8,318 research outputs found

    A simple model of ocean temperature re-emergence and variability

    Get PDF
    A simple stochastic one-dimensional model of interannual mid-latitude sea surface temperature (SST) variability that can be solved analytically is developed. A novel two-season approach is adopted, with the annual cycle divided into two seasons denoted summer and winter. Within each season the mixed layer depth is constant, and the transition of the mixed layer from summer to winter and vice versa is discontinuous. SST anomalies are forced by random atmospheric heat fluxes, assumed to be constant within each season for simplicity, with linear damping to represent atmospheric feedback. At the start of summer the initial SST anomaly is set equal to that at the end of the previous winter, and at the start of winter the initial temperature anomaly is found by instantaneously mixing the summer mixed layer with the heat stored below in the deeper winter mixed layer, thereby explicitly taking into account the ‘re-emergence mechanism’. Two simple auto-regressive equations for the summer and winter SST anomalies are obtained that can be easily solved. Model parameters include seasonal damping coefficients, mixed layer depths and standard deviations of the atmospheric forcing. Analytic expressions for season-to-season correlation and variability and power spectra are used to explore and illustrate the effects of the parameters quantitatively. Among the results it is found that, with regard to winter-to-winter temperature correlation, the re-emergence pathway is more influential than persistence via the summer mixed layer when the winter layer is more than twice the depth of the summer layer. With regard to winter temperature variability, the effect of a deeper winter mixed layer is to decrease the sensitivity to surface forcing and thus decrease variability, but also to increase persistence via re-emergence and thus increase variance at multidecadal scales

    Novel soft-feedback equalisation method for multilevel magnetic recording

    Get PDF
    This paper investigates the use of multilevel modulation for magnetic recording using a novel soft-feedback equalization (SFE) approach. Different aspects of investigation are 1)multilevel recording, 2) SFE, and 3) application of turbo codes. The SFE scheme is a model in which the partial response (PR) equalizer and maximum a posteriori (MAP) decoder are replaced by a linear filter with an iterative MAP decoder. Error correction codes (ECCs) are applied to the multilevel recording system in order to achieve very low error rates. Implementation of the SFE scheme for multilevel recording shows a reduction in complexity in comparison to various PRML schemes. The simulation results show a clear performance gain of multi-level-coded against binary-coded recording systems. At higher signal-to-noise ratio (SNR), the coded multilevel SFE scheme overcomes the error floor effect produced in the coded multilevel PRML scheme, which is caused by minimum distance error events. Overall, this paper proposes the use of coded multilevel recording with SFE scheme at lower rates rather than coded binary recording at higher densities in order to achieve similar performanc

    Novel multi-level magnetic recording using modern error correction.

    Get PDF
    It has been shown that multilevel techniques operate closer to the channel capacity than binary for a bandwidth limited channel experiencing Additive White Gaussian Noise (AWGN) at increased Signal to Noise Ratio (SNR) [1]. Previous work[2] suggested that multi-level techniques, offered little, if any improvement of the magnetic recording capacity compared to the binary(two-level) system, and is eventually limited by amplitude irregularities in the magnetic channel. This paper looks at a new approach of applying powerful Error Correction Codes (ECC) on the multi-level magnetic recording channel and investigating the improvement in the performance. The main idea behind multilevel recording is to enable storing of more information bits per transition on the magnetic medium. Several magnetisation levels could be used with the multi-level channel. It is known that at higher code rates for AWGN channels, binary codes tend to deviate very quickly from their theoretical performance[1]. In order to achieve very low error-rates at a particular SNR, it is necessary to use state of the art ECC like Turbo Codes. This paper examines the use of multilevel data in conjunction with Turbo codes, for a high density magnetic recording channel, to achieve increased channel capacity for a particular SNR in the operating region of the magnetic recording devices

