44 research outputs found

    Modeling phone call durations via switching Poisson processes with applications in mental health

    Get PDF
    Poster of: IEEE 30th International Workshop on Machine Learning for Signal Processing (MLSP 2020 ), 21-24 September 2020, Espoo, FinlandThis work models phone call durations via switching Poisson point processes. This kind of processes is composed by two intertwined intensity functions: one models the start of a call, whereas the other one models when the call ends. Thus, the call duration is obtained from the inverse of the intensity function of finishing a call. Additionally, to model the circadian rhythm present in human behavior, we shall use a (pos-itive) truncated Fourier series as the parametric form of the intensities. Finally, the maximum likelihood estimates of the intensity functions are obtained using a trust region method and the performance is evaluated on synthetic and real data, showing good results.This work was supported by the Ministerio de Ciencia, Innovación y Universidades under grant TEC2017-92552-EXP (aMBITION), by the Ministerio de Ciencia, Innovación y Universidades, jointly with the European Commission (ERDF), under grants TEC2017-86921-C2-2-R (CAIMAN) and RTI2018-099655-BI00 (CLARA), by the Comunidad de Madrid under grant Y2018/TCS-4705 (PRACTICO-CM), and by Fundación BBVA under project Deep-DARWIN

    Mixtures of heterogeneous Poisson processes for the assessment of e-social activity in mental health

    Get PDF
    Proceeding of: NeurIPS 2019 Workshop: Learning with Temporal Point Processes (part of the 33rd Conference on Neural Information Processing Systems), Vancouver, December 14, 2019 (Visit: https://nips.cc/Conferences/2019/Schedule?showEvent=13166 and https://sites.google.com/view/tpp-neurips-2019)This work introduces a novel method to assess the social activity maintained by psychiatric patients using information and communication technologies. In particular, we jointly model using point processes the e-social activity patterns from two heterogeneous sources: the usage of phone calls and social and communication apps. We propose a nonhomogeneous Poisson mixture model with periodic (circadian) intensity function using a truncated Fourier series expansion, which is inferred using a trust-region algorithm, and it is able to cope with the different daily patterns of a person. The analysis of the usage of phone calls and social and communication apps of a cohort of 164 patients reveals that 25 patterns suffice to characterize their daily behavior.This work was supported by the Ministerio de Ciencia, Innovación y Universidades under grant TEC2017-92552-EXP (aMBITION), by the Ministerio de Ciencia, Innovación y Universidades, jointly with the European Commission (ERDF), under grants TEC2017-86921-C2-2-R (CAIMAN) and RTI2018-099655-BI00 (CLARA), and by The Comunidad de Madrid under grant Y2018/TCS-4705 (PRACTICO-CM)

    Grouped sparsity algorithm for multichannel intracardiac ECG synchronization

    Get PDF
    In this paper, a new method is presented to ensure automatic synchronization of intracardiac ECG data, yielding a three-stage algorithm. We first compute a robust estimate of the derivative of the data to remove low-frequency perturbations. Then we provide a grouped-sparse representation of the data, by means of the Group LASSO, to ensure that all the electrical spikes are simultaneously detected. Finally, a post-processing step, based on a variance analysis, is performed to discard false alarms. Preliminary results on real data for sinus rhythm and atrial fibrillation show the potential of this approach

    Assessment of Variability in Irregularly Sampled Time Series: Applications to Mental Healthcare

    Get PDF
    Variability is defined as the propensity at which a given signal is likely to change. There are many choices for measuring variability, and it is not generally known which ones offer better properties. This paper compares different variability metrics applied to irregularly (nonuniformly) sampled time series, which have important clinical applications, particularly in mental healthcare. Using both synthetic and real patient data, we identify the most robust and interpretable variability measures out of a set 21 candidates. Some of these candidates are also proposed in this work based on the absolute slopes of the time series. An additional synthetic data experiment shows that when the complete time series is unknown, as it happens with real data, a non-negligible bias that favors normalized and/or metrics based on the raw observations of the series appears. Therefore, only the results of the synthetic experiments, which have access to the full series, should be used to draw conclusions. Accordingly, the median absolute deviation of the absolute value of the successive slopes of the data is the best way of measuring variability for this kind of time series

