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Pablo Bonilla-Escribano, David Ramı́rez, Antonio Artés-Rodrı́guez

Dept. of Signal Theory and Communications, Universidad Carlos III de Madrid, Spain
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ABSTRACT

This work models phone call durations via switching Pois-
son point processes. This kind of processes is composed by
two intertwined intensity functions: one models the start of a
call, whereas the other one models when the call ends. Thus,
the call duration is obtained from the inverse of the intensity
function of finishing a call. Additionally, to model the circa-
dian rhythm present in human behavior, we shall use a (pos-
itive) truncated Fourier series as the parametric form of the
intensities. Finally, the maximum likelihood estimates of the
intensity functions are obtained using a trust region method
and the performance is evaluated on synthetic and real data,
showing good results.

Index Terms— Intensity function, maximum likelihood
(ML) estimation, point processes, switching Poissing process,
trust region method

1. INTRODUCTION

indicators of the actual social activity [4], and the durations
thereof are strongly sensitive to the kind of relationship be-
tween the speakers [5]. Hence, in this work, we propose a
novel framework to model phone call durations, which can
be used as an integral measure of the well-being and social
interactions of psychiatric patients.

There are studies that have used the call duration of psy-
chiatric patients in order to assess their mental condition, i.e.,
[6]. However, the features that are used to model them are
rather daunting, since they are basically the overall time mak-
ing all the calls in a day, and this ignores the temporal struc-
ture, which can be important. To the best of our knowledge,
the only approach to obtain such temporal structure has been
to compute the mean call duration per time slot, like in [5].
On the other hand, the problem of modeling the durations of
other events related to human activities has been addressed
in [7], where the state transition of a Markov model is used
to model the time that a person spends in different parts of a
house. This Markovian approach has been prominent in many
diverse fields, and it has been used to model the duration of,
e.g.: phonemes [8], transmission signals [9], and the time to
perform a given task in a project [10].

Despite the success of the Markovian modeling, we must
point out that it is not adequate for modeling phone call du-
rations due to their particular features. Specifically, phone
calls produce a series of point observations: every time that a
phone call is started and once it is accomplished. In addition,
both the time when the call starts and the distance between
those two timestamps (i.e., the duration of the call) may vary,
for instance, depending on the hour of the day. Hence, the cor-
rect framework to model those durations are point processes
[11] and, in particular, we shall use non-homogeneous Pois-
son processes.

Point processes can be formulated to explicitly model
event durations by considering a marked process [11]. That
is, every time a phone call is made, a mark with the call
duration is added, and this mark is modeled by a probability
density function. Nevertheless, this approach may assign
non-zero probability of starting a new call whilst one is still
on course, which is an undesirable feature. One model that
prevents such a problem is the switched Poisson process [12],

Modeling event durations is an overarching goal in many 
fields, which has important industrial, economical and medi-
cal applications. Recently, with the widespread use of mobile 
phones, there is an emerging need for such techniques for the 
automatic assessment of social activity, which is especially 
relevant in psychiatry. Indeed, psychiatrists lack objective 
tools to monitor the health condition of patients in between 
medical consultations [1]. These tools would allow to predict 
relapses [2], thereby improving the patients’ quality of life 
and reducing the high treatment costs [3]. Therefore, there 
is an intense research effort to capture the interactions of 
patients with their electronic devices (like their smartphones) 
and subsequently apply signal processing techniques to ob-
tain a proxy of their health condition. In particular, notice 
that electronic interactions via phone calls can be taken as
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which was proposed to estimate the waiting time of a server
queue system with alternating varying Poisson rates. Other
alternative is to consider a single parametric form of a non-
homogeneous Poisson process whose parameters change at
different change points. By inferring those change points
and their time span, it is possible to estimate the duration of
different events. This technique was applied to estimate the
duration of different drought periods in Brazil [13] and ozone
threshold exceedances in Mexico City [14].

