2,377 research outputs found

    Brane Tilings, M2-branes and Orbifolds

    No full text
    Brane Tilings represent one of the largest classes of superconformal theories with known gravity duals in 3+1 and also 2+1 dimensions. They provide a useful link between a large class of quiver gauge theories and their moduli spaces, which are the toric Calabi-Yau (CY) singularities. This thesis includes a discussion of an algorithm that can be used to generate all brane tilings with any given number of superpotential terms. All tilings with at most 8 superpotential terms have been generated using an implementation of this method. Orbifolds are a subject of central importance in string theory. It is widely known that there may be two or more orbifolds of a space by a finite group. Abelian Calabi-Yau orbifolds of the form C³/Γ can be counted according to the size of the group |Γ|. Three methods of counting these orbifolds will be given. A brane tiling together with a set of Chern Simons levels is sufficient to define a quiver Chern-Simons theory which describes the worldvolume theory of the M2-brane probe. A forward algorithm exists which allows us to easily compute the toric data associated to the moduli space of the quiver Chern-Simons theory from knowledge of the tiling and Chern-Simons levels. This forward algorithm will be discussed and illustrated with a few examples. It is possible that two different Chern-Simons theories have the same moduli-space. This effect, sometimes known as 'toric duality' will be described further. We will explore how two Chern-Simons theories (corresponding to brane tilings) can be related to each other by the Higgs mechanism and how brane tilings (with CS levels) that correspond to 14 fano 3-folds have been constructed. The idea of 'child' and 'parent' brane tilings will be introduced and we will discuss how it has been possible to count 'children' using the symmetry of the 'parent' tiling

    The cationic region of Rhes mediates its interactions with specific Gβ subunits

    Get PDF
    Ras homologue enriched in striatum (Rhes) is a small monomeric G protein which functions in a variety of cellular processes, including attenuation of G protein-coupled receptor (GPCR)signalling. There have been many studies into the effects of Rhes, but there is no molecular information about how Rhes might bring about these effects. Rhes shares striking sequence homology to AGS1 (activator of G protein signalling 1) and we considered whether the two proteins function in similar ways. AGS1 binds to the Gβ1 subunit of heterotrimeric G proteins and we have used yeast two-hybrid studies to show that Rhes binds selectively to Gβ1, Gβ2 and Gβ3 subunits. Binding to the Gβ subunits involves the cationic regions of AGS1 and Rhes, and we used Rhes-AGS1 chimeras to show that their different cationic regions determine the Gβ-specificity of the interactions. Possible implications of this interaction for the activity of Rhes are discussed

    Brane Tilings, M2-branes and Orbifolds

    Full text link
    Brane Tilings represent one of the largest classes of superconformal theories with known gravity duals in 3+1 and also 2+1 dimensions. They provide a useful link between a large class of quiver gauge theories and their moduli spaces, which are the toric Calabi-Yau (CY) singularities. This thesis includes a discussion of an algorithm that can be used to generate all brane tilings with any given number of superpotential terms. All tilings with at most 8 superpotential terms have been generated using an implementation of this method. Orbifolds are a subject of central importance in string theory. It is widely known that there may be two or more orbifolds of a space by a finite group. Abelian Calabi-Yau orbifolds of the form \BC^3 / \Gamma can be counted according to the size of the group ∣Γ∣|\Gamma|. Three methods of counting these orbifolds will be given. A brane tiling together with a set of Chern Simons levels is sufficient to define a quiver Chern-Simons theory which describes the worldvolume theory of the M2-brane probe. A forward algorithm exists which allows us to easily compute the toric data associated to the moduli space of the quiver Chern-Simons theory from knowledge of the tiling and Chern-Simons levels. This forward algorithm will be discussed and illustrated with a few examples. It is possible that two different Chern-Simons theories have the same moduli-space. This effect, sometimes known as `toric duality' will be described further. We will explore how two Chern--Simons theories (corresponding to brane tilings) can be related to each other by the Higgs mechanism and how brane tilings (with CS levels) that correspond to 14 fano 3-folds have been constructed. The idea of `child' and `parent' brane tilings will be introduced and we will discuss how it has been possible to count `children' using the symmetry of the `parent' tiling.Comment: 198 Pages, PhD Thesi

    The Social Landscape: A Photojournalism Professor\u27s Project

    Get PDF
    Social landscape photography focuses upon aspects of our everyday environment and follows broadly in the tradition of straight, documentary photography. Significant digital manipulation acceptable in fine art photography, advertising, and increasingly in editorial photography, is out of place here. The social landscape photograph attempts to capture and replicate the initial visual experience or insight of the photographer. Such manipulation would undermine, over time, the fundamental believability of the image. On the other hand, the serendipitous nature of the subject matter and the widely varying conditions under which social landscape photographs are produced benefit greatly from the precise contrast control and perspective corrections made easier by limited digital techniques

    Studying the evolution of software through software clustering and concept analysis

    Get PDF
    This thesis describes an investigation into the use of software clustering and concept analysis techniques for studying the evolution of software. These techniques produce representations of software systems by clustering similar entities in the system together. The software engineering community has used these techniques for a number of different reasons but this is the first study to investigate their uses for evolution. The representations produced by software clustering and concept analysis techniques can be used to trace changes to a software system over a number of different versions of the system. This information can be used by system maintainers to identify worrying evolutionary trends or assess a proposed change by comparing it to the effects of an earlier, similar change. The work described here attempts to establish whether the use of software clustering and concept analysis techniques for studying the evolution of software is worth pursuing. Four techniques, chosen based on an extensive literature survey of the field, have been used to create representations of versions of a test software system. These representations have been examined to assess whether any observations about the evolution of the system can be drawn from them. The results are positive and it is thought that evolution of software systems could be studied by using these techniques

    Study of methane oxidizing bacteria

    Get PDF
    • …
    corecore