encapsulated BMSCs, likely due to cell-mediated TGF-β1 degradation and release of small labeled species. TGF-β1 loaded peptide hydrogels stimulated chondrogenesis of young equine BMSCs, a relevant preclinical model for treating injuries in young human cohorts. Self-assembling peptide hydrogels can be used to deliver chondrogenic factors to encapsulated cells making them a promising technology for in vivo, cell-based regenerative medicine.National Institutes of Health (U.S.) (NIH EB003805)National Institutes of Health (U.S.) (NIH AR60331)National Institutes of Health (U.S.). Molecular, Cell, and Tissue Biomechanics (Training Grant Fellowship)Arthritis Foundation (postdoctoral fellowship

    Revisiting predictive biomarkers of musculoskeletal injury in thoroughbred racehorses: longitudinal study in polish population

    Get PDF
    Abstract Background High prevalence of musculoskeletal disorders in racehorses and its impact on horse welfare and racing economics call for improved measures of injury diagnosis and prevention. Serum biomarkers of bone and cartilage metabolism have previously shown promise in prediction of musculoskeletal injuries in horses. This study aimed to re-evaluate usability of the predictive serum biomarkers identified in North American Thoroughbred racehorses in a geographically distinct group of Polish Thoroughbreds. Results Serum concentrations of bone and cartilage biomarkers: osteocalcin, c-terminal telopeptide of type I collagen, total glycosaminoglycans (GAG), chondroitin sulfate epitope and c-propeptide of type II procollagen (CPII) were evaluated in the beginning and the next 3 months of one racing season in a cohort of twenty-six 2-year-old Polish racehorses. Exit criteria were diagnosis of musculoskeletal injury, leading to > 5 days off training (n = 8), or completion of 3 study months with no training interruptions (n = 18). Normalized results and matching archival data from 35 2-year-old North American racehorses was used for logistic regression analysis to identify universal predictors of injury. Mean GAG and CPII levels were lower in injured group comparing to control, which is consistent with previous findings in racehorses. These biomarkers were also identified as predictors of injury in the mixed population model. Population origin had no significant effect on predictive value of evaluated biomarkers (Wald test p = 0.137). Decreased osteocalcin and increased c-terminal telopeptide of type I collagen levels in injured horses comparing to controls were specific for Polish population and signalized disruption in bone turnover homeostasis. Conclusions Changes in serum GAG and CPII in racehorses at risk of injury appear to be similar across distinct populations while dynamics of serum bone marker is more population-specific

    Ovarian Carcinoma‐Associated Mesenchymal Stem Cells Arise from Tissue‐Specific Normal Stroma

    Get PDF
    Carcinoma‐associated mesenchymal stem cells (CA‐MSCs) are critical stromal progenitor cells within the tumor microenvironment (TME). We previously demonstrated that CA‐MSCs differentially express bone morphogenetic protein family members, promote tumor cell growth, increase cancer “stemness,” and chemotherapy resistance. Here, we use RNA sequencing of normal omental MSCs and ovarian CA‐MSCs to demonstrate global changes in CA‐MSC gene expression. Using these expression profiles, we create a unique predictive algorithm to classify CA‐MSCs. Our classifier accurately distinguishes normal omental, ovary, and bone marrow MSCs from ovarian cancer CA‐MSCs. Suggesting broad applicability, the model correctly classifies pancreatic and endometrial cancer CA‐MSCs and distinguishes cancer associated fibroblasts from CA‐MSCs. Using this classifier, we definitively demonstrate ovarian CA‐MSCs arise from tumor mediated reprograming of local tissue MSCs. Although cancer cells alone cannot induce a CA‐MSC phenotype, the in vivo ovarian TME can reprogram omental or ovary MSCs to protumorigenic CA‐MSCs (classifier score of >0.96). In vitro studies suggest that both tumor secreted factors and hypoxia are critical to induce the CA‐MSC phenotype. Interestingly, although the breast cancer TME can reprogram bone marrow MSCs into CA‐MSCs, the ovarian TME cannot, demonstrating for the first time that tumor mediated CA‐MSC conversion is tissue and cancer type dependent. Together these findings (a) provide a critical tool to define CA‐MSCs and (b) highlight cancer cell influence on distinct normal tissues providing powerful insights into the mechanisms underlying cancer specific metastatic niche formation. Stem Cells 2019;37:257–269Ovarian cancer reprograms normal tissue derived mesenchymal stem cells (MSCs) into ovarian cancer promoting carcinoma‐associated mesenchymal stem cells (CA‐MSCs) in a tissue specific manner. Ovarian cancer cells convert ovary and omental MSCs into CA‐MSCs but fail to reprogram bone marrow (BM)‐MSCs whereas breast cancer cells convert BM‐MSCs into breast cancer supporting CA‐MSCs.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147827/1/stem2932_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147827/2/stem2932.pd

