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ABSTRACT 

Negative co-occurrence is a common phenomenon in many 
signal processing applications. In some cases the signals 
involved are sparse, and this information can be exploited 
to recover them. In this paper, we present a sparse learn­
ing approach that explicitly takes into account negative co­
occurrence. This is achieved by adding a novel penalty term 
to the LASSO cost function based on the cross-products be­
tween the reconstruction coefficients. Although the resulting 
optimization problem is non-convex, we develop a new and 
efficient method for solving it based on successive convex 
approximations. Results on synthetic data, for both complete 
and overcomplete dictionaries, are provided to validate the 
proposed approach. 

Index Terms— negative co-occurrence, sparsity-aware 
learning, LASSO, sparse coding 

1. INTRODUCTION 

Co-ocurrence has been extensively exploited during the last 
forty years in areas such as computer vision at both low [1] 
and high [2] processing levels, but it has received much less 
attention by the signal processing community. However, co­
occurrence is relatively common in signal processing appli­
cations, especially negative co-occurrence. Focusing on the 
unidimensional case, a typical example can be found in the 
biomedical signal processing of intracardiac electrograms: af­
ter a cardiac cell activation there exists a so called "refractory 
period" where the cell cannot be excited [3]. A second exam­
ple can be found in the analysis of spectrometric data stem­
ming from Type I counters, where a detector (e.g., Geiger) 
which records incoming particles has a specific associated 
dead time during which the system is not able to record an­
other particle interaction [4]. 
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Both of the above mentioned applications share another 
common feature: the signals involved admit a sparse repre­
sentation using overcomplete dictionaries, i.e., they can be 
analyzed using sparse coding techniques [5], [6]. In sparse 
coding or compressed sensing techniques, the use of addi­
tional information to obtain a sparsity pattern in accordance 
with some physical/biological knowledge has already been 
investigated in [7]. Two additional examples are the fused 
LASSO [8], which imposes both sparsity and flatness of the 
obtained coefficients profile (making it valuable to describe 
mass spectroscopy data), and the elastic net, which favors 
sparsity obtained by correlated variables [9]. Recent contribu­
tions have also investigated, both theoretically and practically, 
the use of algorithms which encourage sparsity by clusters 
of coefficients [10, 11]. However, to the best of our knowl­
edge, encouraging sparsity by taking into account negative 
co-occurrence has not been considered yet. 

In this paper we introduce a novel sparse learning algo­
rithm that explicitly enforces negative co-occurrence by in­
corporating a new penalty term, based on the cross-products 
of the reconstruction coefficients, to the LASSO cost func­
tion. Hence, we call our approach cross-products LASSO 
(CP-LASSO). Unfortunately, this leads to a non-convex op­
timization problem, but we show that it can be solved effi­
ciently in an approximate way using successive convex ap­
proximations (SCA). Results on synthetic data, both for com­
plete and overcomplete dictionaries, are provided to validate 
the proposed approach. 

The paper is organized as follows. Section 2 shows the 
problem formulation. The novel regularization function and 
its efficient minimization using SCA are described in detail 
in Section 3. Section 4 shows numerical results on several 
synthetic data sets. Finally, Section 5 concludes the paper. 

2. PROBLEM FORMULATION 

2.1. Signal Model 

In this paper we focus on discrete-time signals generated by 
an unknown latent sparse activation signal going through an 



LTI system, and contaminated by noise, 

y[n] = p[n] * h[n] + w[n], (1) 

where w[n] is the discrete-time noise process, h[n] is the 
channel's impulse response (we assume a causal FIR channel 
of length L), * denotes the standard linear convolution oper­
ator, andp[n] is the sparse latent signal (also known as spike 
or activations train), 

K-\ 

p[n] = Y, AkS[n - Nk], (2) 
fc=0 

where S[n] denotes Kronecker's delta, K is the total number 
of spikes in p[n], Ak is the amplitude of the k-th spike and 
Nk its arrival time. We also assume that after each activation 
there is a negative co-occurrence period during which new 
activations cannot occur, i.e., Nk—Nk-\ > Nmin. Substitut­
ing (2) into (1), the signal model finally becomes 

K-\ 

y[n] = Y, Akh[n - Nk] + w[n] (3) 
fc=0 

This discrete-time model can be formulated more com­
pactly in matrix form as 

y = H a + w, (4) 

wherew= [w[0], . . . , w[N— I]]1 is the Nx 1 noise vector; 
a = [a[0], . . . , a[N - 1]]T is the N x 1 sparse amplitudes 
vector (a[n] ̂  0 <̂> n = Nk for some k); and H is the N x N 
channel matrix. 

