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Abstract 

Background: Wound healing of the oral soft tissues, compared with skin and other epidermal 

tissues, is associated with enhanced healing capacity and reduced scarring.  Angiogenesis is 

dependent on many angiogenic factors including angiopoietin-1 (Ang-1), migration 

stimulating factor (MSF) and vascular endothelial growth factor (VEGF), and the inhibitor 

endostatin.  Angiogenesis is an important feature in both wound healing and periodontitis; 

both known to be compromised by factors including smoking and poorly controlled diabetes. 

Aims: To investigate whether:  

i) serum and salivary concentrations of Ang-1, MSF, VEGF and endostatin  differ 

significantly between periodontal health and severe periodontitis, smoking and 

diabetes.  

ii) the quantification of vascularity in periapical granulomas (PG) and healthy 

periodontal ligament (PDL), using different endothelial markers, has value as an 

index of angiogenesis. 

Methods: Following research ethics approval, 102 adult subjects were recruited and divided 

into three study groups: systemically healthy (n=53), smokers (n=20) and subjects with 

diabetes (n=29).  Each  group was sub-divided into periodontally healthy or those with severe 

periodontitis. Serum, saliva (whole mouth, unstimulated and stimulated) and gingival 

crevicular fluid samples were collected.  Ang-1, MSF, VEGF and endostatin concentrations 

were determined using enzyme-linked immunosorbent assays (ELISA).   Paraffin-embedded 

sections of PG and PDL were stained with vWF and CD105, and standard microscopic 

methods  used to quantify vascularity. 

Results: Salivary concentrations of Ang-1 and endostatin are reported for the first time. 

Salivary concentrations of VEGF were significantly raised in diabetes (p<0.05) and serum 

endostatin concentrations were significantly reduced in smokers (p<0.001). No significant 

differences were found in Ang-1 or MSF concentrations between the study groups, in either 

serum or saliva. No significant differences were found in staining or measures of vascularity 

between PG-PDL, whilst clear evidence of angiogenesis was found in oral squamous cell 

carcinoma (OSCC) control samples. 
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Conclusions: Smoking and diabetes were found to significantly alter levels of endostatin and 

VEGF respectively. No evidence in angiogenic activity was found in the PGs and CD105 

was not found to be a specific angiogenic marker. 
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Chapter 1  

Introduction and Literature Review 
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1.1  Introduction 

In this chapter, the key background concepts related to this thesis have been discussed in 

order to set the scene and to justify the research undertaken.  Firstly, an outline of wound 

healing, in general, has been provided and highlights the important role angiogenesis has in 

this process.  This is followed by a discussion of the processes involved in angiogenesis and 

a review of the literature of the angiogenic factors and inhibitors related to this thesis.  

Angiogenesis is then discussed in the context of the oral soft tissues, which are associated 

with enhanced wound healing and reduced scarring, in comparison to skin.  The various 

theories, which have been proposed to account for the enhanced oral soft tissue healing, 

including the angiogenic factor content in saliva, is then explored.  Finally, the potential 

impact of periodontal disease on angiogenic factors levels is discussed, including the 

potential negative effect of smoking and diabetes, which are both significant risk factors for 

poor wound healing and increased risk of periodontal disease.  

 

1.2  Wound healing – A general overview 

1.2.1  Introduction 

The key biological process studied in this thesis is angiogenesis and its vital role in oral 

wound healing, namely the re-establishment of a functional vascular network.  Angiogenesis 

was defined by Folkman and Shing (1992) as “the formation of new blood vessels from the 

pre-existing vascular network”.  An overview of the important stages of cutaneous wound 

healing is described below, as evidence suggests oral wound healing follows a similar pattern 

(DiPietro and Schrementi, 2018).  The following section is designed to place angiogenesis 

into the wider context of wound healing. 

 

Wound healing is a fundamental process of life and involves a complex array of dynamic 

spatial events necessary to maintain the integrity of the organism (Gurtner et al., 2008).  This 

process is known to involve specific time critical interactions between various soluble 

mediators, blood cells, parenchymal cells and the extracellular matrix (ECM).  Wound 

healing is categorised in terms of healing time, either acute or chronic (Dreifke et al., 2015).  

Acute wounds, for example non-infected surgical wounds, tend to heal quickly within 3 to 6 

weeks, while chronic wounds take at least 3 months. Unfortunately, due to the inherent 
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complexity there are several points where this process can be disturbed leading to abnormal 

chronic healing. Risk factors for chronic wound healing include: advanced age, poor nutrition 

(vitamin A and C deficiency), smoking, systemic disease (e.g. poorly controlled diabetes), 

side effects of various drugs (steroids, chemotherapy and immunosuppressants) and wound 

infection (Guo and Dipietro, 2010, Sorensen, 2012a, Levine, 2017).   

 

Although there are a large variety of wounds from simple scratches, to surgical incisions, 

burns and gross trauma, the fundamental processes of healing are common to all (Bielefeld 

et al., 2013, DiPietro and Schrementi, 2018).  Classically, clinicians categorise wounds, 

depending on whether the wound edges are closely apposed, as being primary intention, or 

apart, as being secondary intention (Johnstone and Farley, 2005).   Biologically wounds heal 

by undergoing four major overlapping phases: haemostasis phase, an inflammatory phase, a 

proliferation/granulation phase and a remodelling/maturation phase (Singer and Clark, 1999, 

Gosain and DiPietro, 2004), though there are some variations in the terminology used in the 

literature.  The length of time particular wounds take to transit through each phase varies 

depending upon the location, the nature of the wound (such as the extent of tissue loss or 

infection), and the natural variation in healing potential between individuals (Sciubba et al., 

1978).  Infected chronic wounds may move backwards and forwards through these phases, 

associated with prolonged inflammatory and proliferative phases, with little functional tissue 

repair (Guerra et al., 2018). 

 

Ideally, following injury the damaged tissue would be restored to its original structure 

(regeneration), but this is often not achieved leading to scar tissue formation (repair).  In 

contrast, wound healing in foetal tissue is rapid with minimal scarring (Whitby and Ferguson, 

1991, Larson et al., 2010, Branford and Rolfe, 2018).  Furthermore, oral soft tissue wound 

healing shares many of the characteristics of foetal healing, with more rapid healing and 

minimal scarring compared with other adult tissues (DiPietro and Schrementi, 2018).  

