821 research outputs found

    Fluxoid formation: size effects and non-equilibrium universality

    Full text link
    Simple causal arguments put forward by Kibble and Zurek suggest that the scaling behaviour of condensed matter at continuous transitions is related to the familiar universality classes of the systems at quasi-equilibrium. Although proposed 25 years ago or more, it is only in the last few years that it has been possible to devise experiments from which scaling exponents can be determined and in which this scenario can be tested. In previous work, an unusually high Kibble-Zurek scaling exponent was reported for spontaneous fluxoid production in a single isolated superconducting Nb loop, albeit with low density. Using analytic approximations backed up by Langevin simulations, we argue that densities as small as these are too low to be attributable to scaling, and are conditioned by the small size of the loop. We also reflect on the physical differences between slow quenches and small rings, and derive some criteria for these differences, noting that recent work on slow quenches does not adequately explain the anomalous behaviour seen here.Comment: 7 pages, 4 figures, presentation given at CMMP 201

    Soliton form factors from lattice simulations

    Full text link
    The form factor provides a convenient way to describe properties of topological solitons in the full quantum theory, when semiclassical concepts are not applicable. It is demonstrated that the form factor can be calculated numerically using lattice Monte Carlo simulations. The approach is very general and can be applied to essentially any type of soliton. The technique is illustrated by calculating the kink form factor near the critical point in 1+1-dimensional scalar field theory. As expected from universality arguments, the result agrees with the exactly calculable scaling form factor of the two-dimensional Ising model.Comment: 5 pages, 3 figures; v2: discussion extended, references added, version accepted for publication in PR

    Prognostic Values of microRNAs in Colorectal Cancer

    Get PDF
    The functions of non-coding microRNAs (miRNAs) in tumorigenesis are just beginning to emerge. Previous studies from our laboratory have identified a number of miRNAs that were deregulated in colon cancer cell lines due to the deletion of the p53 tumor suppressor gene. In this study, the in vivo significance of some of these miRNAs was further evaluated using colorectal clinical samples. Ten miRNAs (hsa-let-7b, hsa-let-7g, hsa-miR-15b, hsa-miR-181b, hsa-miR-191, hsa-miR-200c, hsa-miR-26a, hsa-miR-27a, hsa-miR-30a-5p and hsa-miR-30c) were evaluated for their potential prognostic value in colorectal cancer patients. Forty eight snap frozen clinical colorectal samples (24 colorectal cancer and 24 paired normal patient samples) with detailed clinical follow-up information were selected. The expression levels of 10 miRNAs were quantified via qRT-PCR analysis. The statistical significance of these markers for disease prognosis was evaluated using a two tailed paired Wilcoxon test. A Kaplan-Meier survival curve was generated followed by performing a Logrank test. Among the ten miRNAs, hsa-miR-15b (p = 0.0278), hsa-miR-181b (p = 0.0002), hsa-miR-191 (p = 0.0264) and hsa-miR-200c (p = 0.0017) were significantly over-expressed in tumors compared to normal colorectal samples. Kaplan-Meier survival analysis indicated that hsa-miR-200c was significantly associated with patient survival (p = 0.0122). The patients (n = 15) with higher hsa-miR-200c expression had a shorter survival time (median survival = 26 months) compared to patients (n = 9) with lower expression (median survival = 38 months). Sequencing analysis revealed that hsa-miR-181b (p = 0.0098) and hsa-miR-200c (p = 0.0322) expression were strongly associated with the mutation status of the p53 tumor suppressor gene. Some of these miRNAs may function as oncogenes due to their over-expression in tumors. hsa-miR-200c may be a potential novel prognostic factor in colorectal cancer

    Using an engineered glutamate-gated chloride channel to silence sensory neurons and treat neuropathic pain at the source

    Get PDF
    Peripheral neuropathic pain arises as a consequence of injury to sensory neurons; the development of ectopic activity in these neurons is thought to be critical for the induction and maintenance of such pain. Local anaesthetics and anti-epileptic drugs can suppress hyperexcitability; however, these drugs are complicated by unwanted effects on motor, central nervous system and cardiac function, and alternative more selective treatments to suppress hyperexcitability are therefore required. Here we show that a glutamate-gated chloride channel modified to be activated by low doses of ivermectin (but not glutamate) is highly effective in silencing sensory neurons and reversing neuropathic pain-related hypersensitivity. Activation of the glutamate-gated chloride channel expressed in either rodent or human induced pluripotent stem cell-derived sensory neurons in vitro potently inhibited their response to both electrical and algogenic stimuli. We have shown that silencing is achieved both at nerve terminals and the soma and is independent of membrane hyperpolarization and instead likely mediated by lowering of the membrane resistance. Using intrathecal adeno-associated virus serotype 9-based delivery, the glutamate-gated chloride channel was successfully targeted to mouse sensory neurons in vivo, resulting in high level and long-lasting expression of the channel selectively in sensory neurons. This enabled reproducible and reversible modulation of thermal and mechanical pain thresholds in vivo; analgesia was observed for 3 days after a single systemic dose of ivermectin. We did not observe any motor or proprioceptive deficits and noted no reduction in cutaneous afferent innervation or upregulation of the injury marker ATF3 following prolonged glutamate-gated chloride channel expression. Established mechanical and cold pain-related hypersensitivity generated by the spared nerve injury model of neuropathic pain was reversed by ivermectin treatment. The efficacy of ivermectin in ameliorating behavioural hypersensitivity was mirrored at the cellular level by a cessation of ectopic activity in sensory neurons. These findings demonstrate the importance of aberrant afferent input in the maintenance of neuropathic pain and the potential for targeted chemogenetic silencing as a new treatment modality in neuropathic pain