The idea of a single Poisson model whose parameters
change at given points, which define some intervals, has been
furthered leveraged by adding a Markovian structure to the
switching times of the Poisson process. This model, known
as the Markov-modulated Poisson process, has been used for
expediting detections in surveys of marine mammal abun-
dance [15], and to model inter-trade durations in financial
markers [16]. A noteworthy case happens when the Markov
transition matrix has only two hidden states, like in [17]. Ac-
tually, this special case has been revisited in [18], where the
authors describe an complementary derivation of the process
that considers two (conditional) intensities, each of which
representing the instantaneous hazard of going from one state
to the other. Hence, when one of the intensities is active,
the other is null. This formulation has a drawback, namely,
it does not allow to explicitly infer the overall intensities of
the process, since they are always conditioned on some re-
alizations, which determine which intensity is active at each
time.

To overcome this problem, in this paper, we extend the
work of [18], by providing an alternative derivation of the
process which also decouples the overall intensities from the
switching mechanism that makes one of them null at given
times according to the particular realization of the dataset. Fi-
nally, since we are interested in psychiatric applications, we
need to consider the circadian rhythm [19], and we therefore
propose to use a (non-negative) truncated Fourier series ex-
pansion as the parametric form of the (conditional) intensity
functions.

2. MODELING PHONE CALL DURATIONS

2.1. Switching Poisson

Let λ̃∗c(t) be the overall intensity function of making a call,
and that of finishing it (i.e., the one that determines its dura-
tion) be λ̃∗d(t). When a particular realization of the process
is observed, the intensity of making a call, denoted as λ∗c(t),
and that of finishing it, λ∗d(t), become intertwined. That is,
when one of them is non-zero, the other one must be null, and
vice versa, in order to comply with some empirical limita-
tions, such as the fact that a call cannot be finished before it is
started. Moreover, we shall consider the most probable case in
which the patient is not making a call neither at the beginning
nor at end of the observation period, but it is straightforward
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Fig. 1. Probability density functions of the switching Poisson
process for an example where Tobs = 48h.

to modify the model for the three remaining cases. Then, the
intensities are related as follows

λ∗c(t) = λ̃∗c(t)
[
Nd(t)−Nc(t) + 1

]
, (1)

and
λ∗d(t) = λ̃∗d(t)

[
Nc(t)−Nd(t)

]
,

where Nc(t) and Nd(t) represent, respectively, the number of
times that a patient has started and finished a call up to time
t. Since this formulation switches on and off two independent
non-homogeneous Poisson processes, we shall refer to it as
the switching Poisson process.

In the following, we derive the maximum likelihood (ML)
estimates of the foregoing intensities. Before proceeding, let
us denote the (conditional) probability density of making a
call (conversely finishing it) as f∗c (t) (conversely f∗d (t)), and
let F ∗

c (t) denote the (conditional) cumulative distribution
function of f∗c (t). Further, let ti,c be the timestamps recorded
when a call is started, and ti,d be the timestamps obtained
when a call is completed. Then, as shown in Fig. 1, it follows
that the likelihood function of a switching Poisson process
that has seen n calls over an observation period Tobs is

L =

(
n∏
i=1

f∗c (ti,c)

)(
1− F ∗

c (Tobs)
)( n∏

i=1

f∗d (ti,d)

)
,

where, for the lack of notation, we use the so-called “empty
product”, which is 1, by definition, in the absence of obser-
vations. Notice that the middle term comes from the fact that
the unobserved event tn+1,c must occur after the end of the
observation period. In order to work with a more manageable
expression, we will use intensity functions instead of density
functions as in [20], which are related by

f∗(t) = λ∗(t)e
−

∫ t
ti
λ∗(s)ds

, (2)
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where λ∗(t) is the intensity function and ti denotes the times-
tamp of the last observed event that is being analyzed (either
the beginning or the end of a call). Now, using (2), the second
term in L can be rewritten as

1− F ∗
c (Tobs) = e

−
∫ tn,d
tn,c

λ∗
c(s)ds−

∫ Tobs
tn,d

λ∗
c(s)ds

= e
−

∫ Tobs
tn,d

λ̃∗
c(s)ds,

since λ∗c(t) = 0, ∀t ∈ [ti,c, ti,d), and λ∗c(s) has been re-
placed by λ̃∗c(s) in accordance with (1). Similar arguments
can be employed upon the first and third terms. For instance,
defining t0,c = t0,d = 0, we may write the first term in L as

n∏
i=1

f∗c (ti,c) =
n∏
i=1

λ∗c(ti,c)e
−

∫ ti,c
t(i−1),c

λ∗
c(s)ds

=
n∏
i=1

λ̃∗c(ti,c)e
−

∫ ti,d
t(i−1),d

λ̃∗
c(s)ds.