Understanding the processes involved in foetal and oral soft tissue wound healing is seen as 

key to enhancing wound care and reducing debilitating scars.  Proposed mechanisms for 

enhanced foetal wound healing include: significant differences in the ECM such as higher 

levels of hyaluronic acid, splice variants of fibronectin (including Migration Stimulating 
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Factor (MSF)) and the presence of the more reticular pattern of the type III collagen; different 

concentrations and temporal release of various cytokines and growth/angiogenic factors; 

reduced inflammation (duration and extent) and different characteristics of foetal 

inflammatory cells compared to adults (Schor et al., 1988a, Branford and Rolfe, 2018, 

Pratsinis et al., 2019). However, the exact nature of the processes underlying the enhanced 

wound healing in foetal tissue is extremely complex and is poorly understood, with many 

contradictory findings in the literature.  Studies suggest, however, that foetal scar-free healing 

is in some way intrinsic to the tissue as human foetal skin heals without scaring when 

transplanted subcutaneously into an adult athymic mouse (Lorenz et al., 1992).  Conversely, 

when adult sheep skin was transplanted onto a lamb foetus and subsequently incised, the 

wound healed with scar formation (Longaker et al., 1994).  Currently, many aspects of adult 

wound healing are also poorly understood and it is likely to be many years before controlled 

tissue regeneration is possible. 

 

The overview of the four phases of wound healing below describes the general events 

following an incisive injury of an epithelial-lined tissue such as the skin or the oral mucosa, 

but also directly relates to periodontal wound healing.  Some of the processes described 

below are highly complex and are not fully understood, so the general processes have been 

summarised for clarity (Singer and Clark, 1999, Hakkinen et al., 2000, Diegelmann and 

Evans, 2004, Velnar et al., 2009, Schultz et al., 2011, Gonzalez et al., 2016, Morand et al., 

2017, DiPietro and Schrementi, 2018, Guerra et al., 2018, Uluer et al., 2018, desJardins-Park 

et al., 2019).   

 

1.2.2  Haemostasis phase 

Damage to the microvasculature leads to haemorrhage which is initially controlled by platelet 

aggregation and the formation of the primary platelet plug.  This process is aided by rapid 

vasoconstriction, within five to ten minutes of the injury, mediated by the release of 

epinephrine (adrenaline), norepinephrine (noradrenaline), serotonin (5HT) and 

prostaglandins.  Platelets initially adhere to the exposed sub-endothelial collagen by the 

interaction of the platelet membrane glycoprotein Ib/IX and the endothelial cell derived 

protein von Willebrand factor (vWF).  Platelet adhesion causes platelet activation and 
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degranulation with the release of various growth factors such as vascular endothelial growth 

factor (VEGF), platelet-derived growth factor (PDGF), transforming growth factor-beta 

(TGF-β), and vasoactive molecules such as serotonin and histamine.  Other factors released 

include proteases and two major platelet activation factors, adenosine-5’-phosphate (ADP) 

and the prostaglandin, thromboxane A2 (TXA2).  Platelet activation causes conformational 

changes leading to the activation of the platelet surface glycoprotein IIb/IIIa (integrin αIIbβ3) 

receptor, which has affinity for adhesive molecules with the RGD peptide sequence (arginine 

(R) – glycine (G) – aspartate (D)) such as fibrinogen, vWF, fibronectin and vitronectin.  This 

receptor has a high affinity for fibrinogen and so promotes platelet aggregation creating a 

primary platelet plug. The key processes in the haemostasis phase are summarised in Figure 

1.1. 

 

Figure 1.1 A summary of the key processes in the haemostasis and early inflammatory phases of cutaneous 

wound healing (diagram from Reinke and Sorg (2012)). 

 

The primary platelet plug requires to be further stabilised by fibrin produced as the result of 

activation of the intrinsic and extrinsic coagulation pathways.  The intrinsic pathway is 

activated when Hageman factor (factor XII) is exposed to extravascular surfaces, while the 

extrinsic pathway is initiated by the activation of tissue factor, which is found in extravascular 

cells, in the presence of factor VII and VIIa.  Both pathways merge at factor X, which when 

activated is bound to the surface of platelets, which enables the clotting process to remain 
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localised to the site of injury.  Factor X then converts prothrombin into thrombin, which in 

turn converts soluble fibrinogen into insoluble fibrin.  Factor XIII is required to promote the 

cross linking and stabilisation of the fibrin, which in conjunction with the platelet plug forms 

the final blood clot.  The resultant fibrin scaffold has been shown to be important in the later 

migration of inflammatory cells and without it wound healing is impeded (Greiling and 

Clark, 1997).  Like many processes in the body there are coagulation inhibitors, such as 

antithrombin III, protein C and protein S, which prevent excessive clot formation.  

 

1.2.3  Inflammatory phase 

Vasoconstriction associated with the haemostasis phase is followed by a prolonged period of 

vasodilation, increased blood flow and vascular permeability mediated by the release of 

various factors such as bradykinin and histamine.  Bradykinin is formed by the activation of 

the kinin pathway by Hageman factor.  Histamine is released by the degranulation of the 

platelets and mast cells, leading to the production of the vasoactive prostaglandins E1 and E2.  

Complement fragments C3a, C4a and C5a are important factors in mast cell degranulation. 

Epidermal damage results in keratinocyte activation leading to enhanced expression of 

keratins K6, K16 and 17, which are important in re-epithelialisation (Patel et al., 2006). 

  

Hageman factor from the blood coagulation cascade also activates the classical complement 

cascade, which initiates the host inflammatory reaction.  The production of complement C5a 

and C567, as well as the large quantities of TGF-β released during platelet degranulation, 

mediates the chemotaxis of polymorphonuclear neutrophils (PMN), which are the 

predominant inflammatory cell in the first 24 to 48 hours, into the wound site.  This process 

is aided by the endothelial cells expressing surface adhesion molecules, such as vascular cell 

adhesion molecule-1 (VCAM-1), endothelial adhesion molecule-1 (ELAM-1) and 

intercellular adhesion molecule-1 (ICAM-1), which enable the PMN to leave the bloodstream 

by binding to the endothelial cells (leucocyte adhesion cascade).  The PMN progress between 

the endothelial cells and through the basement membrane (diapedesis) and follow the 

chemotactic gradient into the wound site aided by the cytokine induced (TGF-β, interleukin-

1β (IL-1β) and tumour necrosis factor-α (TNF-α)) release of elastase and collagenases.  PMN 

are short-lived phagocytic cells which ingest bacteria and foreign material and destroy them 
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internally using various hydrolytic enzymes, such as acid hydrolases and lysozyme, 

lactoferrin and by the production of reactive oxygen intermediates (ROI) (Respiratory burst).  

Complement fragment C3b causes opsonisation, aiding PMN phagocytosis and complement 

also leads directly to bacterial cell lysis by the membrane attack complex (MAC) (C5b6789).  

When the PMN die these toxic mediators are released into the surrounding tissue leading to 

extensive tissue damage.  PMN also enhance the inflammatory response by producing and 

releasing TNF-α and IL-1. 