    Solar Coronal Structures and Stray Light in TRACE

    Full text link
    Using the 2004 Venus transit of the Sun to constrain a semi-empirical point-spread function for the TRACE EUV solar telescope, we have measured the effect of stray light in that telescope. We find that 43% of 171A EUV light that enters TRACE is scattered, either through diffraction off the entrance filter grid or through other nonspecular effects. We carry this result forward, via known-PSF deconvolution of TRACE images, to identify its effect on analysis of TRACE data. Known-PSF deconvolution by this derived PSF greatly reduces the effect of visible haze in the TRACE 171A images, enhances bright features, and reveals that the smooth background component of the corona is considerably less bright (and hence much more rarefied) than commonly supposed. Deconvolution reveals that some prior conlclusions about the Sun appear to have been based on stray light in the images. In particular, the diffuse background "quiet corona" becomes consistent with hydrostatic support of the coronal plasma; feature contrast is greatly increased, possibly affecting derived parameters such as the form of the coronal heating function; and essentially all existing differential emission measure studies of small features appear to be affected by contamination from nearby features. We speculate on further implications of stray light for interpretation of EUV images from TRACE and similar instruments, and advocate deconvolution as a standard tool for image analysis with future instruments such as SDO/AIA.Comment: Accepted by APJ; v2 reformatted to single-column format for online readabilit

    A Proof of Tarski’s Fixed Point Theorem by Application of Galois Connections

    Get PDF
    Two examples of Galois connections and their dual forms are considered. One of them is applied to formulate a criterion when a given subset of a complete lattice forms a complete lattice. The second, closely related to the first, is used to prove in a short way the Knaster-Tarski’s fixed point theore

    A view of canonical extension

    Get PDF
    This is a short survey illustrating some of the essential aspects of the theory of canonical extensions. In addition some topological results about canonical extensions of lattices with additional operations in finitely generated varieties are given. In particular, they are doubly algebraic lattices and their interval topologies agree with their double Scott topologies and make them Priestley topological algebras.Comment: 24 pages, 2 figures. Presented at the Eighth International Tbilisi Symposium on Language, Logic and Computation Bakuriani, Georgia, September 21-25 200

    Systematic review of antimicrobial drug prescribing in hospitals.

    Get PDF
    Prudent antibiotic prescribing to hospital inpatients has the potential to reduce the incidences of antimicrobial resistance and healthcare-associated infection. We reviewed the literature from January 1980 to November 2003 to identify rigorous evaluations of interventions to improve hospital antibiotic prescribing. We identified 66 studies with interpretable data of which 16 reported 20 microbiological outcomes: Gram negative resistant bacteria (GNRB), 10 studies; Clostridium difficile associated diarrhoea (CDAD), 5 studies; vancomycin resistant enterococci (VRE), 3 studies and methicillin resistant Staphylococcus aureus (MRSA), 2 studies. Four studies provide good evidence that the intervention changed microbial outcomes with low risk of alternative explanations, eight studies provide less convincing evidence and four studies were negative. The strongest and most consistent evidence was for CDAD but we were able to analyse only the immediate impact of interventions because of nonstandardised durations of follow up. The ability to compare results of studies could be substantially improved by standardising methodology and reporting

    Extreme Waves and Coastal Erosion Hazards, Communities Risk Perception and Social Vulnerability: Analysis of Two Villages in East Nusa Tenggara (NTT)

    Get PDF
    This study aims to examine risk perception and social vulnerability of two coastal communities in NTT namely Borokanda and Mautapaga.  A quantitativemethod was applied to achieve the aim of this study. A primary dataset was collected througha structured questionnaire, which was responded to by a total of 110 households in thesecoastal communities. The differences between the coastal communities of Borokanda andMautapaga, in social vulnerability and risk perception was analysed statistically using the Mann-Whitney U test.The results show that the coastal communities of Borokanda and Mautapaga have been identified to be significantly different in ethnicity, disaster experience, and disaster knowledgeinherited from older generations. However, such indicators do not impact the differencesbetween these coastal communities on social vulnerability and risk perception. A high scoreof social vulnerability index by the coastal communities of Borokanda and Mautapaga hasbeen identified as the root cause of the low level of risk perception

    The Midspan studies

    Get PDF
    No abstract available
    corecore