96 research outputs found
Transgenic Insecticidal Crops and Natural Enemies: A Detailed Review of Laboratory Studies
This review uses a data-driven, quantitative method to summarize the published, peer-reviewed literature about the impact of genetically modified (GM) plants on arthropod natural enemies in laboratory experiments. The method is similar to meta-analysis, and, in contrast to a simple author-vote counting method used by several earlier reviews, gives an objective, data-driven summary of existing knowledge about these effects. Significantly more non-neutral responses were observed than expected at random in 75% of the comparisons of natural enemy groups and response classes. These observations indicate that Cry toxins and proteinase inhibitors often have non-neutral effects on natural enemies. This synthesis identifies a continued bias toward studies on a few predator species, especially the green lacewing, Chrysoperla carnea Stephens, which may be more sensitive to GM insecticidal plants (16.8% of the quantified parameter responses were significantly negative) than predators in general (10.9% significantly negative effects without C. carnea). Parasitoids were more susceptible than predators to the effects of both Cry toxins and proteinase inhibitors, with fewer positive effects (18.0%, significant and nonsignificant positive effects combined) than negative ones (66.1%, significant and nonsignificant negative effects combined). GM plants can have a positive effect on natural enemies (4.8% of responses were significantly positive), although significant negative (21.2%) effects were more common. Although there are data on 48 natural enemy species, the database is still far from adequate to predict the effect of a Bt toxin or proteinase inhibitor on natural enemies
Cry Toxins and Proteinase Inhibitors in Transgenic Plants do have Non-Zero Effects on Natural Enemies in the Laboratory: Rebuttal to Shelton et al. 2009
A main point of our recent paper (Lovei et al. 2009) is that there are non-neutral effects of Cry toxins and proteinase inhibitors (PIs) on natural enemies in the laboratory and that the pattern of responses is complex and needs additional analysis. Shelton et al. (2009) aggressively attacked this conclusion. They claimed that all negative effects of Cry toxins are caused by effects of sublethally affected hosts and prey. We suggested in Lovei et al. (2009) and reiterate here that the actual situation is not that simple when laboratory studies are considered. We made our point by using statistical meta-analysis to show that there are more nonzero effects of Cry toxins and PIs on natural enemies than expected under a statistical null hypothesis that all observed effects were zero. The interested reader may want to examine the longer history of some of these issues (Lovei and Arpaia 2005; Andow et al. 2006; Romeis et al. 2006a,b). In our rebuttal, we first address the deeper, fundamental questions raised by Shelton et al. (2009) about the value of meta-analysis and then proceed to rebut the core criticisms about our statistical methods. Although Shelton et al. (2009) raised many other issues, we limited our rebuttal to these central issues; our lack of comment does not imply agreement with their other complaints. Shelton et al. (2009) make two criticisms of our work that are, in actuality, more fundamental criticisms of meta-analysis. These criticisms are made, in part, to defend the methods used and conclusions reached in reviews by O'Callaghan et al. (2005) and Romeis et al. (2006b), neither of which are based on meta-analyses. First they argued that nonsignificant P values are "devoid of futher meaning and interpretation" (Shelton et al. 2009, p. 318), and second, they
Biological Invasions: Recommendations for U.S. Policy and Management
The Ecological Society of America has evaluated current U.S. national policies and practices on biological invasions in light of current scientific knowledge. Invasions by harmful nonnative species are increasing in number and area affected; the damages to ecosystems, economic activity, and human welfare are accumulating. Without improved strategies based on recent scientific advances and increased investments to counter invasions, harm from invasive species is likely to accelerate. Federal leadership, with the cooperation of state and local governments, is required to increase the effectiveness of prevention of invasions, detect and respond quickly to new potentially harmful invasions, control and slow the spread of existing invasions, and provide a national center to ensure that these efforts are coordinated and cost effective. Specifically, the Ecological Society of America recommends that the federal government take the following six actions: (1) Use new information and practices to better manage commercial and other pathways to reduce the transport and release of potentially harmful species; (2) Adopt more quantitative procedures for risk analysis and apply them to every species proposed for importation into the country; (3) Use new cost-effective diagnostic technologies to increase active surveillance and sharing of information about invasive species so that responses to new invasions can be more rapid and effective; (4) Create new legal authority and provide emergency funding to support rapid responses to emerging invasions; (5) Provide funding and incentives for cost-effective programs to slow the spread of existing invasive species in order to protect still uninvaded ecosystems, social and industrial infrastructure, and human welfare; and (6) Establish a National Center for Invasive Species Management (under the existing National Invasive Species Council) to coordinate and lead improvements in federal, state, and international policies on invasive species. Recent scientific and technical advances provide a sound basis for more cost-effective national responses to invasive species. Greater investments in improved technology and management practices would be more than repaid by reduced damages from current and future invasive species. The Ecological Society of America is committed to assist all levels of government and provide scientific advice to improve all aspects of invasive-species management
Integrating adverse effect analysis into environmental risk assessment for exotic generalist arthropod biological control agents: a three-tiered framework