 

After 48 to 72 hours, monocytes are also attracted to the wound site by chemotactic factors, 

such as TGF-β, collagen and fibronectin fragments, and as they leave the blood stream they 

differentiate into macrophages.  Macrophages have been shown to be a fundamental 

component in the early phases of wound healing and their absence causes impaired healing 

(Leibovich and Ross, 1975).  Macrophages are long-lived phagocytes which are important in 

the removal of bacteria, foreign and devitalised material, but they also play a major co-

ordination role both in the inflammatory response and in wound healing.  Macrophages 

secrete various cytokines and growth factors, such as IL-1, interleukin-6 (IL-6), TNF-α, 

fibroblast growth factors (FGF), insulin-like growth factor (IGF), epidermal growth factor 

(EGF), PDGF and TGF-β, all of which are involved in the recruitment of cells important for 

the proliferative phase (Koh and DiPietro, 2011).  After about three days post injury T-

lymphocytes migrate into the wound, in response to the local release of IL-1, and are thought 

to have a significant role in the regulation of collagen and ECM production (Efron et al., 

1990).  

 

1.2.4  Proliferative phase 

Aspects of this phase are usually apparent between two to twenty one days post injury and 

result in the replacement of the platelet-fibrin clot with new vascular connective tissue.  This 

phase consists of three overlapping principal processes: re-epithelialisation, angiogenesis and 

granulation tissue formation.  The key processes in the proliferative phase are summarised in 

Figure 1.2. 
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Figure 1.2 A summary of the key processes in the proliferative phase of cutaneous wound healing (diagram 

from Reinke and Sorg, 2012). 

 

 

1.2.4.1  Re-epithelialisation 

Re-epithelialisation involves the formation of a new epithelium over the denuded area of a 

wound and tends to be completed within days of an injury in order to protect the underlying 

wound site from microbial invasion.  The time taken to achieve this depends on the width of 

the denuded area, the extent of any underlying tissue damage, infection and the environment 

(moist conditions promote epithelialisation) (Jones, 2005).  At the wound edge structural 

changes occur which detach the epidermal cells from each other and from the underlying 

basement membrane, and intracellular actin microfilaments are formed.  These changes allow 

the immature epidermal cells to migrate across the wound surface in an amoeboid-like action 

separating the non-viable superficial tissue (eschar) from the underlying wound.  This process 

is aided by the epidermal cells secreting collagenases and plasminogen activator, the latter 

of which stimulates the production of plasmin and so helps to breakdown the clot.  At the 

wound edges, basal layer keratinocytes proliferate in response to the local release of growth 

factors such as EGF and keratinocyte growth factor (KGF) (Barrandon and Green, 1987, 

Werner et al., 1994).  As the sheets of epidermal cells converge in the centre of the wound, 

mitosis and migration are inhibited by contact inhibition.  The epidermal cells then form new 

desmosomal linkages between each other and hemi-desmosomal linkages to the underlying 

basement membrane.  In the skin and the oral mucosa, these cells differentiate into a stratified 
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squamous epithelium.  Evidence also suggests that the underlying ECM components, such 

as fibronectin, influence epidermal cell proliferation and migration (Li et al., 2003). 

 

1.2.4.2  Granulation tissue formation and angiogenesis 

Underlying the newly reformed epithelium is the developing granulation tissue, which is 

mainly composed of macrophages, fibroblasts and newly formed blood vessels embedded in 

a loose matrix of ECM components including fibrin, fibronectin and collagen. Granulation 

tissue has a high metabolic demand and, in order to maintain this, new blood vessels are 

formed through angiogenesis.  Angiogenesis is thought to be initiated by the secretion of 

various angiogenic factors such as VEGF, fibroblast growth factor-2 (FGF-2), nitric oxide 

(NO) and TGF-β and by local environmental factors such as hypoxia, low pH and high lactate 

levels (Nissen et al., 1998, Tonnesen et al., 2000, Bhushan et al., 2002, Greaves et al., 2013).  

 

The key cell in the formation and maturation of the granulation tissue is the fibroblast, either 

derived from tissue fibroblasts or from undifferentiated mesenchymal cells, which migrate 

into the wound site from the surrounding tissue.  Several cytokines and growth factors are 

thought to promote fibroblast proliferation and migration such as PDGF, FGF-2, TGF-β and 

MSF, as well as C5a, fibronectin and its fragments (Schor et al., 1993, Greiling and Clark, 

1997, Marcopoulou et al., 2003).  Fibroblast migration is determined by the concentration 

gradient of the chemotactic factors and is guided by the alignment of the fibrils in the ECM.  

These processes are aided by the binding of the fibroblast surface integrin receptors with 

ECM components such as collagen, fibronectin, vitronectin and fibrin.  Fibroblast migration 

and the breakdown of the ECM components of the provisional matrix are achieved by the 

extracellular secretion of matrix metalloproteinases (MMP).  These proteases are particularly 

important in removing the denatured collagen in the provisional matrix in order for the 

fibroblasts to re-establish an organised and strengthened ECM.  Fibroblasts also secrete tissue 

inhibitors of metalloproteinases (TIMP) to prevent the uncontrolled degradation of the ECM 

by the MMPs. Fibroblasts produce a multitude of ECM components including Type III 

collagen, glycosaminoglycans, hyaluronic acid, chondroitin sulphate, dermatin sulphate, 

heparin sulphate and elastin.  During this phase fibroblasts have the ability to differentiate 

into contractile myofibroblasts, which possess high levels of α-smooth muscle actin, and are 
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thought to be important in reducing the size of wounds.  Factors such as increased stiffness 

of the ECM and the presence of TGFβ are thought to be important in the formation of 

myofibroblasts (Tomasek et al., 2002, Hinz, 2015).  Although wound contraction is maximal 

over the first 5 to 15 days post injury, it continues over a prolonged period and into the 

maturation phase.  

 

1.2.5  Remodelling (maturation) phase  

This prolonged phase starts from about three weeks post injury and continues up to two years, 

with fibroblasts being the principal cell involved during this process (Figure 1.3).  Collagen 

continues to be remodelled resulting in greater organisation, increasing wound strength and 

possibly some further wound contraction.  Elements of the immature provisional matrix, such 

as Type III collagen,  fibronectin, hyaluronic acid and glycosaminoglycans are progressively 

replaced by Type I collagen and proteoglycans (Yates et al., 2011).  A reduction in cellular 

activity and metabolic load leads to reduced vascular density (vascular pruning) with loss of 

surplus capillaries and the maturation and formation of more large vessels.   

