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Abstract

This work introduces a novel method to assess the social activity maintained by
psychiatric patients using information and communication technologies. In par-
ticular, we jointly model using point processes the e-social activity patterns from
two heterogeneous sources: the usage of phone calls and social and communica-
tion apps. We propose a nonhomogeneous Poisson mixture model with periodic
(circadian) intensity function using a truncated Fourier series expansion, which
is inferred using a trust-region algorithm, and it is able to cope with the different
daily patterns of a person. The analysis of the usage of phone calls and social and
communication apps of a cohort of 164 patients reveals that 25 patterns suffice to
characterize their daily behavior.

1 Introduction

Mental disorders, which affect one out of four people in the world, are among the leading causes
of disability [1, 2]. They represent one of the most expensive disorders to treat, and, for instance,
the estimated cost of depression treatments entails more than e118 billions per year only in Europe
[3]. One preponderant reason for this high treatment cost is the lack of self-awareness of the disease
[4]. Indeed, if the patients’ health condition worsens, yet they do not try to look for help, they may
eventually suffer a relapse and may need to be hospitalized, which involves high economical and
human burdens [5]. In an attempt to alleviate these burdens, a research line has recently developed
tools to first gather the interactions of the patients with electronic devices, in order to establish
patterns of behavior (what is referred to as digital phenotype [6]) without requiring any particular
action from them. Then, data processing techniques are used to transform variations in such patterns
into reliable information to diagnose diseases, evaluate their progression, or even pre-empt worsening.
For instance, in [7], we studied the feasibility of detecting relapses using location data, [8] analyzed
emotions using data coming from Twitter, and the work in [9] inferred online communities with
interest in depression, exploiting data from social networks.

Needless to say, one of the most important interactions with devices is the one that allows to share
information with other people, e.g., communication through a social network or a phone call, which
we refer to as e-social activity. Undoubtedly, e-social activity is strongly related to actual social
interactions [10], and it is especially interesting in millennials [11]. There are studies that endeavor
to assess the e-social activity of psychiatric patients, such as [12], but the features that are extracted
to describe it are rather daunting, since they are basically counts or proportions of the different call
types. Hence, to extract meaningful conclusions out of the aforementioned counts or call proportions,
which are currently taken as the indicators of the e-social activity of the patients, different machine
learning techniques have been applied. For instance, in [13] decision and regression trees are used
detect depression. The research of both [14] and [15] aims to predict stress, but the former uses
k-nearest neighbors, SVM and PCA, while the latter employs ensembles of tree classifiers, SVM and
neural networks.
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In this work, we propose a novel approach to assess the e-social activity of psychiatric patients
jointly considering the usage of phone calls and social and communication apps. To model these
types of data, it is important to consider their particular features. Concretely, they produce a set of
point observations, which are composed of a start time (a timestamp), an end time (or a duration),
and possibly some other features like incoming/outgoing/missed call tags, etc. Hence, the right
mathematical tool to model such observations are point processes [16]. From a clinical point of
view, point processes have the advantage compared to the current machine learning techniques that
they directly describe the e-social activity in a way that the psychiatrist (or even the patient) can
understand it without requiring any kind of black-box algorithm.

In order to account for different factors that may influence the patients’ routines, such as holidays,
weekdays vs. weekends, etc., mixture models may be employed to parametrize the (conditional)
intensity function. Although mixtures of Poisson point processes have been successfully applied
in other fields, like vehicular accident data [17], insurance claims [18], economy [19, 20], RNA
sequencing [21], or earthquake modeling [22], to the best of our knowledge, our work in [23] is the
only study where mixtures of Poisson processes are used for the assessment of e-social activity of
psychiatric patients. Nonetheless, the interpretability of the model therein is hindered by the fact
that each source (i.e. the usage of phone calls and social and communication apps) was analyzed
independently; that is, using two hidden variables that govern different intensity functions for the two
sources. Indeed, the presence of different types of intensities to model the sources may be misleading.
To alleviate it, we propose a model that extracts patterns taking into account heterogeneous sources
at inference time. Further, since there is strong evidence supporting that human activities, such as
socializing, follow a circadian rhythm, [24, 25], we propose to parametrize each of the components
of the mixture model by means of periodic functions using a truncated Fourier series expansion with
order to K = 3, which is consistent with the existing literature [26].

2 Model

In this section, we introduce a novel point process whose intensity is based on a mixture of intensities
describing heterogeneous sources and, moreover, only one intensity may be active on each day
for each source, in such a way that each intensity can be associated with a particular daily pattern.
That is, we consider a model wherein there are u′ different sources, and for each of them, there is
a known number of (conditional) intensities, N , generating them. In addition, those (conditional)
intensities remain active during a time slot of duration T = 24h, and could only change at times
T ×m, where m = 1, 2, . . . ,m′. Here, m′ is the number of observation days. The aforementioned
model can be defined by means of a single hidden variable z(t) whose value indicates which set of
(conditional) intensities has generated all the observed events at time t from all sources. Moreover,
defining π = [π1, π2, . . . , πN ]T as the vector of prior probabilities on z(t), the likelihood function,
Lheterogeneous, is given by

Lheterogeneous =
m′∏

m=1

{
N∏
l=1

[
πl

u′∏
u=1

(( ∏
n∈Nu(m)

f∗l,u(tm,n)

)
×
(
1− F ∗l,u(mT )

))]I(z(tm)=l
)}

,

(1)

where f∗l,u(t) is the (conditional) density that an event happens at time t when the lth mixture
component is active for the uth source, and F ∗l,u(t) is the corresponding cumulative distribution
function (CDF). In addition, tm,n is the time instant of the nth observation within the mth day, and
Nu(m) is the set of indexes of the observations contained in the mth day for the uth source. Finally,
a single subscript represents any time instant within the mth day, i.e., tm.