Environmental risk assessments (ERAs) are required before utilizing exotic arthropods for biological control (BC). Present ERAs focus on exposure analysis (host/prey range) and have resulted in approval of many specialist exotic biological control agents (BCA). In comparison to specialists, generalist arthropod BCAs (GABCAs) have been considered inherently risky and less used in classical biological control. To safely consider exotic GABCAs, an ERA must include methods for the analysis of potential effects. A panel of 47 experts from 14 countries discussed, in six online forums over 12 months, scientific criteria for an ERA for exotic GABCAs. Using four case studies, a three-tiered ERA comprising Scoping, Screening and Definitive Assessments was developed. The ERA is primarily based on expert consultation, with decision processes in each tier that lead to the approval of the petition or the subsequent tier. In the Scoping Assessment, likelihood of establishment (for augmentative BC), and potential effect(s) are qualitatively assessed. If risks are identified, the Screening Assessment is conducted, in which 19 categories of effects (adverse and beneficial) are quantified. If a risk exceeds the proposed risk threshold in any of these categories, the analysis moves to the Definitive Assessment to identify potential non-target species in the respective category(ies). When at least one potential non-target species is at significant risk, long-term and indirect ecosystem risks must be quantified with actual data or the petition for release can be dismissed or withdrawn. The proposed ERA should contribute to the development of safe pathways for the use of low risk GABCAs
Biosecurity and Yield Improvement Technologies Are Strategic Complements in the Fight against Food Insecurity
The delivery of food security via continued crop yield improvement alone is not an effective food security strategy, and must be supported by pre- and post-border biosecurity policies to guard against perverse outcomes. In the wake of the green revolution, yield gains have been in steady decline, while post-harvest crop losses have increased as a result of insufficiently resourced and uncoordinated efforts to control spoilage throughout global transport and storage networks. This paper focuses on the role that biosecurity is set to play in future food security by preventing both pre- and post-harvest losses, thereby protecting crop yield. We model biosecurity as a food security technology that may complement conventional yield improvement policies if the gains in global farm profits are sufficient to offset the costs of implementation and maintenance. Using phytosanitary measures that slow global spread of the Ug99 strain of wheat stem rust as an example of pre-border biosecurity risk mitigation and combining it with post-border surveillance and invasive alien species control efforts, we estimate global farm profitability may be improved by over US$4.5 billion per annum
Uncovering trophic interactions in arthropod predators through DNA shotgun-sequencing of gut contents
Characterizing trophic networks is fundamental to many questions in ecology, but this typically requires painstaking efforts, especially to identify the diet of small generalist predators. Several attempts have been devoted to develop suitable molecular tools to determine predatory trophic interactions through gut content analysis, and the challenge has been to achieve simultaneously high taxonomic breadth and resolution. General and practical methods are still needed, preferably independent of PCR amplification of barcodes, to recover a broader range of interactions. Here we applied shotgun-sequencing of the DNA from arthropod predator gut contents, extracted from four common coccinellid and dermapteran predators co-occurring in an agroecosystem in Brazil. By matching unassembled reads against six DNA reference databases obtained from public databases and newly assembled mitogenomes, and filtering for high overlap length and identity, we identified prey and other foreign DNA in the predator guts. Good taxonomic breadth and resolution was achieved (93% of prey identified to species or genus), but with low recovery of matching reads. Two to nine trophic interactions were found for these predators, some of which were only inferred by the presence of parasitoids and components of the microbiome known to be associated with aphid prey. Intraguild predation was also found, including among closely related ladybird species. Uncertainty arises from the lack of comprehensive reference databases and reliance on low numbers of matching reads accentuating the risk of false positives. We discuss caveats and some future prospects that could improve the use of direct DNA shotgun-sequencing to characterize arthropod trophic networks
A Pipeline Strategy for Grain Crop Domestication
In the interest of diversifying the global food system, improving human nutrition, and making agriculture more sustainable, there have been many proposals to domesticate wild plants or complete the domestication of semidomesticated orphan crops. However, very few new crops have recently been fully domesticated. Many wild plants have traits limiting their production or consumption that could be costly and slow to change. Others may have fortuitous preadaptations that make them easier to develop or feasible as high-value, albeit low-yielding, crops. To increase success in contemporary domestication of new crops, we propose a pipeline approach, with attrition expected as species advance through the pipeline. We list criteria for ranking domestication candidates to help enrich the starting pool with more preadapted, promising species. We also discuss strategies for prioritizing initial research efforts once the candidates have been selected: developing higher value products and services from the crop, increasing yield potential, and focusing on overcoming undesirable traits. Finally, we present new-crop case studies that demonstrate that wild species’ limitations and potential (in agronomic culture, shattering, seed size, harvest, cleaning, hybridization, etc.) are often only revealed during the early phases of domestication. When nearly insurmountable barriers were reached in some species, they have been (at least temporarily) eliminated from the pipeline. Conversely, a few species have moved quickly through the pipeline as hurdles, such as low seed weight or low seed number per head, were rapidly overcome, leading to increased confidence, farmer collaboration, and program expansion.Fil: DeHaan, Lee R.. The Land Institute; Estados UnidosFil: Van Tassel, David L.. The Land Institute; Estados UnidosFil: Anderson, James A.. University of Minnesota; Estados UnidosFil: Asselin, Sean R.. University of Manitoba; CanadáFil: Barnes, Richard. University of Minnesota; Estados UnidosFil: Baute, Gregory J.. University of British Columbia; CanadáFil: Cattani, Douglas J.. University of Manitoba; CanadáFil: Culman, Steve W.. Ohio State University; Estados UnidosFil: Dorn, Kevin M.. University of Minnesota; Estados UnidosFil: Hulke, Brent S.. United States Department of Agriculture. Agriculture Research Service; Estados UnidosFil: Kantar, Michael. University of British Columbia; CanadáFil: Larson, Steve. Forage and Range Research Laboratory; Estados UnidosFil: David Marks, M.. University of Minnesota; Estados UnidosFil: Miller, Allison J.. Saint Louis University; Estados UnidosFil: Poland, Jesse. Kansas State University; Estados UnidosFil: Ravetta, Damián Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Museo Paleontológico Egidio Feruglio; ArgentinaFil: Rude, Emily. University of Wisconsin; Estados UnidosFil: Ryan, Matthew R.. Cornell University; Estados UnidosFil: Wyse, Don. University of Minnesota; Estados UnidosFil: Zhang, Xiaofei. University of Minnesota; Estados Unido
- …