2.2. Reconstruction Model 

If the channel's impulse response is known, then we can use 
(4) to recover the activations from the observations by im­
posing some of the sparse restrictions described in Section 
3. Unfortunately, h[n] is often unknown, and estimating it di­
rectly from the observations can be problematic for low signal 
to noise ratios (SNRs). Besides, in many applications we are 
interested in the arrival times of the activations rather than 
in h[n]. In these cases, a common alternative is performing 
sparse learning on the following reconstruction model 

Y = */3 + e, (5) 

where <& = [<&i, <&2, , * M ] is the N x MN dictionary 
matrix, with M > 1 indicating the number of basis signals 
in the dictionary and <&m being the m-th N x N dictionary 
matrix (1 < m < M), constructed from the m-th discrete-
time basis waveform, 4>m[n] ^ 0 <̂> 0 < n < Nm - 1; /3 = 
\f3~l, ..., f3~lj]T is the MN x 1 sparse coefficients vector, 

1 This formulation can be easily extended to Q activation signals [12, 13]. 
However, here we focus on a single activation for the sake of simplicity. 

with (3m = \pm[0], ..., pm[N - 1]]T for 1 < m < M; 
and e = [e[0], . . . , e[N - 1]]T is the N x 1 excess noise 
vector. On the one hand, when M = 1 we have a complete 
dictionary, and (5) has the same structure as (4), although the 
basis functions can be different. On the other hand, * is an 
overcomplete dictionary when M > 1. 

3. RESTRICTED SPARSE LEARNING 

3.1. Prior Work: LASSO plus post-processing 

A first approach for minimizing the reconstruction error of the 
model, subject to a sparsity contraint and respecting the nega­
tive co-ocurrence period, was recently proposed in [12]. First 
of all, an initial estimate of /3 is obtained, using LASSO [14], 

^ = a r g m i n { | | y - * / 3 | | 2 + A II/3H!}, (6) 
/3eRMJV 

where ||x||2 denotes the L2 norm of x, ||/3||i is the L\ norm 
of /3, and A is the regularization parameter. Unfortunately, 
the reconstruction obtained using (6) is unlikely to respect the 
restriction between activation times imposed by the negative 
co-occurrence period, especially for unknown channels and 
low SNRs. Hence, after the computation of /3, [12] intro­
duces a second step that estimates the samples associated to 
the arrival times of the spikes recursively as follows: 

JVfc = axgmax{||£[n]||iI(»7< ||£[n]||i < ||£[JVfc_i]||i)) 
l<n<W *• > 

s.t. \Nk - Ne\ > Nm[n, for l<£<k-l, (7) 

where /3[n] = [^i[n],..., ^M["-] ] T , !(•) is an indicator func­
tion, i.e., a function that takes a value equal to one if the logi­
cal condition is fulfilled, and zero otherwise; and r\ is a user-
defined threshold, used to discard the /3[n] with a small L\ 
norm, which provide no information about spike localization. 

3.2. Cross-Products LASSO (CP-LASSO) 

A novel approach, based on introducing the restriction im­
posed by the negative co-occurrence period into the cost func­
tion, is proposed here. This can be done by incorporating an 
additional penalty term to the LASSO cost function which 
discourages the presence of non-null coefficients associated 
to nearby basis functions. The new cost function proposed is 

Jone- S tep= | |y-*/3 | |^ + A II/3H! 

N-l M ATmin 

+ - ° E E E ll/Wn]/3[n + fc]||o, (8) 
n=0 m = l fc = -A r

m i n 

fc^O 

where ||x||0 denotes the L0 "norm" of x, p is an addi­
tional regularization parameter, and /3[n + k] = [Pi[n + 
k], . . . , (3M[n + k]]T is an M x 1 vector containing all the 
coefficients associated to the (n + k)-th sample. 

file:///f3~l


Since the L0 "norm" is generally intractable, the usual ap­
proach taken is substituting it by the more tractable L\ norm, 
which provides an equivalent solution under certain condi­
tions. Performing this standard relaxation, and after some al­
gebra [13], the modified cost function given by (8) turns into 

Jt CP-LASSO \y-*P\\l + \\\p\\1+p\\(BT<S>IM)Ph, (9) 

where <g> denotes the Kronecker product of two matrices [15]; 
I M is the M x M identity matrix; and B T is a 2MNmin x N 
matrix whose n-th column, following the notation of [16], is 
given by b„ = BT(: , n) = [/3T[n - JVmin], . . . , /3T[n -
1], / 3 T [n+ l ] , . . . , /3T [n-JVm i n]]T , with/3 = 0 for*; < 0. 
Since the novel cost function incorporates the cross-products 
between reconstruction coefficients to the LASSO, we call the 
novel approach cross-products LASSO (CP-LASSO). 