Now, taking the logarithm and defining Tc as the set of
time instances when someone is waiting to make a call, and
Td as the time span when calls are on course, the ML estima-
tion problem can be stated as the minimization of

−
n∑
i=1

log
(
λ̃∗c(ti,c)

)
−

n∑
i=1

log
(
λ̃∗d(ti,d)

)
+

∫
Tc

λ̃∗c(s) ds+

∫
Td

λ̃∗d(s) ds,

which shows that the optimization of the two intensities is
independent from one another.

To model the evolution of call durations over time, the in-
verse of the intensity of finishing a call, λ̃∗d(t), should be used,
as it can be interpreted as the mean call duration. Nonethe-
less, this raw estimation could not be suitable for those re-
gions where λ̃∗d(t) ≈ 0, since its inverse would blow up. To
avoid this issue, the problem can be regularized so that the
aforementioned intensity is pushed towards a value ρ using
the regularizer R λ̃∗d(t). A natural choice for ρ is the inverse
of the average call duration, which yields an inverse of λ̃∗d(t)
that oscillates around such average. Hence, the regularized
ML estimation of λ̃∗d(t), with penalization parameter µ, boils
down to the minimization of

−
n∑
i=1

log
(
λ̃∗d(ti,d)

)
+

∫
Td

λ̃∗d(s) ds

+ µ

∫ (
λ̃∗d(t)− ρ

)2
dt︸ ︷︷ ︸

R λ̃∗
d(t)

. (3)

One final comment is in order. As can be seen, the esti-
mation of λ̃∗c(t) can be ignored if the aim is just to model call
durations, but this switching Poisson framework allows us to
obtain the intensity of making a call as a by-product. Thus,
hereafter, we will only consider the problem in (3).

2.2. A parametric form for the intensity function

In this section, we provide an efficient way of solving the ML
estimation problem in (3), when using a parametric form suit-
able for the application at hand. Concretely, to model the
circadian rhythm, present in phone calls, we propose to use a
truncated Fourier series with period T = 24 hours, that is

λ̃∗d(t) =
a0
2

+
K∑
k=1

[
ak cos

(
2πk

T
t

)
+ bk sin

(
2πk

T
t

)]
.

Needless to say, the intensity must be non-negative. Thus, to
ensure the non-negativeness of λ̃∗d(t), the Fourier coefficients
are computed as [21, 22]

ak = 2cTr Ukcr + 2cTi Ukci, bk = 2cTr
(
Uk −UT

k

)
ci,

where cr = < (c) is the real part of c, ci = = (c) its
imaginary part, c = [c0, . . . , cK ]T ∈ CK+1, and Uk ∈
R(K+1)×(K+1) is a Toeplitz matrix whose entries on the kth
diagonal are 1, and 0 elsewhere.

Using the above quadratic forms for the coefficients, λ̃∗d(t)
can be succinctly expressed as

λ̃∗d(t) = dTT(t)d,

where d = [cTr , c
T
i ]
T , and the matrix T(t) (not to be con-

fused with the period T = 24 hours) is given by

T(t) =

[
C(t) S(t)
ST (t) C(t)

]
,

with

C(t) = IK+1 +

K∑
k=1

cos

(
2πk

T
t

)(
Uk +UT

k

)
,

and

S(t) =

K∑
k=1

sin

(
2πk

T
t

)(
Uk −UT

k

)
.