 

Figure 1.3 A summary of the key processes in the remodelling (maturation) phase of cutaneous wound healing 

(diagram from Reinke and Sorg, 2012). 
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Healing rarely results in complete regeneration of the tissue and often leads to scar tissue 

formation (repair).  Keloids and hypertrophic scars are both associated with excessive 

collagen deposition and lack differentiated structures such as hair follicles, sebaceous glands 

and sweat glands.  Several studies have reported that scar tissue formation may be related to 

the expression of different isoforms of TGF-β (Shah et al., 1999, Gorvy et al., 2005).  For 

example, Shah et al. (1995) reported TGF-β1 and TGF-β2 expression was associated with 

scarring, while TGF-β3 expression was associated with reduced cutaneous scarring.  Wound 

healing is a complex multi-stage process involving the temporal interaction between various 

cell types, cytokines, growth factors and components of the ECM, with angiogenesis being a 

fundamental element. 

 

1.3  Angiogenesis 

1.3.1 Introduction 

Angiogenesis is a complex and highly co-ordinated process involving the dynamic 

interaction between endothelial cells, inflammatory cells, adhesion molecules, ECM, various 

cytokines and growth factors resulting in the formation of blood vessels (Carmeliet and Jain, 

2011a).  Angiogenesis was first described by the British surgeon Dr John Hunter in 1787 

whilst studying blood vessel growth in reindeer antlers, although its significance was not 

appreciated until the work of Folkman (1971), who hypothesised that tumour growth was 

dependent on new blood vessel growth.  Folkman later defined angiogenesis as the, 

“formation of new blood vessels from the pre-existing vascular network” (Folkman and 

Shing, 1992).   

 

Angiogenesis differs from vasculogenesis, which is the de novo formation of primitive 

vascular networks of blood vessels by angioblasts (endothelial precursor cells), during early 

embryonic development (Risau, 1997).  These initial blood vessels are subsequently 

remodelled and expanded by angiogenesis in order to meet the functional demands of 

embryonic growth.  There is limited evidence that vasculogenesis occurs in adults and may 

be involved in collateral vessel growth in ischaemic tissue and in the growth of some tumours 

(Asahara et al., 1997, Drake, 2003).   
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Angiogenesis is vital in childhood physiological growth and development, but is maintained 

at a relatively low level in healthy adults, apart from higher activity in the female 

reproductive cycle and in wound healing (Saravanan et al., 2020).  Evidence also suggests 

that angiogenesis may be involved in neural development and learning (Zhang et al., 2003, 

Greenberg and Jin, 2005, Fujioka et al., 2019).  In health, angiogenesis is tightly controlled 

by the dynamic balance between angiogenic factors (Table 1.1) and inhibitors (Table 1.2), 

often referred to as the angiogenic switch (Hanahan and Folkman, 1996, Iruela-Arispe and 

Dvorak, 1997).  Most of these factors are still relatively poorly understood, especially in 

terms of the interaction between themselves and with the ECM.  The major angiogenic factors 

and inhibitors are briefly described below, with particular emphasis on those related to this 

thesis (Chapter 1.5.3 and 1.5.4).  These factors will be further discussed in relation to their 

roles in oral health and periodontitis later in this chapter (Chapter 1.6.6). 

Table 1.1 Known angiogenic factors. 

◼ Angiogenin. 

◼ Angiopoietin-1. 

◼ Fibroblast Growth Factors (FGF-1 & FGF-2). 

◼ Epidermal Growth Factor (EGF). 

◼ Granulocyte Colony Stimulating Factor (G-CSF). 

◼ Hepatocyte Growth Factor (HGF) / Scatter Factor. 

◼ Insulin-like Growth Factor I & II 

◼ Integrins αvβ3, avβ5 

◼ Interleukin 8 (IL-8). 

◼ Matrix Metalloproteinases (MMP) 

◼ Migration Stimulating Factor (MSF) 

◼ Nerve Growth Factor (NGF) 

◼ Placental Growth Factor  

◼ Platelet-Derived Endothelial Cell Growth Factor (PD-ECGF)  

◼ Platelet-Derived Growth Factor (PDGF) 

◼ Pleiotrophin (PTN)  

◼ Progranulin  

◼ Proliferin  

◼ Transforming Growth Factors (TGF-α and TGF-β). 

◼ Tumour Necrosis Factor alpha (TNF-α). 

◼ Vascular Endothelial Growth Factor (VEGF). 
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Table 1.2  Known angiogenic inhibitors. 

◼ Angiopoietin-2 

◼ Angiostatin. 

◼ Arresten 

◼ CD59 complement fragment  

◼ Endorepellin 

◼ Endostatin. 

◼ Fibronectin fragments  

◼ Interferons (IFN-α, IFN-β , IFN- γ) 

◼ Interleukin 12 (IL-12). 

◼ Hepatocyte Growth Factor fragment NK1 

◼ Metalloproteinase inhibitors (TIMP) 

◼ Migration Stimulating Factor Inhibitor (MSFI)/ Neutrophil Gelatinase-Associated Lipocalin 

(NGAL) 

◼ Platelet Factor-4  

◼ Thrombospondin-1 

◼ Thrombostatin 

◼ Tissue Inhibitor of Metalloproteinases (TIMP) 1/2/3 

◼ Transforming Growth Factor beta (TGF β) 

◼ Troponin-1 

◼ Tumstatin 

◼ Vasostatin. 

 

 

Dysfunctional regulation of angiogenesis has been implicated in several disease processes, 

especially in neoplasia (Polverini, 1995, Carmeliet and Jain, 2011b).  Excessive angiogenesis 

has been implicated in the pathogenesis of several conditions including neoplasia, diabetic 

retinopathy, arthritis and asthma, whilst insufficient angiogenesis is associated with 

atherosclerosis, strokes, diabetic neuropathy and pre-eclampsia (Carmeliet, 2003, Carmeliet 

and Jain, 2011b, Okonkwo and DiPietro, 2017, Balogh et al., 2019).  Although the exact 

mechanisms involved in angiogenesis have not been fully determined, it is likely that they 

will differ depending on the circumstances.  For instance, the micro-environment in a rapidly 

developing embryo, where the angiogenic activity is high, will differ from that of a quiescent 

adult vascular bed.  These will differ again from that of an aggressive metastatic tumour 

where loss of normal angiogenic control is considered to be a key feature.   
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1.3.2  Types of angiogenesis 

There are thought to be two distinct mechanisms by which of angiogenesis occurs, sprouting 

and intussusceptive angiogenesis.   

 

1.3.2.1  Sprouting angiogenesis 

Sprouting angiogenesis is a well described complex process involving the ordered array of 

multiple growth/angiogenic factors, cytokines, ECM components and alterations in gene 

expression (Carmeliet, 2003, Karamysheva, 2008, Velnar et al., 2009, Carmeliet and Jain, 

2011a, Guerra et al., 2018). The process is initiated following the release of angiogenic 

factors, often as a result of hypoxia, such as VEGF, FGFs and Angiopoietin-2 (Ang-2).  This 

leads to detachment of pericytes and the release of matrix metalloproteinases, leading to 

breakdown of the basement membrane and loosening of the endothelial cell attachments.  