    Driven dynamics and rotary echo of a qubit tunably coupled to a harmonic oscillator

    Get PDF
    We have investigated the driven dynamics of a superconducting flux qubit that is tunably coupled to a microwave resonator. We find that the qubit experiences an oscillating field mediated by off-resonant driving of the resonator, leading to strong modifications of the qubit Rabi frequency. This opens an additional noise channel, and we find that low-frequency noise in the coupling parameter causes a reduction of the coherence time during driven evolution. The noise can be mitigated with the rotary-echo pulse sequence, which, for driven systems, is analogous to the Hahn-echo sequence

    Testing of a Wireless Sensor System for Instrumented Thermal Protection Systems

    Get PDF
    Funded by NASA's Constellation Universities Institutes Project (CUIP), we have been developing and testing a system to wirelessly power and collect data from sensors on space platforms in general and, in particular, the harsh environment of spacecraft re-entry. The elimination of wires and associated failures such as chafing, sparking, ageing, and connector issues can increase reliability and design flexibility while reducing costs. These factors present an appealing case for the pursuit of wireless solutions for harsh environments, particularly for their use in space and on spacecraft. We have designed and built a prototype wireless sensor system. The system, with capabilities similar to that of a wired sensor system, was tested in NASA Ames Research Center s Aerodynamic Heating Facility and Interaction Heating Facility. This paper discusses the overall development effort, testing results, as well as future directions

    The evolutionary dynamics of variant antigen genes in Babesia reveal a history of genomic innovation underlying host-parasite interaction

    Get PDF
    Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5′ ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct

    The Genetics of Neuropathic Pain from Model Organisms to Clinical Application.

    Get PDF
    Neuropathic pain (NeuP) arises due to injury of the somatosensory nervous system and is both common and disabling, rendering an urgent need for non-addictive, effective new therapies. Given the high evolutionary conservation of pain, investigative approaches from Drosophila mutagenesis to human Mendelian genetics have aided our understanding of the maladaptive plasticity underlying NeuP. Successes include the identification of ion channel variants causing hyper-excitability and the importance of neuro-immune signaling. Recent developments encompass improved sensory phenotyping in animal models and patients, brain imaging, and electrophysiology-based pain biomarkers, the collection of large well-phenotyped population cohorts, neurons derived from patient stem cells, and high-precision CRISPR generated genetic editing. We will discuss how to harness these resources to understand the pathophysiological drivers of NeuP, define its relationship with comorbidities such as anxiety, depression, and sleep disorders, and explore how to apply these findings to the prediction, diagnosis, and treatment of NeuP in the clinic

    Validity of the Polar V800 heart rate monitor to measure RR intervals at rest

    Get PDF
    Purpose To assess the validity of RR intervals and short-term heart rate variability (HRV) data obtained from the Polar V800 heart rate monitor, in comparison to an electrocardiograph (ECG). Method Twenty participants completed an active orthostatic test using the V800 and ECG. An improved method for the identification and correction of RR intervals was employed prior to HRV analysis. Agreement of the data was assessed using intra-class correlation coefficients (ICC), Bland–Altman limits of agreement (LoA), and effect size (ES). Results A small number of errors were detected between ECG and Polar RR signal, with a combined error rate of 0.086 %. The RR intervals from ECG to V800 were significantly different, but with small ES for both supine corrected and standing corrected data (ES 0.999 for both supine and standing corrected intervals. When analysed with the same HRV software no significant differences were observed in any HRV parameters, for either supine or standing; the data displayed small bias and tight LoA, strong ICC (>0.99) and small ES (≤0.029). Conclusions The V800 improves over previous Polar models, with narrower LoA, stronger ICC and smaller ES for both the RR intervals and HRV parameters. The findings support the validity of the Polar V800 and its ability to produce RR interval recordings consistent with an ECG. In addition, HRV parameters derived from these recordings are also highly comparable

    Immune or genetic-mediated disruption of CASPR2 causes pain hypersensitivity due to enhanced primary afferent excitability

    Get PDF
    Human autoantibodies to contactin-associated protein-like 2 (CASPR2) are often associated with neuropathic pain, and CASPR2 mutations have been linked to autism spectrum disorders, in which sensory dysfunction is increasingly recognized. Human CASPR2 autoantibodies, when injected into mice, were peripherally restricted and resulted in mechanical pain-related hypersensitivity in the absence of neural injury. We therefore investigated the mechanism by which CASPR2 modulates nociceptive function. Mice lacking CASPR2 (Cntnap2 ) demonstrated enhanced pain-related hypersensitivity to noxious mechanical stimuli, heat, and algogens. Both primary afferent excitability and subsequent nociceptive transmission within the dorsal horn were increased in Cntnap2 mice. Either immune or genetic-mediated ablation of CASPR2 enhanced the excitability of DRG neurons in a cell-autonomous fashion through regulation of Kv1 channel expression at the soma membrane. This is the first example of passive transfer of an autoimmune peripheral neuropathic pain disorder and demonstrates that CASPR2 has a key role in regulating cell-intrinsic dorsal root ganglion (DRG) neuron excitability
    • …
    corecore