    Transcriptional profiling differences for articular cartilage and repair tissue in equine joint surface lesions

    Get PDF
    BACKGROUND: Full-thickness articular cartilage lesions that reach to the subchondral bone yet are restricted to the chondral compartment usually fill with a fibrocartilage-like repair tissue which is structurally and biomechanically compromised relative to normal articular cartilage. The objective of this study was to evaluate transcriptional differences between chondrocytes of normal articular cartilage and repair tissue cells four months post-microfracture. METHODS: Bilateral one-cm2 full-thickness defects were made in the articular surface of both distal femurs of four adult horses followed by subchondral microfracture. Four months postoperatively, repair tissue from the lesion site and grossly normal articular cartilage from within the same femorotibial joint were collected. Total RNA was isolated from the tissue samples, linearly amplified, and applied to a 9,413-probe set equine-specific cDNA microarray. Eight paired comparisons matched by limb and horse were made with a dye-swap experimental design with validation by histological analyses and quantitative real-time polymerase chain reaction (RT-qPCR). RESULTS: Statistical analyses revealed 3,327 (35.3%) differentially expressed probe sets. Expression of biomarkers typically associated with normal articular cartilage and fibrocartilage repair tissue corroborate earlier studies. Other changes in gene expression previously unassociated with cartilage repair were also revealed and validated by RT-qPCR. CONCLUSION: The magnitude of divergence in transcriptional profiles between normal chondrocytes and the cells that populate repair tissue reveal substantial functional differences between these two cell populations. At the four-month postoperative time point, the relative deficiency within repair tissue of gene transcripts which typically define articular cartilage indicate that while cells occupying the lesion might be of mesenchymal origin, they have not recapitulated differentiation to the chondrogenic phenotype of normal articular chondrocytes

    The comparative osmoregulatory ability of two water beetle genera whose species span the fresh-hypersaline gradient in inland waters (Coleoptera: Dytiscidae, Hydrophilidae).

    Get PDF
    A better knowledge of the physiological basis of salinity tolerance is essential to understanding the ecology and evolutionary history of organisms that have colonized inland saline waters. Coleoptera are amongst the most diverse macroinvertebrates in inland waters, including saline habitats; however, the osmoregulatory strategies they employ to deal with osmotic stress remain unexplored. Survival and haemolymph osmotic concentration at different salinities were examined in adults of eight aquatic beetle species which inhabit different parts of the fresh-hypersaline gradient. Studied species belong to two unrelated genera which have invaded saline waters independently from freshwater ancestors; Nebrioporus (Dytiscidae) and Enochrus (Hydrophilidae). Their osmoregulatory strategy (osmoconformity or osmoregulation) was identified and osmotic capacity (the osmotic gradient between the animal's haemolymph and the external medium) was compared between species pairs co-habiting similar salinities in nature. We show that osmoregulatory capacity, rather than osmoconformity, has evolved independently in these different lineages. All species hyperegulated their haemolymph osmotic concentration in diluted waters; those living in fresh or low-salinity waters were unable to hyporegulate and survive in hyperosmotic media (> 340 mosmol kg(-1)). In contrast, the species which inhabit the hypo-hypersaline habitats were effective hyporegulators, maintaining their haemolymph osmolality within narrow limits (ca. 300 mosmol kg(-1)) across a wide range of external concentrations. The hypersaline species N. ceresyi and E. jesusarribasi tolerated conductivities up to 140 and 180 mS cm(-1), respectively, and maintained osmotic gradients over 3500 mosmol kg(-1), comparable to those of the most effective insect osmoregulators known to date. Syntopic species of both genera showed similar osmotic capacities and in general, osmotic responses correlated well with upper salinity levels occupied by individual species in nature. Therefore, osmoregulatory capacity may mediate habitat segregation amongst congeners across the salinity gradient

    Sensory Communication

    Get PDF
    Contains table of contents for Section 2, an introduction and reports on fourteen research projects.National Institutes of Health Grant RO1 DC00117National Institutes of Health Grant RO1 DC02032National Institutes of Health/National Institute on Deafness and Other Communication Disorders Grant R01 DC00126National Institutes of Health Grant R01 DC00270National Institutes of Health Contract N01 DC52107U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-95-K-0014U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-96-K-0003U.S. Navy - Office of Naval Research Grant N00014-96-1-0379U.S. Air Force - Office of Scientific Research Grant F49620-95-1-0176U.S. Air Force - Office of Scientific Research Grant F49620-96-1-0202U.S. Navy - Office of Naval Research Subcontract 40167U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-96-K-0002National Institutes of Health Grant R01-NS33778U.S. Navy - Office of Naval Research Grant N00014-92-J-184