Subsequent vasodilation and increased vascular permeability permits plasma proteins to enter 

the surrounding ECM.  Endothelial cells then migrate into the ECM as a result of integrin 

signalling and the release of further angiogenic factors, such as VEGF and FGFs, from the 

ECM (Figure 1.4(a)). The endothelial cells migrate towards the angiogenic stimulus under 

the guidance of a single lead endothelial cell, called the tip cell.  The adjacent endothelial 

cells, called stalk cells, proliferate to form solid sprouts which subsequently develop a lumen.  

The new vessel is formed when the endothelial cells attach to an adjacent vessel, which is 

aided by myeloid bridge cells, and is stabilised by the release of angiogenic factors such as 

PDGF-β, Ang-1 and TGF-β.  The vessel basement membrane is re-established by the release 

of various proteases inhibitors, such as tissue inhibitors of matrix metalloproteinases (TIMP) 

and plasminogen activator inhibitor.  Subsequently, vascular density is further increased by 

new vessels connecting with adjacent vessels to form three dimensional loops and arcades 

(anastomosis).  Thus, angiogenesis typically results in excessive vascular density, which 

leads to vascular pruning to remove under perfused vessels (Bluff et al., 2006).  The 

differentiation of the vessels into arteries and veins is genetically determined and requires 

the recruitment of vascular smooth muscle cells and pericytes.  It has been proposed that 

distinct subsets of angioblasts result in either the formation of arteries or veins (Dor et al., 

2003).  
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Figure 1.4 Comparison of the initial processes involved in (a) sprouting and (b) intussusceptive angiogenesis. 

The dotted line represents the breakdown of the basement membrane in sprouting angiogenesis (diagram from 

Mentzer and Konerding, 2014). 

 

     (a)            (b) 

 

 

1.3.2.2  Intussusceptive angiogenesis 

Intussusceptive or splitting/non-sprouting angiogenesis involves the splitting of vessels into 

two by the extension of the capillary wall and was first observed in postnatal rat lung 

development (Caduff et al., 1986).  This is a complex and still poorly understood process 

which appears to have several functions including the duplication of vessels, removal of 

redundant vessel and modification of the angle between bifurcated vessels (Mentzer and 

Konerding, 2014).  Essentially this form of angiogenesis involves the formation of an 

intraluminal bridge or pillar by the endothelial cells on opposite sides of a vessel protruding 

into the lumen, until contact is made (Figure 1.4(b)) (Burri et al., 2004, De Spiegelaere et al., 

2012, Mentzer and Konerding, 2014).  This is followed by reorganisation of the endothelial 

cell junctions and interstitial tissue formation within the intraluminal pillar.  A core is then 

formed between the two new vessels into which pericytes and myofibroblasts invade, with 

the latter cells producing the ECM, allowing the two vessels to bifurcate and continue to 

grow in size.  The key difference between the two types of angiogenesis is that 

intussusceptive angiogenesis involves a large increase in the number of capillaries, with 
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relatively little increase in the number of endothelial cells, and may be an efficient 

mechanism of expanding vascular networks following initial sprouting angiogenesis 

(Mentzer and Konerding, 2014).  Unlike sprouting angiogenesis, relatively little is known 

about the regulation of intussusceptive angiogenesis and the role of angiogenic factors, such 

as VEGF, although hypoxia has been shown to initiate it mice (Taylor et al., 2010).  This 

form of angiogenesis is thought to be important in embryonic development and its 

involvement in the growth of some human tumours, such as gliomas, may explain their 

resistance to anti-angiogenic therapy (Burri and Djonov, 2002, Nico et al., 2010, Saravanan 

et al., 2020). 

 

1.3.3  Angiogenesis in neoplasia 

Extensive research has been published into the role of aberrant angiogenesis in the 

development, growth and metastasis of neoplastic lesions.  It has been shown that for tumours 

to grow beyond 1-2mm, the maximum distance which sufficient nutrients and oxygen can 

diffuse, angiogenesis is required (Folkman, 1990).  Therefore, hypoxia is thought to be an 

important pathway for neoplastic growth through activation of a number of complex 

pathways including the hypoxia-inducible factors (HIF) leading to the production of VEGF 

(Chen et al., 2009).  Furthermore, angiogenesis is also fundamental for the ability of many 

tumours to metastasise and grow at secondary sites (Folkman, 1995).  Tumour angiogenic 

vessels tend to be more immature and disorganised in structure with more permeable and 

convoluted, often with disrupted blood flow (Carmeliet and Jain, 2011b).  Evidence suggests 

that the blood vessel luminal surfaces are composed of a mosaic of endothelial cells and 

tumour cells, which may account for the metastatic potential of some tumours (Chang et al., 

2000).  New vessel growth is thought to occur not only from pre-existing vessels, but also 

from the recruitment of circulating endothelial precursor cells (Lyden et al., 2001).  Many 

neoplastic lesions show dysfunctional cellular signalling, leading to a change in the 

angiogenic switch in favour of uncontrolled angiogenesis (Carmeliet and Jain, 2000).  Thus, 

various anti-angiogenic drugs designed to restrict tumour vascular growth are now available, 

such as Avastin (bevacizumab) which is a monoclonal antibody against VEGF (Vasudev and 

Reynolds, 2014).  However, the current effectiveness of anti-angiogenic therapy varies 

between types of tumours and further development is required. 
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1.4 Oral wound healing 

1.4.1 Introduction  

Many aspects of oral soft tissue wound healing are identical to cutaneous wound healing, 

although oral soft tissues display enhanced healing with minimal scarring, despite the high 

microbial load and wet environment (Sciubba et al., 1978, Schor et al., 1996, Szpaderska et 

al., 2003, Wong et al., 2009).  Hence, the oral soft tissues are described as being a privileged 

site for wound healing (Schor et al., 1996).  Several mechanisms have been proposed to 

account for this enhanced healing ability which fall into two broad categories: (i) factors 

intrinsic to the oral soft tissues and (ii) factors present in saliva.  Current evidence indicates 

that all of these mechanisms, discussed in further detail below, are likely to contribute to the 

enhanced oral mucosal healing, although the exact mechanisms are poorly understood. 

