181 research outputs found

    Cosmic Microwave Background Dipole induced by double inflation

    Full text link
    The observed CMBR dipole is generally interpreted as the consequence of the peculiar motion of the Sun with respect to the reference frame of the CMBR. This article proposes an alternative interpretation in which the observed dipole is the result of isocurvature perturbations on scales larger than the present Hubble radius. These perturbations are produced in the simplest model of double inflation, depending on three parameters. The observed dipole and quadrupole can be explained in this model, while severely constraining its parameters.Comment: Latex, 9 pages, no figure, to appear in Phys. Rev.

    An Erupting Classical Nova in a Globular Cluster of M87

    Full text link
    Only one certain classical nova eruption has ever been detected inside a globular cluster - nova 1860 A.D. (T Sco) in M80. During a survey of M87 we have detected an erupting star coincident (to within 0.08 pixels) with a globular cluster of that giant elliptical galaxy. We are able to discount variables in the foreground or background of M87. The light curve and color of the erupting star match those expected for a nova at the distance of M87. The chance superposition of an M87 field nova on the globular cluster is very unlikely but cannot be completely ruled out.Our detection hints at a globular cluster nova frequency f∌.004f \sim .004 novae/cluster/year, much higher than previous observations have suggested

    Inelastic Dark Matter

    Get PDF
    Many observations suggest that much of the matter of the universe is non-baryonic. Recently, the DAMA NaI dark matter direct detection experiment reported an annual modulation in their event rate consistent with a WIMP relic. However, the Cryogenic Dark Matter Search (CDMS) Ge experiment excludes most of the region preferred by DAMA. We demonstrate that if the dark matter can only scatter by making a transition to a slightly heavier state (Delta m ~ 100kev), the experiments are no longer in conflict. Moreover, differences in the energy spectrum of nuclear recoil events could distinguish such a scenario from the standard WIMP scenario. Finally, we discuss the sneutrino as a candidate for inelastic dark matter in supersymmetric theories.Comment: 20 pages, 6 figure

    Nuclear Shell Model Calculations of Neutralino-Nucleus Cross Sections for Silicon 29 and Germanium 73

    Full text link
    We present the results of detailed nuclear shell model calculations of the spin-dependent elastic cross section for neutralinos scattering from \si29 and \ge73. The calculations were performed in large model spaces which adequately describe the configuration mixing in these two nuclei. As tests of the computed nuclear wave functions, we have calculated several nuclear observables and compared them with the measured values and found good agreement. In the limit of zero momentum transfer, we find scattering matrix elements in agreement with previous estimates for \si29 but significantly different than previous work for \ge73. A modest quenching, in accord with shell model studies of other heavy nuclei, has been included to bring agreement between the measured and calculated values of the magnetic moment for \ge73. Even with this quenching, the calculated scattering rate is roughly a factor of 2 higher than the best previous estimates; without quenching, the rate is a factor of 4 higher. This implies a higher sensitivity for germanium dark matter detectors. We also investigate the role of finite momentum transfer upon the scattering response for both nuclei and find that this can significantly change the expected rates. We close with a brief discussion of the effects of some of the non-nuclear uncertainties upon the matrix elements.Comment: 31 pages, figures avaiable on request, UCRL-JC-11408

    Weighing the Quiescent Central Black Hole in an Elliptical Galaxy with X-ray Emitting Gas

    Full text link
    We present a Chandra study of the hot ISM in the giant elliptical galaxy NGC4649. In common with other group-centred ellipticals, its temperature profile rises with radius in the outer parts of the galaxy, from ~0.7keV at 2kpc to ~0.9keV by 20kpc. However, within the central ~2kpc the trend reverses and the temperature peaks at ~1.1keV within the innermost 200pc. Under the assumption of hydrostatic equilibrium, we demonstrate that the central temperature spike arises due to the gravitational influence of a quiescent central super-massive black hole. We constrain the black hole mass (MBH) to (3.35−0.95+0.67)×109(3.35^{+0.67}_{-0.95})\times 10^9Msun (90% confidence), in good agreement with stellar kinematics measurements. This is the first direct measurement of MBH based on studies of hydrostatic X-ray emitting gas, which are sensitive to the most massive black holes, and is a crucial validation of both mass-determination techniques. This agreement clearly demonstrates the gas must be close to hydrostatic, even in the very centre of the galaxy, which is consistent with the lack of morphological disturbances in the X-ray image. NGC4649 is now one of only a handful of galaxies for which MBH has been measured by more than one method. At larger radii, we were able to decompose the gravitating mass profile into stellar and dark matter (DM) components. Unless one accounts for the DM, a standard Virial analysis of the stars dramatically over-estimates the stellar mass of the galaxy. We find the measured J-band stellar mass-to-light ratio, 1.37+/-0.10 Msun/Lsun, is in good agreement with simple stellar population model calculations for this object.Comment: 13 pages, 6 figures, accepted for publication in ApJ. Minor revisions to match published versio

    Comparative Approaches to Studying Strategy: Towards an Evolutionary Account of Primate Decision Making