3.3. Successive Convex Approximations (SCA) 

Unfortunately, the new penalty term introduced in (9) leads 
to a complicated non-convex optimization problem. There­
fore, in this subsection we present an algorithm, based on suc­
cessive convex approximations (SCA) [17, 18, 19], for find­
ing a (local) solution of the constrained version of the Cross-
Products LASSO. In particular, the problem to be solved can 
be formulated as 

minimize | | /3 | | i+c Tc 

subject to |/?fc| = cfc, k 

l | y - * / 3 | | 2 < £ , 

,MN (10) 

where (3k (resp. ck) is the A;-th entry of (3 (resp c), £ is some 
user-defined tolerable residual error, and the symmetric ma­
trix T, with zeros along its main diagonal, penalizes the cross 
products of the absolute values of /3. That is, the entry ~/k,£ 
in the A;-th row and ^-th column of I \ induces a penaliza­
tion "fk/CkCe = lk,APk\\PA- Here we must point out that the 
proposed algorithm considers the general case in which some 
7^/ can take negative values, then rewarding co-ocurrence. 

The optimization problem in (10) is difficult to solve, 
since the cost function is not convex whenever T ^ 0. More­
over, the first set of constraints is not convex. However, 
noting that ||/3||i = l c , and introducing the constraint2 

1 + 2rc > 0, we ensure that the cost function increases with 
Cfc. Thus, the optimization problem is 

Algorithm 1 SCA for Cross-Products LASSO 
Input: T, <&, £ andy. 
Output: Recovered signal /3. 
Initialize Co = 0. 
Obtain the Matrices T + and F from the EV of T 
repeat 

Solve the convex optimization problem in (12) 
Update c0 = c 

until Convergence 

where the main difficulty resides in the non-convex cost func­
tion. In order to deal with this difficulty and find a solution 
of the original Karush-Kuhn-Tucker (KKT) conditions [20], 
we apply the SCA methodology [17, 18, 19]. The main idea 
is replacing the non-convex functions by a sequence of local 
convex approximations, which must satisfy three conditions: 

• The value of the original function, /(•), and its convex 
approximation, /(•), at the reference point x0 should 
be the same, i.e., / (x 0 ) = / (x 0 ) . 

• The gradients at the reference point should coincide, 
i.e., V / (x 0 ) = V^xo) . 

• The convex approximation must be an over-estimator 
o f / ( - ) , i . e . , / ( x )> / (x ) ,Vx . 

In our particular case, given a reference value c0 for the vector 
c, the cost function can be approximated by l T c + c T T + c + 
2C([r_(c - c0), where T + and r _ are the positive semidef-
inite and negative semidefinite parts of T = T + + r _ . It 
is easy to check that this approximation satisfies the previous 
conditions, and therefore, the convex problem to be solved in 
each iteration of the proposed algorithm is finally,3 

minimize 1 c + c T+c 
/3,c 

subject to |/?fc| < Cfc, k = 1 

l | y - * / 3 | | < £ 
1 + 2Tc > 0. 

2 c T r _ ( c - c 0 ) 

,MN (12) 

The overall procedure is summarized in Algorithm 1, where 
the initial value for c (c0 = 0), reduces the cost function to 
the convex envelope of the original non-convex cost function. 

4. NUMERICAL RESULTS 

minimize 1 c + c Tc 

subject to |/?fc|<Cfc, k=l,...,MN Q ^ ) 

l | y - * / 3 | | 2 < £ 
l + 2 rc > o, 

2Although this constraint is redundant at this point, and it can be com­
pletely avoided if all 7fc £ > 0, it will become relevant soon. 

4.1. Known Channel Matrix 

For the first experiment we randomly generate channels of 
length L = 20 first, with h[n] following a zero-mean and 
unit-variance Gaussian distribution, i.e., h[n] ~ 7V(0,1), and 
then obtain h[n] through an energy normalization: h[n] = 

3Note that the constraint 1 + 2 r c > 0 plays a crucial role in (12), ensur­
ing that the first set of constraints is satisfied with equality |/3j. | = ck. 