    Sensory Communication

    Get PDF
    Contains table of contents for Section 2 and reports on five research projects.National Institutes of Health Contract 2 R01 DC00117National Institutes of Health Contract 1 R01 DC02032National Institutes of Health Contract 2 P01 DC00361National Institutes of Health Contract N01 DC22402National Institutes of Health Grant R01-DC001001National Institutes of Health Grant R01-DC00270National Institutes of Health Grant 5 R01 DC00126National Institutes of Health Grant R29-DC00625U.S. Navy - Office of Naval Research Grant N00014-88-K-0604U.S. Navy - Office of Naval Research Grant N00014-91-J-1454U.S. Navy - Office of Naval Research Grant N00014-92-J-1814U.S. Navy - Naval Air Warfare Center Training Systems Division Contract N61339-94-C-0087U.S. Navy - Naval Air Warfare Center Training System Division Contract N61339-93-C-0055U.S. Navy - Office of Naval Research Grant N00014-93-1-1198National Aeronautics and Space Administration/Ames Research Center Grant NCC 2-77

    Cesarean and Vbac Rates Among Immigrant vs. Native-Born Women: A Retrospective Observational Study From Taiwan Cesarean Delivery and Vbac Among Immigrant Women in Taiwan

    Get PDF
    Background Cultural and ethnic roots impact women\u27s fertility and delivery preferences This study investigated whether the likelihood of cesarean delivery, primary cesarean, and vaginal delivery after cesarean (VBAC) varies by maternal national origin. Methods We conducted a nation-wide, population-based, observational study using secondary data from Taiwan. De-identified data were obtained on all 392,246 singleton live births (≥500 g; ≥20 weeks) born to native-born Taiwanese, Vietnamese and mainland Chinese-born mothers between January 1 2006 and December 31 2007 from Taiwan\u27s nation-wide birth certificate data. Our analytic samples consisted of the following: for overall cesarean likelihood 392,246 births, primary cesarean 336,766 (excluding repeat cesarean and VBAC), and VBAC 55,480 births (excluding primary cesarean and vaginal births without previous cesarean). Our main outcome measures were the odds of cesarean delivery, primary cesarean delivery and VBAC for Vietnamese and Chinese immigrant mothers relative to Taiwanese mothers, using multiple regression analyses to adjust for maternal and neonatal characteristics, paternal age, institutional setting, and major obstetric complications. Results Unadjusted overall cesarean, primary cesarean, and VBAC rates were 33.9%, 23.0% and 4.0% for Taiwanese, 27.6%, 20.1% and 5.0% for mainland Chinese, and 19.3%, 13.9 and 6.1% for Vietnamese respectively. Adjusted for confounders, Vietnamese mothers were less likely than native-born Taiwanese to have overall and primary cesarean delivery (OR = 0.59 and 0.58 respectively), followed by Chinese mothers (both ORs = 0.90 relative to native-born Taiwanese). Vietnamese mothers were most likely to have successful VBAC (OR = 1.58), followed by Chinese mothers (OR = 1.25). Conclusion Immigrant Vietnamese and Chinese mothers have lower odds of cesarean and higher VBAC odds than native-born Taiwanese, consistent with lower cesarean rates prevailing in their home countries (Vietnam 10.1%; mainland China 20% - 50% rural and urban respectively)

    Sensory Communication

    Get PDF
    Contains table of contents for Section 2, an introduction and reports on twelve research projects.National Institutes of Health Grant R01 DC00117National Institutes of Health Grant R01 DC02032National Institutes of Health/National Institute of Deafness and Other Communication Disorders Grant 2 R01 DC00126National Institutes of Health Grant 2 R01 DC00270National Institutes of Health Contract N01 DC-5-2107National Institutes of Health Grant 2 R01 DC00100U.S. Navy - Office of Naval Research Grant N61339-96-K-0002U.S. Navy - Office of Naval Research Grant N61339-96-K-0003U.S. Navy - Office of Naval Research Grant N00014-97-1-0635U.S. Navy - Office of Naval Research Grant N00014-97-1-0655U.S. Navy - Office of Naval Research Subcontract 40167U.S. Navy - Office of Naval Research Grant N00014-96-1-0379U.S. Air Force - Office of Scientific Research Grant F49620-96-1-0202National Institutes of Health Grant RO1 NS33778Massachusetts General Hospital, Center for Innovative Minimally Invasive Therapy Research Fellowship Gran
    corecore