 

1.4.2  Intrinsic tissue factors 

Several studies have described the oral mucosa as having intrinsic characteristics in common 

with foetal tissue, which may explain its enhanced healing capacity compared with dermal 

tissue (Schor et al., 1996). These characteristics include rapid re-epithelisation, reduced 

inflammatory infiltration and angiogenic response, the presence of foetal-like fibroblasts and 

minimal scarring (Szpaderska et al., 2003, Szpaderska et al., 2005, Mak et al., 2009, 

Turabelidze et al., 2014, DiPietro and Schrementi, 2018).  Underpinning the various intrinsic 

mechanisms are active stem cell populations in the oral epithelial and connective tissues 

(Izumi et al., 2007, Zhang et al., 2012).   As previously discussed (Chapter 1.2), animal 

studies have shown that transplanted adult skin tissue maintains its original characteristics 

(i.e. heals with scaring) in a foetal recipient site, suggesting that a tissue’s healing 

characteristics are intrinsic to the tissue and not due to the environment (Longaker et al., 

1994).  Likewise, skin grafts placed on the oral mucosa can form keloid scars, suggesting 

that the enhanced oral mucosal healing is in some way related to the intrinsic nature of the 

tissue (Reilly et al., 1980).         
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1.4.2.1 Re-epithelisation  

Another unique feature of oral mucosal wound healing is rapid re-epithelisation by 

keratinocytes, which have significantly higher proliferation rates and migration compared to 

skin keratinocytes (Szpaderska et al., 2003, Schrementi et al., 2008, Turabelidze et al., 2014).  

For example, Schrementi et al. (2008) reported that 1mm excisional wounds in mice resulted 

in 100% re-epithelisation in the oral mucosa compared with less than 25% re-epithelisation 

in the dermal wounds over a 24 hour period.  There is also some evidence that oral mucosal 

keratinocytes may be less differentiated, compared with dermal keratinocytes, effectively 

allowing more rapid proliferation (Iglesias-Bartolome et al., 2018).   

 

1.4.2.2  Inflammatory reaction 

Several studies have indicated that oral mucosal healing is associated with lower levels of 

inflammatory infiltrate, which leads to lower levels of pro-inflammatory cytokines and 

growth/angiogenic factors (Szpaderska et al., 2003, Szpaderska et al., 2005, Mak et al., 2009, 

Chen et al., 2010, DiPietro, 2016).  Szpaderska et al. (2003) reported significantly less 

inflammatory cell infiltration (neutrophils, macrophages and T-lymphocytes), lower levels 

of the pro-inflammatory cytokine IL-6 and significantly more rapid wound closure in oral 

excisional wounds in mice compared to dermal wounds.  A similar study, also in mice, 

compared the healing of punch biopsies of the hard palate with similar wounds on the scalp 

(Nooh and Graves, 2003).  They found that if there was significant connective tissue loss, 

oral healing was delayed, compared to the equivalent sized dermal wounds and these oral 

wounds had a persistently and significantly higher inflammatory infiltration.  The group 

hypothesised that the delayed healing associated with large oral wounds was due to the 

significantly higher bacterial load leading to a persistent and elevated infiltratory response. 

 

In conjunction with a reduced inflammatory infiltrate in oral mucosal healing, several studies 

have reported significantly reduced levels of TGF-β1, a growth factor associated by 

myofibroblast differentiation and increased scar tissue formation (Lin et al., 1995, Shah et 

al., 1995, Szpaderska et al., 2003, Schrementi et al., 2008).  Furthermore, Schrementi et al. 

(2008) found a significant increase in the TGF-β3 to TGF-β1 ratio in the first 24 hours in 

mouse oral wounds, a finding consistent with a study in rats, where high ratios of TGF-β3 to 
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TGF-β1 were associated with reduced scarring in dermal tissue wounds (Shah et al., 1995).  

Schrementi et al. (2008) proposed that high TGF-β3 to TGF-β1 ratios partly accounted for 

the oral mucosa being a privileged site for healing.   

1.4.2.3  Angiogenic response   

A seemingly paradoxical finding is that oral wound healing is associated with reduced 

angiogenic activity compared to skin, probably as the result of the reduced inflammatory 

response (Szpaderska et al., 2003, Szpaderska et al., 2005).  VEGF levels were also found to 

be reduced in oral tissue wounds compared with skin (Szpaderska et al., 2005).  From these 

findings Szpaderska et al. (2005) hypothesised that wound healing in skin resulted in an 

excessive angiogenic response, beyond the physiological needs of the tissue.  The implication 

being that oral wound healing is associated with sufficient levels of angiogenesis to form 

enough viable vessels to meet the physiological requirements of the healing tissue (DiPietro, 

2016).  Furthermore, evidence from a skin wound healing study in mice demonstrated that 

partial interference of the angiogenic response, using an anti-VEGF antibody, resulted in a 

reduced vascular response and reduced scarring (Wilgus et al., 2008).  This suggests that the 

angiogenic response may also play a role in scar formation. 

 

 

1.4.2.4  Fibroblast heterogeneity 

 

Fibroblast heterogeneity has been shown both within sites and between different tissues in 

the body, including the oral mucosa and periodontal tissues, with fibroblast sub-populations 

showing different characteristics (Harper and Grove, 1979, Hassell and Stanek, 1983, Schor 

and Schor, 1987, Smith et al., 2019). Several studies have shown that oral mucosal and 

gingival fibroblasts display many of the characteristics of foetal fibroblasts, in terms of 

enhanced migration and the production of various growth factors and cytokines, such as MSF 

(Schor et al., 1988a, Grey et al., 1989, Schor et al., 1996).  For example, Irwin et al. (1994) 

studied the migratory characteristics of gingival fibroblasts using 3D collagen gel cultures 

and found that gingival fibroblasts harvested from the gingival papilla showed enhanced 

migratory phenotypes similar to that of foetal fibroblasts.  This enhanced migratory ability 

was associated with the production of MSF, a cytokine which had previously been shown to 

be produced by foetal fibroblasts and not by normal adult tissue fibroblasts (Schor et al., 
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1988a).  Fibroblasts harvested from the reticular levels of the gingival tissue however, 

showed more adult characteristics both in terms of their migratory characteristics and in their 

lack of MSF production.   

 

Interestingly, several tissue-culture studies have shown human oral fibroblasts cell lines have 

an enhanced ability to contract collagen gels, implying increased wound contraction 

(Stephens et al., 1996, Irwin et al., 1998, Shannon et al., 2006).  However, a similar tissue 

culture study reported oral mucosal fibroblasts had lower ability to contract compared with 

dermal fibroblasts (Lee and Eun, 1999).  Furthermore, Mak et al. (2009) reported lower 

numbers of myofibroblasts and significantly less wound contraction in oral mucosal wounds 

in pigs compared with dermal wounds. This dichotomy in findings is probably related to the 

difference in cellular behaviour associated with different oral fibroblast populations and the 

difficulty of reproducing the complex conditions associated with wound healing in the 

laboratory.  