To proceed, (1) is rewritten in terms of (conditional) intensities, following [27]. Then, the new
expression is optimized using the EM algorithm [28, 29], which has a straightforward E-step that
mainly involves the computation of the responsibilities rm,l. On the other hand, in the M-step, the
optimization with respect to each (conditional) intensity of each source is independent, and taking
into account the parametric form presented in [23], the ML estimator of each λ∗l,u(t) = dT

l,uT(t)dl,u

2



is the solution of the minimization problem [27]

argmin
dl,u

dT
l,u

 m′∑
m=1

rm,lTm

dl,u −

[
m′∑

m=1

∑
n∈Nu(m)

rm,l log
(
dT
l,uT(tm,n)dl,u

)]
︸ ︷︷ ︸

J(dl,u)

, (2)

where dl,u is the vector of Fourier coefficients,

T(t) =

[
C(t) S(t)
ST (t) C(t)

]
, Tm =

[
Cm Sm

S
T

m Cm

]
,

with the blocks of the matrices being

Cm =

∫ mT

(m−1)T
C(t) dt, Sm =

∫ mT

(m−1)T
S(t) dt,

and, defining Uk as a Toeplitz matrix whose entries on the kth diagonal are 1 and 0 elsewhere,

C(t) = IK+1 +
K∑

k=1

cos

(
2πk

T
t

)(
Uk +UT

k

)
, S(t) =

K∑
k=1

sin

(
2πk

T
t

)(
Uk −UT

k

)
.

It is easy to see that the optimization problem in (2) is not convex [30], thus requiring the use of
non-convex techniques. In particular, we propose to use the trust-region method in [31], which is
based on the interior-reflective Newton’s method. This technique requires both the gradient and the
Hessian of the cost function, which are computed next. Using [32], we obtain the required gradient
of J(dl.u), which is given by

∇dl,u
J(dl,u) = −2


m′∑

m=1

∑
n∈Nu(m)

rm,l
1

dT
l,uT(tm,n)dl,u

T(tm,n)dl,u

+2

 m′∑
m=1

rm,lTm

dl,u.

(3)

Similarly, the Hessian of the cost function is

HJ(dl,u) =

{
m′∑

m=1

∑
n∈Nu(m)

rm,l

[(
2

dT
l,uT(tm,n)dl,u

)2

T(tm,n)dl,ud
T
l,uT(tm,n)

− 2

dT
l,uT(tm,n)dl,u

T(tm,n)

]}
+ 2

 m′∑
m=1

rm,lTm

 . (4)

3 Results

Fig. 1 shows the 25 intensity pairs that are relevant enough (according to the AIC criterion [33]) in
order to explain the e-social activity of the 164 patients, which involves 385 213 entries in the usage
log of social and communication apps (WhatsApp, Twitter...) and 280 239 phone calls. Actually, as
shown in Fig. 2, none of the patients activated all the patterns, but just a limited amount of them.
This shows that their e-social activity can be understood in a succinct way thanks to this method.
With regard to the patterns in Fig. 1, they are ordered in increasing number of phone calls, and it is
interesting to notice that (except for pairs 16, 17, 18, 24 and 25, where phone calls are the preferred
method; and 19 and 23, where the usage is similar) the activity on social and communication apps
supersedes and is more complex than that of the phone calls.

The pair 10 is interesting since it reveals a nocturnal pattern in the usage of social and communication
apps, but low activity making phone calls. It is not surprising that the method only finds nocturnal
patterns in the usage of social and communication apps and not in phone calls. Indeed, the patients
can use social networks or send instant messages at nocturnal times without disturbing their contacts.
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Figure 1: Intensity pairs obtained by the proposed method from the usage of calls (dashed blue) and
social and communication apps (solid green) by 164 psychiatric patients. The abscissa represents the
hour of the day, while the ordinate represents the intensity in events/h.
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Figure 2: Histogram of the number of different intensities pairs activated by the patients

However, they would require to know other people who do not regularly sleep during at night in order
to make phone calls with them. Moreover, many intensities show a two-period activity, where the
social activities are concentrated around morning and evening (like the pairs 20 and 22). There are
also patterns of unimodal activity, such as the phone usage of the intensity pair 18. The intensity pair
24 requires more attention, since it shows the e-social activity of those patients uninterested in social
networks and related platforms, who make a continuous use of phone calls in order to keep in contact
with their peers.

With the exception of the pairs 19 through 23, the shape of the intensity pairs are not similar, since
one of the communication methods tends to dominate over the other. For instance, the pair 25 shows
that there are patients that use social and communication apps in a moderate, uniform way at diurnal
times, but they make extensive use of mobile phones at 10 a.m., and moderate use at 6 p.m. This
shows that e-social is a complex, heterogeneous phenomenon, which cannot be properly understood
assuming that the overall activity factorizes over all the sources.

4 Conclusions

We have presented a novel tool that can be applied to characterize the e-social activity of psychiatric
patients, succinctly integrating information coming from heterogeneous sources. This tool is based
on a Poisson process mixture model, which requires a very limited number of intensity sets in order
to explain the behavior of large amounts of e-social data from psychiatric patients.

From the clinical point of view, we have found a set of interpretable patterns analyzing data coming
from the usage of phone calls and social and communication apps. For instance, the method has
discovered patterns of nocturnal activity and poor social interactions. Moreover, since social activity
is an integral part of the patient’s behavior, we believe that the methods presented in this work could
serve as a basis to help with the diagnosis of mental illnesses and to design the treatment.
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