Moreover, using the properties of the Kronecker product
and those of the vec operator, the regularizer admits the com-
pact form

R λ̃∗d(t) = (d⊗ d)
T
Q (d⊗ d) + ρ2T − 2ρTdTd,

where

Q =

∫ T

0

vec
(
T(t)

)(
vec
(
T(t)

))T
dt,

and vec is the vectorization operator. Defining I as the iden-
tity matrix of dimension 2K+2, the regularized ML problem
in (3) can be expressed as the minimization of the cost func-
tion

Jreg(d) = dT
(
TTd
− 2µρT I

)
d

−
n∑
i=1

(
log
(
dTT(ti,d)d

))
+ µ (d⊗ d)TQ(d⊗ d), (4)
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Overall call 
rate in calls/h 

(× 10−3) 

Mean 
Number of 
observed 

calls 

AIC BIC

𝑃(𝐾 = �̂�)
NMSE 
(dB) 𝑃(𝐾 = �̂�)

NMSE 
(dB) 

84 59.246 0.687 -3.2330 0.354 -0.4088
124 86.626 0.803 -4.1876 0.529 -0.5374
164 114.322 0.848 -5.2495 0.673 -1.1821
204 142.151 0.856 -5.7202 0.746 -1.9765
244 169.311 0.859 -6.3645 0.814 -2.7231
284 197.685 0.861 -6.7828 0.886 -4.0008
324 224.759 0.859 -7.5082 0.904 -4.9020
364 250.744 0.854 -8.0443 0.945 -6.3397

Table 1. Synthetic data results. 

where
TTd

=

∫
Td

T(t) dt.

It can readily be shown that the cost function in (4) is
non-convex [23], which requires the use of non-convex opti-
mization techniques. In particular, we propose to employ the
trust-region method described in [24], which needs the gra-
dient and the Hessian of Jreg(d). Using matrix differential
calculus [25], the gradient becomes

∇dJreg(d) = 2
(
TTd
−2µρT I

)
d−2

n∑
i=1

(
T(ti,d)d

dTT(ti,d)d

)
+ 2µ

(
I⊗ dT + dT ⊗ I

)
Q (d⊗ d) ,

and the Hessian is

HJreg(d) = 2
(
TTd
−2µρT I

)
−

n∑
i=1

[
2

dTT(ti,d)d
T(ti,d)

−
(

2

dTT(ti,d)d

)2

T(ti,d)dd
TT(ti,d)

]
+ 2µ(I⊗ d+ d⊗ I)T Q (I⊗ d+ d⊗ I)

+ 2µ
[(

(d⊗ d)
T
Q
)
⊗ I
]
J [vec (I)⊗ I] ,

where

J = (I⊗K2K+2,2K+2) +K2K+2,(2K+2)2 ,

and Kp,q is the commutation matrix [26].

3. RESULTS

In this section, the performance of the switching Poisson pro-
cess for modeling phone call durations of psychiatric patients
is assessed. To validate the inference method, we consider
an experiment with synthetic data. Notice that in order to cor-
rectly analyze the suitability of the procedure for the target ap-
plication, it is important to generate data around the expected
regime. Specifically, using the call data of 259 psychiatric pa-
tients in [21], it is found that the average call duration and rate
are 167.537 s, and 0.244 calls/h, respectively. Thus, we de-
sign the experiment so that the (non-negative) Fourier series
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Fig. 2. Estimated call durations of a patient diagnosed with
an F3 disease.
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Fig. 3. Estimated call durations of a patient diagnosed with
an F5 disease.

associated to λ̃∗d(t) produces phone calls around the afore-
mentioned duration. In order to do so, it is useful to notice
that

1

T

∫ T

0

λ̃∗d(t) dt = ‖c‖
2
. (5)

Hence, we propose to sample c from a zero-mean Gaus-
sian distribution with identity covariance matrix and then nor-
malize it appropriately to control the mean of the randomly
generated Fourier series. This determines, in turn, the mean of
the calls that the intensity will produce when sampling from
it.

Similarly, λ̃∗c(t) is also parametrized by a randomly gen-
erated (non-negative) Fourier series, but (5) is now used to
sweep the mean call rate associated to those intensities over
the value found in the aforesaid dataset. In this way, fixing
Tobs = 30 days, it is possible to indirectly control the number
of observations. In our experiment, K = 3 and two informa-
tion theoretic criteria were considered to determine it, namely
the Akaike Information Criterion (AIC) and the Bayesian In-
formation Criterion (BIC) [27].