 

1.5  Saliva and oral wound healing 

1.5.1 Introduction 

Saliva is a complex oral fluid known to contain approximately 2000 proteins, many of which 

have functions beneficial to wound healing such as various growth factors, cytokines, 

antibacterial agents and mucins (Dawes et al., 2015, Proctor, 2018).  Saliva has been known 

for centuries to promote healing and both the ancient Greeks and Egyptians used dog and 

snake saliva to enhance wound healing (Angeletti et al., 1992).  It is a common observation 

that animals lick their wounds and it has been proposed that this is a mechanism for delivering 

healing factors found in saliva to the wound (Hutson et al., 1979).  Evidence from a dermal 

wound healing study in calves found that wounds treated with saliva healed faster and had a 

shorten inflammatory phase compared with wounds treated with saline alone (Varshney et 

al., 1997).  Furthermore, a recent tissue culture study reported that sterilised human saliva 

enhanced migration of both dermal and oral mucosal keratinocytes and fibroblasts, leading 

to the suggestion that saliva could be used therapeutically to enhance healing (Rodrigues 

Neves et al., 2019).  However, wound debridement through wound licking may also account 

for some of the beneficial effects on wound healing. 
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Several studies by Bodner et al reported reduced cutaneous and oral wound healing capacity, 

including extraction site healing, following the removal of the major salivary glands 

(sialadenectomy) in rodents (Bodner, 1991, Bodner et al., 1991a, Bodner et al., 1991b, Dayan 

et al., 1992, Bodner et al., 1993).  More specifically, submandibular and sublingual saliva 

appeared to be important in the enhancement of cutaneous wound healing in these animal 

models (Bodner, 1991).  The reduction in oral wound healing in desalivated rodents appeared 

to be more pronounced in wounds with connective tissue damage (Bodner and Dayan, 1995).  

Re-epithelialisation was unaffected but the granulation tissue formation and wound 

contraction were significantly impaired (Niall et al., 1982, Bodner et al., 1992).  In fact, in 

two studies on palatal wound healing it was noted that there were more intense inflammatory 

reactions in the desalivated rats, this being more pronounced in larger wounds (Bodner et al., 

1992, Bodner et al., 1993).  The implication of this finding is that the delayed healing was 

probably due to the more intense inflammatory reaction induced by the resultant xerostomia.  

It is likely, however, that the resultant reduced healing may be due to other causes in addition 

to the reduced salivary growth/angiogenic factors reported in these studies.   

 

1.5.2  Angiogenic factors in saliva   

The concentrations of relatively few angiogenic factors have been examined in human saliva 

and currently those examined include EGF, FGF-2, Nerve Growth Factor (NGF), TGF-α, 

TGF-β, VEGF and Insulin-like Growth Factor I and II (Cohen, 1962, Costigan et al., 1988, 

Glantz et al., 1989, Amano et al., 1991, Humphreys-Beher et al., 1994, van Setten, 1995, 

Taichman et al., 1998).  Furthermore, there have been relatively few publications which have 

reported the relationship between the angiogenic factor content of saliva in relation to oral 

health and disease, in particular periodontal disease.  Taichman et al. (1998) postulated that 

oral angiogenic factors, such as VEGF in saliva, could account for the enhanced oral healing 

and could be important in the maintenance of the oral cavity and the upper gastro-intestinal 

tract.  Currently, there have been few publications which have reported angiogenic inhibitor 

content, such as endostatin, in human saliva and so the balance between angiogenic factors 

and inhibitors in saliva is poorly understood.  It is therefore relevant in this thesis to examine 

the possible role of angiogenic factors and inhibitors in human saliva in relation to wound 

healing and periodontal disease.    
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When studying angiogenic factors in saliva it is important to take account of several factors 

that may influence the findings.  For example, there is evidence that the salivary levels of 

some angiogenic factors, such as epidermal growth factor (EGF), are affected by circadian 

rhythm in a similar way to many hormones, such as cortisol (Ferguson et al., 1973, Dawes, 

1975, Ino et al., 1993).  Therefore, in the present study saliva collection was taken between 

9:30am and 11am in order to take this issue into account (Chapter 2.1.6).  Other possible 

factors which may affect the salivary angiogenic factor concentration include age, how the 

saliva is sampled (unstimulated or stimulated saliva), type of saliva (whole saliva or whether 

it is from specific salivary glands), smoking, medications, medical conditions, periodontal 

health and the time since the last meal (Humphrey and Williamson, 2001).   

 

Several  angiogenic factors, such as EGF and VEGF, have been shown to be produced by the 

acinar cells within the salivary glands (Taichman et al., 1998, Cossu et al., 2000, Lantini et 

al., 2001).  However, the origin of several salivary related angiogenic factors, such as 

angiopoietin-1 (Ang-1) and endostatin, have still to be determined and some may enter saliva 

from the blood in a similar fashion to insulin (Vallejo et al., 1984).  Many of these angiogenic 

factors have also been detected in gingival crevicular fluid (GCF), especially in periodontal 

disease, and so may contribute to the salivary levels of angiogenic factors.   

 

In the following sections, the structure and function of the main angiogenic factors and 

inhibitors is outlined and the current literature base is discussed in relation to each factor in 

saliva. 

 

 

1.5.3 Angiogenic factors in oral wound healing and saliva  

  

1.5.3.1 Angiogenin (ANG) 

 

Angiogenin (ANG), also referred to as ribonuclease 5, is a 14kDa, non-glycosylated 

angiogenic polypeptide with weak ribonuclease activity and is a member of the ribonuclease 

superfamily (Adams and Subramanian, 1999, Sheng and Xu, 2016).  On binding with its 

receptors, it is endocytosed, transported to the nucleus where it accumulates in the nucleolus, 

where ultimately it stimulates ribosomal ribonucleic acid (rRNA) transcription (Xu et al., 
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2002).  ANG is a potent angiogenic factor, shown to induce endothelial cell proliferation, 

migration and differentiation (Hu et al., 1994, Hu et al., 1997, Soncin, 1992), and is thought 

to act in conjunction with other angiogenic factors such as FGF-1, FGF-2, EGF, and VEGF 

(Kishimoto et al., 2005).  ANG angiogenic effects can be inhibited by the aminoglycoside 

antibiotic Neomycin, which blocks ANG nuclear translocation (Hu, 1998).   

 

To date there have been no studies which have reported actual ANG concentrations in saliva.  

A recent study by Roca et al. (2019) studied the effect of nutritional supplements on salivary 

immunity in non-elite marathon runners and reported a small but significant reduction in 

salivary ANG levels, relative to total salivary protein concentrations, 48 hours after a 

marathon.  However, salivary concentrations of ANG were not reported in the paper. 