LASSO CP-LASSO 
SNR (dB) Nd(0) W) Nd(2) Nv Nfa Nd(0) Nd(l) Nd(2) Nv Nfa 

0 18.94 32.10 37.96 95.15 47.63 16.22 31.32 36.58 61.52 40.87 
5 13.51 16.07 16.24 8.13 19.60 18.16 27.81 29.42 1.04 7.56 
10 9.84 10.10 10.11 2.05 28.61 19.13 26.59 26.95 0 8.39 
15 10.04 10.17 10.17 0.94 28.25 19.67 25.78 25.94 0 9.55 
20 9.50 9.58 9.58 0.70 28.99 20.06 26.46 26.54 0 8.45 

Table 1. Results (averaged over 100 experiments) for unknown channel matrix using a Hanning window as basis element in 
the reconstruction dictionary when L = Nn 10. 

LASSO CP-LASSO 
-̂  »min K Nr Nd Nfa Nr Nd Nfa 

5 
10 
15 
20 
25 

73.32 
42.02 
29.54 
22.86 
18.62 

34.41 
11.66 
5.73 
3.33 
3.38 

34.12 
11.65 
5.73 
3.33 
3.38 

0.29 
0.01 
0.00 
0.00 
0.00 

60.79 
31.38 
19.24 
13.33 
12.15 

52.81 
29.31 
18.85 
13.14 
12.11 

7.97 
2.07 
0.39 
0.18 
0.04 

Table 2. Results (averaged over 100 experiments) for random 
known channel matrices when L = 20 and SNR = 10 dB. 

M n ] / \ / r En=o |^M|2- The amplitudes of the arrivals also 
follow a Gaussian distribution, A& ~ A/"(0,1), and the num­
ber of zero samples between two consecutive spikes is equal 
to Wmin plus a discretized Poisson process with rate K (i.e., 
the expected inter-arrival time is A^min + {K + 1)/K). The 
channel matrix is assumed to be known, so we set $ = H. 

Table 2 shows the results when K = 1 and N = 500 for 
LASSO (which corresponds to using (10) with V = 0) and 
CP-LASSO (p = 100). Since we are interested in recovering 
the latent spikes, this table shows the number of activations 
recovered (Nr\ the number of correctly located detections 
(Nd), and the number of false alarms (Nfa), altogether with 
the average number of spikes (K). CP-LASSO outperforms 
LASSO regarding Nd, although at the expense of a higher 
value of Nfa in this case. 

4.2. Unknown Channel Matrix 

For the second example we use activations that follow the 
shape given in [21] for electrograms with L = 11. The am­
plitude of the activations is again normally distributed, i.e., 
Ak ~ 7V(0,1), and the negative co-occurrence period is set 
to Nm[n = 10. The activations arrive periodically now, with 
a period equal to Nm[n + 1. We assume an unknown channel 
with a known length, and use a Hanning window of length 
L = 10 to generate the reconstruction dictionary. Table 1 
shows the results for L = 10 in terms of the number of correct 
detections (Nd (k) is the number of detections within distance 
k of a true activation, i.e., Nd(0) = Nd in Table 2), num­
ber of violations of the negative co-occurrence period (Nv) 
and number of false alarms (Nfa). In this case CP-LASSO 
outperforms LASSO w.r.t. all performance measures. 
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Fig. 1. Activations recovered using LASSO (dashed black line) and 
CP-LASSO (each colour corresponds to a different basis function). 

Finally, we show an example of the activations recovered 
using an overcomplete dictionary with M = 3 in Figure 1. 
The synthetic data are generated using a random channel with 
L = 20, N = 100 and 7Vmin = 10. We build the recon­
struction dictionary using the mexican hat wavelet with three 
different variances: a\ = 0.1, a\ = 1 and a\ = 10. The 
signal contains 8 activations. Using LASSO we recover 8 ac­
tivations, not always significant, and we have two violations 
of the negative co-occurrence period. Using CP-LASSO we 
only detect 6 activations, but there are no violations of the 
co-occurrence period and all of them are relevant. 

5. DISCUSSION 

In this paper we have shown how to incorporate a negative 
co-occurrence restriction into a sparse learning problem. The 
proposed approach builds on LASSO, adding a novel penalty 
term. Although some authors have derived approaches to ob­
tain sparse signals that respect some physical/biological re­
strictions in the past (see e.g. [7, 8, 9]), no approach based 
on the cross-products has been developed in the literature as 
far as we know. Finally, we also make use of the successive 
convex approximations (SCA) idea in order to optimize the 
resulting non-convex problem. 
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