    Get PDF
    How do primates, humans included, deal with novel problems that arise in interactions with other group members? Despite much research regarding how animals and humans solve social problems, few studies have utilized comparable procedures, outcomes, or measures across different species. Thus, it is difficult to piece together the evolution of decision making, including the roots from which human economic decision making emerged. Recently, a comparative body of decision making research has emerged, relying largely on the methodology of experimental economics in order to address these questions in a cross-species fashion. Experimental economics is an ideal method of inquiry for this approach. It is a well-developed method for distilling complex decision making involving multiple conspecifics whose decisions are contingent upon one another into a series of simple decision choices. This allows these decisions to be compared across species and contexts. In particular, our group has used this approach to investigate coordination in New World monkeys, Old World monkeys, and great apes (including humans), using identical methods. We find that in some cases there are remarkable continuities of outcome, as when some pairs in all species solved a coordination game, the Assurance game. On the other hand, we also find that these similarities in outcomes are likely driven by differences in underlying cognitive mechanisms. New World monkeys required exogenous information about their partners’ choices in order to solve the task, indicating that they were using a matching strategy. Old World monkeys, on the other hand, solved the task without exogenous cues, leading to investigations into what mechanisms may be underpinning their responses (e.g., reward maximization, strategy formation, etc.). Great apes showed a strong experience effect, with cognitively enriched apes following what appears to be a strategy. Finally, humans were able to solve the task with or without exogenous cues. However, when given the chance to do so, they incorporated an additional mechanism unavailable to the other primates - language - to coordinate outcomes with their partner. We discuss how these results inform not only comparative psychology, but also evolutionary psychology, as they provide an understanding of the evolution of human economic behavior, and the evolution of decision making more broadly

    HST/ACS Emission Line Imaging of Low Redshift 3CR Radio Galaxies I: The Data

    Get PDF
    We present 19 nearby (z<0.3) 3CR radio galaxies imaged at low- and high-excitation as part of a Cycle 15 Hubble Space Telescope snapshot survey with the Advanced Camera for Surveys. These images consist of exposures of the H-alpha (6563 \AA, plus [NII] contamination) and [OIII] 5007 \AA emission lines using narrow-band linear ramp filters adjusted according to the redshift of the target. To facilitate continuum subtraction, a single-pointing 60 s line-free exposure was taken with a medium-band filter appropriate for the target's redshift. We discuss the steps taken to reduce these images independently of the automated recalibration pipeline so as to use more recent ACS flat-field data as well as to better reject cosmic rays. We describe the method used to produce continuum-free (pure line-emission) images, and present these images along with qualitative descriptions of the narrow-line region morphologies we observe. We present H-alpha+[NII] and [OIII] line fluxes from aperture photometry, finding the values to fall expectedly on the redshift-luminosity trend from a past HST/WFPC2 emission line study of a larger, generally higher redshift subset of the 3CR. We also find expected trends between emission line luminosity and total radio power, as well as a positive correlation between the size of the emission line region and redshift. We discuss the associated interpretation of these results, and conclude with a summary of future work enabled by this dataset.Comment: 18 pages, 12 figures, accepted for publication in ApJ

    WFPC2 Observations of Compact Star Cluster Nuclei in Low Luminosity Spiral Galaxies

    Get PDF
    We have used the Wide Field Planetary Camera 2 aboard the Hubble Space Telescope to image the compact star cluster nuclei of the nearby, late-type, low-luminosity spiral galaxies NGC 4395, NGC 4242, and ESO 359-029. We also analyze archival WFPC2 observations of the compact star cluster nucleus of M33. A comparative analysis of the structural and photometric properties of these four nuclei is presented. All of the nuclei are very compact, with luminosity densities increasing at small radii to the resolution limit of our data. NGC 4395 contains a Seyfert 1 nucleus with a distinct bipolar structure and bright associated filaments which are likely due to [OIII] emission. The M33 nucleus has a complex structure, with elongated isophotes and possible signatures of weak activity, including a jet-like component. The other two nuclei are not known to be active, but share similar physical size scales and luminosities to the M33 and NGC 4395 nuclei. The circumnuclear environments of all four of our program galaxies are extremely diffuse, have only low-to-moderate star formation, and appear to be devoid of large quantities of dust. The central gravitational potentials of the galaxies are also quite shallow, making the origin of these types of `naked' nuclei problematic.Comment: to appear in the July 1999 Astronomical Journal; 38 pages (Latex), 5 tables (postscript), 21 figures (gif); postscript versions of the figures may be obtained via anonymous ftp at ftp://ftp.cv.nrao.edu/NRAO-staff/lmatthew/lanl-nucle

    Quasar Clustering from SDSS DR5: Dependences on Physical Properties

    Full text link
    Using a homogenous sample of 38,208 quasars with a sky coverage of 4000deg24000 {\rm deg^2} drawn from the SDSS Data Release Five quasar catalog, we study the dependence of quasar clustering on luminosity, virial black hole mass, quasar color, and radio loudness. At z<2.5z<2.5, quasar clustering depends weakly on luminosity and virial black hole mass, with typical uncertainty levels ∌10\sim 10% for the measured correlation lengths. These weak dependences are consistent with models in which substantial scatter between quasar luminosity, virial black hole mass and the host dark matter halo mass has diluted any clustering difference, where halo mass is assumed to be the relevant quantity that best correlates with clustering strength. However, the most luminous and most massive quasars are more strongly clustered (at the ∌2σ\sim 2\sigma level) than the remainder of the sample, which we attribute to the rapid increase of the bias factor at the high-mass end of host halos. We do not observe a strong dependence of clustering strength on quasar colors within our sample. On the other hand, radio-loud quasars are more strongly clustered than are radio-quiet quasars matched in redshift and optical luminosity (or virial black hole mass), consistent with local observations of radio galaxies and radio-loud type 2 AGN. Thus radio-loud quasars reside in more massive and denser environments in the biased halo clustering picture. Using the Sheth et al.(2001) formula for the linear halo bias, the estimated host halo mass for radio-loud quasars is ∌1013h−1M⊙\sim 10^{13} h^{-1}M_\odot, compared to ∌2×1012h−1M⊙\sim 2\times 10^{12} h^{-1}M_\odot for radio-quiet quasar hosts at z∌1.5z\sim 1.5.Comment: Updated version; accepted for publication in Ap
    • 

    corecore