The results are presented in Table 1, where the prob-
ability of detection of K, i.e., P (K = K̂), is shown for
1 000 synthetic datasets generated from the different intensity
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pairs. This table also shows the normalized mean square
error (NMSE) between the intensity of ending a call selected
by each of the order selectors, and the one that generated
the data. In particular, it is computed as the integral of the
squared difference between the two intensities, divided by
the integral of the square of the synthetic intensity. Those
integrals are evaluated in one period. Lastly, it must be men-
tioned that several experiments have shown that a value of
the regularization strength of µ = 4 ·10−5 produces desirable
results over a wide range of situations, hence, during our
analysis, we pick that value. As can be seen, the AIC offers
suitable and superior performance metrics compared to those
of BIC, so it is the one that is selected for the subsequent
analysis of real data.

In Fig. 2, we show the results of the switching Pois-
son process for the estimation of the 937 phone call dura-
tions recorded during 302 days of a thirty-four-year-old fe-
male psychiatric patient diagnosed with an F3 disease, ac-
cording to the ICD-10 codes [28]. The solid line of this fig-
ure corresponds with the inverse of the estimated λ̃∗d(t) with
K̂ = 4, according to the AIC. Additionally, following the
current approach, the bars represent the mean duration of all
the calls contained in time slots of 3 hours, what provides a
coarse empirical estimate. On the other hand, the dotted yel-
lows lines also represent the mean duration of all the observed
calls in the designated slots, but since they span 45 min, they
yield finer, yet noisier estimates. As depicted in the figure,
no call duration was observed at all from 0:45 to 6:45 A.M.,
but the model is robust enough to handle this inimical situa-
tion. Finally, the dashed green line depicts the mean of all the
observed call durations.

Fig. 2 reveals that the current approaches to model call
durations of patients, such as summing the duration of all the
calls in the same day, can be overly simplistic, since there
is important information about the temporal dynamics of the
circadian rhythm that can be neglected. For instance, the pro-
posed model indicates that the patient has the shortest phone
conversations from 6 to 9 A.M., probably because it coin-
cides with the time she and her contacts wake up. Then, the
duration of the calls increases almost 3-fold from 9 to 15,
what could indicate that she is making some calls for work.
From 3 to 6 P.M. the duration of the phone calls is shortened,
which may coincide with the time to commute to her house
or lunchtime in Spain. By the end of the evening, the dura-
tion of the calls increases up to 7 times compared to the 6 to 9
A.M. period, and it is likely to be the time she has long emo-
tional conversations with her friends. Finally, she goes to bed,
thereby not making any call during the night. Furthermore,
Fig. 3 shows the analysis of the 1 179 phone call durations
observed over 208 days of a female patient diagnosed with an
F5 disease and aged 53 years. Since it is more complex, the
model selects K̂ = 8, and it reveals a nocturnal pattern with
two peaks of activity during the night.

4. CONCLUSION AND FUTURE WORK

In this paper, we have analyzed the feasibility of the switch-
ing Poisson process to model phone call durations, which can
be applied to objectively measure the social activity of psy-
chiatric patients. This process makes use of two intertwined,
yet independent intensities: one that models the beginning,
and other one that models the end of calls. Thus, only one
intensity may be active at a given time when phone calls are
observed. With this formulation, the expected call duration
can readily be obtained by taking the inverse of the intensity
describing the end of the calls. Moreover, to capture the inher-
ent circadian rhythm, we have parametrized the intensities by
(non-negative) Fourier series expansions. To make the model
useful in situations where the intensity of finishing a call is
close to zero, and hence its inverse may blow up, we have
proposed a regularized formulation. We have evaluated the
algorithm upon synthetic data, taking into account the char-
acteristics of the intensity functions that are present in real
data, and we have shown two examples of the method unveil-
ing the circadian rhythm of real patients, which shows good
results.

In the future, it would be of great interest to enrich the
model so that it makes use of complementary information,
such as the caller or the type of call. It would also be useful to
consider mixture models for the intensity functions, in such
a way that several patterns of the phone call durations can
be extracted from the same patient. In this way, it would be
possible to account for some external factors, such as the fact
that a phone call is performed on a weekend or weekday.
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