3,318 research outputs found

    Analytic approach to the evolutionary effects of genetic exchange

    Full text link
    We present an approximate analytic study of our previously introduced model of evolution including the effects of genetic exchange. This model is motivated by the process of bacterial transformation. We solve for the velocity, the rate of increase of fitness, as a function of the fixed population size, NN. We find the velocity increases with lnN\ln N, eventually saturated at an NN which depends on the strength of the recombination process. The analytical treatment is seen to agree well with direct numerical simulations of our model equations

    Lattice Green's function approach to the solution of the spectrum of an array of quantum dots and its linear conductance

    Full text link
    In this paper we derive general relations for the band-structure of an array of quantum dots and compute its transport properties when connected to two perfect leads. The exact lattice Green's functions for the perfect array and with an attached adatom are derived. The expressions for the linear conductance for the perfect array as well as for the array with a defect are presented. The calculations are illustrated for a dot made of three atoms. The results derived here are also the starting point to include the effect of electron-electron and electron-phonon interactions on the transport properties of quantum dot arrays. Different derivations of the exact lattice Green's functions are discussed

    Walking the walk: a phenomenological study of long distance walking

    Get PDF
    Evidence suggests that regular walking can elicit significant psychological benefits although little evidence exists concerning long distance walking. The purpose of this study was to provide detailed accounts of the experiences of long distance walkers. Phenomenological interviews were conducted with six long distance walkers. Data were transcribed verbatim before researchers independently analyzed the transcripts. Participants reported a cumulative effect with positive feelings increasing throughout the duration of the walk. Long distance walking elicited positive emotions, reduced the effects of life-stress, and promoted an increased sense of well-being and personal growth. Results are aligned to theories and concepts from positive psychology

    Selection and gene flow shape genomic islands that control floral guides

    Get PDF
    Genomes of closely-related species or populations often display localized regions of enhanced relative sequence divergence, termed genomic islands. It has been proposed that these islands arise through selective sweeps and/or barriers to gene flow. Here, we genetically dissect a genomic island that controls flower color pattern differences between two subspecies of Antirrhinum majus, A.m.striatum and A.m.pseudomajus, and relate it to clinal variation across a natural hybrid zone. We show that selective sweeps likely raised relative divergence at two tightly-linked MYB-like transcription factors, leading to distinct flower patterns in the two subspecies. The two patterns provide alternate floral guides and create a strong barrier to gene flow where populations come into contact. This barrier affects the selected flower color genes and tightlylinked loci, but does not extend outside of this domain, allowing gene flow to lower relative divergence for the rest of the chromosome. Thus, both selective sweeps and barriers to gene flow play a role in shaping genomic islands: sweeps cause elevation in relative divergence, while heterogeneous gene flow flattens the surrounding "sea," making the island of divergence stand out. By showing how selective sweeps establish alternative adaptive phenotypes that lead to barriers to gene flow, our study sheds light on possible mechanisms leading to reproductive isolation and speciation

    The `Friction' of Vacuum, and other Fluctuation-Induced Forces

    Full text link
    The static Casimir effect describes an attractive force between two conducting plates, due to quantum fluctuations of the electromagnetic (EM) field in the intervening space. {\it Thermal fluctuations} of correlated fluids (such as critical mixtures, super-fluids, liquid crystals, or electrolytes) are also modified by the boundaries, resulting in finite-size corrections at criticality, and additional forces that effect wetting and layering phenomena. Modified fluctuations of the EM field can also account for the `van der Waals' interaction between conducting spheres, and have analogs in the fluctuation--induced interactions between inclusions on a membrane. We employ a path integral formalism to study these phenomena for boundaries of arbitrary shape. This allows us to examine the many unexpected phenomena of the dynamic Casimir effect due to moving boundaries. With the inclusion of quantum fluctuations, the EM vacuum behaves essentially as a complex fluid, and modifies the motion of objects through it. In particular, from the mechanical response function of the EM vacuum, we extract a plethora of interesting results, the most notable being: (i) The effective mass of a plate depends on its shape, and becomes anisotropic. (ii) There is dissipation and damping of the motion, again dependent upon shape and direction of motion, due to emission of photons. (iii) There is a continuous spectrum of resonant cavity modes that can be excited by the motion of the (neutral) boundaries.Comment: RevTex, 2 ps figures included. The presentation is completely revised, and new sections are adde

    Population genomics of domestic and wild yeasts

    Get PDF
    The natural genetics of an organism is determined by the distribution of sequences of its genome. Here we present one- to four-fold, with some deeper, coverage of the genome sequences of over seventy isolates of the domesticated baker's yeast, _Saccharomyces cerevisiae_, and its closest relative, the wild _S. paradoxus_, which has never been associated with human activity. These were collected from numerous geographic locations and sources (including wild, clinical, baking, wine, laboratory and food spoilage). These sequences provide an unprecedented view of the population structure, natural (and artificial) selection and genome evolution in these species. Variation in gene content, SNPs, indels, copy numbers and transposable elements provide insights into the evolution of different lineages. Phenotypic variation broadly correlates with global genome-wide phylogenetic relationships however there is no correlation with source. _S. paradoxus_ populations are well delineated along geographic boundaries while the variation among worldwide _S. cerevisiae_ isolates show less differentiation and is comparable to a single _S. paradoxus_ population. Rather than one or two domestication events leading to the extant baker's yeasts, the population structure of _S. cerevisiae_ shows a few well defined geographically isolated lineages and many different mosaics of these lineages, supporting the notion that human influence provided the opportunity for outbreeding and production of new combinations of pre-existing variation