    Orthogonal MCMC algorithms

    Get PDF
    Monte Carlo (MC) methods are widely used in signal processing, machine learning and stochastic optimization. A well-known class of MC methods are Markov Chain Monte Carlo (MCMC) algorithms. In this work, we introduce a novel parallel interacting MCMC scheme, where the parallel chains share information using another MCMC technique working on the entire population of current states. These parallel ?vertical? chains are led by random-walk proposals, whereas the ?horizontal? MCMC uses a independent proposal, which can be easily adapted by making use of all the generated samples. Numerical results show the advantages of the proposed sampling scheme in terms of mean absolute error, as well as robustness w.r.t. to initial values and parameter choice

    Cross-Products LASSO

    Get PDF
    Negative co-occurrence is a common phenomenon in many signal processing applications. In some cases the signals involved are sparse, and this information can be exploited to recover them. In this paper, we present a sparse learning approach that explicitly takes into account negative co-occurrence. This is achieved by adding a novel penalty term to the LASSO cost function based on the cross-products between the reconstruction coefficients. Although the resulting optimization problem is non-convex, we develop a new and efficient method for solving it based on successive convex approximations. Results on synthetic data, for both complete and overcomplete dictionaries, are provided to validate the proposed approach

    Hierarchical algorithms for causality retrieval in atrial fibrillation intracavitary electrograms

    Get PDF
    Multi-channel intracavitary electrograms (EGMs), are acquired at the electrophysiology laboratory to guide radio frequency catheter ablation of patients suffering from atrial fibrillation (AF). These EGMs are used by cardiologists to determine candidate areas for ablation (e.g., areas corresponding to high dominant frequencies or complex fractionated electrograms). In this paper, we introduce two hierarchical algorithms to retrieve the causal interactions among these multiple EGMs. Both algorithms are based on Granger causality, but other causality measures can be easily incorporated. In both cases, they start by selecting a root node, but they differ on the way in which they explore the set of signals to determine their cause-effect relationships: either testing the full set of unexplored signals (GS-CaRe) or performing a local search only among the set of neighbor EGMs (LS-CaRe). The ensuing causal model provides important information about the propagation of the electrical signals inside the atria, uncovering wavefronts and activation patterns that can guide cardiologists towards candidate areas for catheter ablation. Numerical experiments, on both synthetic signals and annotated real-world signals, show the good performance of the two proposed approaches

    Blind analysis of atrial fibrillation electrograms: A sparsity-aware formulation

    Get PDF
    The problem of blind sparse analysis of electrogram (EGM) signals under atrial fibrillation (AF) conditions is considered in this paper. A mathematical model for the observed signals that takes into account the multiple foci typically appearing inside the heart during AF is firstly introduced. Then, a reconstruction model based on a fixed dictionary is developed and several alternatives for choosing the dictionary are discussed. In order to obtain a sparse solution, which takes into account the biological restrictions of the problem at the same time, the paper proposes using a Least Absolute Shrinkage and Selection Operator (LASSO) regularization followed by a post-processing stage that removes low amplitude coefficients violating the refractory period characteristic of cardiac cells. Finally, spectral analysis is performed on the clean activation sequence obtained from the sparse learning stage in order to estimate the number of latent foci and their frequencies. Simulations on synthetic signals and applications on real data are provided to validate the proposed approach.This work has been partly financed by the Spanish government through the CONSOLIDER-INGENIO 2010 program (COMONSENS project, ref. CSD2008-00010), as well as projects COSIMA (TEC2010-19545-C04-03), ALCIT (TEC2012 38800- C03-01), COMPREHENSION (TEC2012-38883-C02-01) and DISSECT (TEC2012-38058-C03-01)
    corecore