    The Murchison Widefield Array: Design Overview

    Get PDF
    The Murchison Widefield Array (MWA) is a dipole-based aperture array synthesis telescope designed to operate in the 80-300 MHz frequency range. It is capable of a wide range of science investigations, but is initially focused on three key science projects. These are detection and characterization of 3-dimensional brightness temperature fluctuations in the 21cm line of neutral hydrogen during the Epoch of Reionization (EoR) at redshifts from 6 to 10, solar imaging and remote sensing of the inner heliosphere via propagation effects on signals from distant background sources,and high-sensitivity exploration of the variable radio sky. The array design features 8192 dual-polarization broad-band active dipoles, arranged into 512 tiles comprising 16 dipoles each. The tiles are quasi-randomly distributed over an aperture 1.5km in diameter, with a small number of outliers extending to 3km. All tile-tile baselines are correlated in custom FPGA-based hardware, yielding a Nyquist-sampled instantaneous monochromatic uv coverage and unprecedented point spread function (PSF) quality. The correlated data are calibrated in real time using novel position-dependent self-calibration algorithms. The array is located in the Murchison region of outback Western Australia. This region is characterized by extremely low population density and a superbly radio-quiet environment,allowing full exploitation of the instrumental capabilities.Comment: 9 pages, 5 figures, 1 table. Accepted for publication in Proceedings of the IEE

    Serum Lipoprotein(a) and Bioprosthetic Aortic Valve Degeneration

    Get PDF
    AIMS: Bioprosthetic aortic valve degeneration demonstrates pathological similarities to aortic stenosis. Lipoprotein(a) [Lp(a)] is a well-recognized risk factor for incident aortic stenosis and disease progression. The aim of this study is to investigate whether serum Lp(a) concentrations are associated with bioprosthetic aortic valve degeneration. METHODS AND RESULTS: In a post hoc analysis of a prospective multimodality imaging study (NCT02304276), serum Lp(a) concentrations, echocardiography, contrast-enhanced computed tomography (CT) angiography, and 18F-sodium fluoride (18F-NaF) positron emission tomography (PET) were assessed in patients with bioprosthetic aortic valves. Patients were also followed up for 2 years with serial echocardiography. Serum Lp(a) concentrations [median 19.9 (8.4-76.4) mg/dL] were available in 97 participants (mean age 75 ± 7 years, 54% men). There were no baseline differences across the tertiles of serum Lp(a) concentrations for disease severity assessed by echocardiography [median peak aortic valve velocity: highest tertile 2.5 (2.3-2.9) m/s vs. lower tertiles 2.7 (2.4-3.0) m/s, P = 0.204], or valve degeneration on CT angiography (highest tertile n = 8 vs. lower tertiles n = 12, P = 0.552) and 18F-NaF PET (median tissue-to-background ratio: highest tertile 1.13 (1.05-1.41) vs. lower tertiles 1.17 (1.06-1.53), P = 0.889]. After 2 years of follow-up, there were no differences in annualized change in bioprosthetic hemodynamic progression [change in peak aortic valve velocity: highest tertile [0.0 (-0.1-0.2) m/s/year vs. lower tertiles 0.1 (0.0-0.2) m/s/year, P = 0.528] or the development of structural valve degeneration. CONCLUSION: Serum lipoprotein(a) concentrations do not appear to be a major determinant or mediator of bioprosthetic aortic valve degeneration

    Loss of Sialic Acid Binding Domain Redirects Protein σ1 to Enhance M Cell-Directed Vaccination

    Get PDF
    Ovalbumin (OVA) genetically fused to protein sigma 1 (pσ1) results in tolerance to both OVA and pσ1. Pσ1 binds in a multi-step fashion, involving both protein- and carbohydrate-based receptors. To assess the relative pσ1 components responsible for inducing tolerance and the importance of its sialic binding domain (SABD) for immunization, modified OVA-pσ1, termed OVA-pσ1(short), was deleted of its SABD, but with its M cell targeting moiety intact, and was found to be immunostimulatory and enhanced CD4+ and CD8+ T cell proliferation. When used to nasally immunize mice given with and without cholera toxin (CT) adjuvant, elevated SIgA and serum IgG responses were induced, and OVA-pσ1(s) was more efficient for immunization than native OVA+CT. The immune antibodies (Abs) were derived from elevated Ab-forming cells in the upper respiratory tissues and submaxillary glands and were supported by mixed Th cell responses. Thus, these studies show that pσ1(s) can be fused to vaccines to effectively elicit improved SIgA responses

    Phosphoenolpyruvate carboxylase dentified as a key enzyme in erythrocytic Plasmodium falciparum carbon metabolism

    Get PDF
    Phospoenolpyruvate carboxylase (PEPC) is absent from humans but encoded in thePlasmodium falciparum genome, suggesting that PEPC has a parasite-specific function. To investigate its importance in P. falciparum, we generated a pepc null mutant (D10Δpepc), which was only achievable when malate, a reduction product of oxaloacetate, was added to the growth medium. D10Δpepc had a severe growth defect in vitro, which was partially reversed by addition of malate or fumarate, suggesting that pepc may be essential in vivo. Targeted metabolomics using 13C-U-D-glucose and 13C-bicarbonate showed that the conversion of glycolytically-derived PEP into malate, fumarate, aspartate and citrate was abolished in D10Δpepc and that pentose phosphate pathway metabolites and glycerol 3-phosphate were present at increased levels. In contrast, metabolism of the carbon skeleton of 13C,15N-U-glutamine was similar in both parasite lines, although the flux was lower in D10Δpepc; it also confirmed the operation of a complete forward TCA cycle in the wild type parasite. Overall, these data confirm the CO2 fixing activity of PEPC and suggest that it provides metabolites essential for TCA cycle anaplerosis and the maintenance of cytosolic and mitochondrial redox balance. Moreover, these findings imply that PEPC may be an exploitable target for future drug discovery
    corecore