 

1.5.3.2  Angiopoietin-1 (Ang-1)  

The Angiopoietin family consists of three human forms, named Angiopoietin-1, 2 and 4 

(Ang-1, Ang-2 and Ang-4), Ang-3 being found in mice (Davis et al., 1996, Maisonpierre et 

al., 1997, Valenzuela et al., 1999).  These factors all have two characteristic domains, a N-

terminal coiled-coiled domain and a C-terminal fibrinogen-like domain which binds to the 

receptor tyrosine kinase Tie2 (Davis et al., 1996).  Ang-1 has the highest affinity for the Tie2 

receptors and is thought to be responsible for the majority of the angiogenesis mediated by 

Tie2 activation (Suri et al., 1996), with Ang-2 acting as a competitive inhibitor for Ang-1 

(Maisonpierre et al., 1997, Gale et al., 2002).  There are at least three splice variants of Ang-

1, but only one has been found to activate Tie2, while the others may act as suppressors of 

Ang-1 activity (Huang et al., 2000).   

Ang-1 has been shown to be an angiogenic factor through promotion of endothelial cell 

migration, sprouting, lumen formation, stabilisation and in the recruitment of support cells 

for both the endothelial cells and peri-endothelial cells (Koblizek et al., 1998, Witzenbichler 

et al., 1998, Kwak et al., 1999, Papapetropoulos et al., 1999, Teichert-Kuliszewska et al., 

2001).  Thus, Ang-1 is thought to be important in angiogenesis and in the stabilisation and 

long-term maintenance of the adult microvascular network, but it requires the presence of 

other angiogenic factors, such as VEGF, to initiate angiogenesis (Wong et al., 1997, 

Yancopoulos et al., 2000, Brindle et al., 2006).  Due to many of the actions of Ang-1 
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involving the later stages of angiogenesis, and its involvement in vessel maintenance, some 

consider it to be an angiogenic inhibitor.  Evidence also suggests that Ang-1 has a role in 

lymphatic vessel formation, PMN adhesion and migration, blood vessel permeability and 

neuronal development (Thurston et al., 2000, Gale et al., 2002, Valable et al., 2003, Lemieux 

et al., 2005). 

Currently, there have been no publications which have reported Ang-1 concentrations in 

saliva, although two studies have examined Ang-1 levels in GCF following periodontal 

surgery (Rakmanee et al., 2010, Rakmanee et al., 2019).  Hence, salivary concentrations of 

Ang-1 have been studied in this thesis and has been discussed in more detail Chapter 3.3.   

 

1.5.3.3 Epidermal Growth Factor (EGF) 

Epidermal Growth Factor (EGF) is the principal member of the EGF family of growth 

factors, which includes another angiogenic factor, Transforming Growth Factor-alpha (TGF-

α), both of these factors bind to the tyrosine kinase Epidermal Growth Factor Receptor 

(EGFR) (Zeng and Harris, 2014).  EGF was initially found to be a potent mitogen for 

fibroblasts and stimulated the proliferation and differentiation of epithelial and epidermal 

cells (Carpenter and Cohen, 1976).  EGF is a 53 amino acid globular protein formed by 

proteolytic cleavage of a large precursor transmembrane protein, which contains at least 

seven EGF-like sequences (Lu et al., 2001).  EGF is stored in platelets and released during 

degranulation and has been detected in various human bodily fluids such as in serum, urine, 

gastric fluids, breast milk and saliva (Cohen and Carpenter, 1975, Gregory et al., 1979, 

Carpenter, 1980, MacNeil et al., 1988, Aybay et al., 2006).  EGF has been shown to induce 

epithelial development, promote angiogenesis and wound healing in vivo (Schreiber et al., 

1986, Schultz et al., 1991).   

 

EGF was originally isolated from male mouse submandibular glands (Cohen, 1962).  As a 

consequence of this early discovery it is the most widely studied salivary angiogenic factor 

with 862 studies reported on Medline (June 2020).  Early studies using desalivated rodent 

models suggested that salivary EGF is important both in cutaneous wound healing (animal 

wound licking behaviour) and oral wound healing, as well as playing a role in gastro-

intestinal maintenance (Hutson et al., 1979, Niall et al., 1982, Olsen et al., 1984, Konturek et 
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al., 1988, Noguchi et al., 1991).  These conclusions were based on desalivation impairing 

wound healing, which was restored by the topical application of EGF or the application of 

saliva containing EGF, but not by EGF-free saliva.  The removal of the major salivary glands 

in these studies impaired wound healing, but did not totally prevent it suggesting that the 

salivary growth/angiogenic factors are not totally responsible for wound healing.  In mice 

there is a gender difference in the levels of EGF, with male mice having over ten times the 

levels of EGF in their saliva compared with the female (Noguchi et al., 1991).  No such 

gender difference has been found in humans (Thesleff et al., 1988). 

 

Human EGF salivary secretion has been shown to be affected by diurnal variation in relation 

to meal times (McGurk et al., 1990), a factor taken into account in the thesis protocol, which 

was not apparent in either the serum or urinary EGF levels (Ino et al., 1993).  Interestingly, 

no correlation was found between the EGF levels in saliva, serum and urine.  The EGF 

concentration in human unstimulated whole saliva was about 1000pg ml-1, although 

significant differences were found in the EGF concentrations of saliva derived from different 

salivary glands, with the parotid gland saliva containing approximately 2500pg ml-1 (Thesleff 

et al., 1988, Ino et al., 1993, Oxford et al., 2000).  Whole saliva concentrations of EGF were 

found to be significantly less in young children compared with adults, although high levels 

of this factor were present in both groups (Ino et al., 1993).  Electron-microscope studies 

have detected EGF in both acinar and ductal cells, in human submandibular and parotid 

glands.  In both cases, clearly stained secretory granules were found in the acinar cells 

suggesting that EGF is produced in the glands and is subsequently released into the saliva by 

granular exocytosis (Cossu et al., 2000, Lantini et al., 2001).  

 

Several studies have compared salivary EGF in periodontal health and disease.  Moosavijazi 

et al. (2014) reported significantly higher concentrations of EGF in unstimulated whole saliva 

in periodontal healthy subjects compared with subjects with gingivitis and severe 

periodontitis.  However, this was a small study with only 37 subjects across the three study 

groups and the exclusion criteria did not rule out smokers.  In an earlier study by Hormia et 

al. (1993), significantly higher salivary EGF levels were initially found in subjects with 

Juvenile Periodontitis (probably equating to Stage 3/4 Grade C Periodontitis in the 2017 
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World Workshop classification).  However, following more detailed investigation of a few 

subjects, salivary EGF concentration was found to be increased in comparison to healthy 

controls, but not significantly so.  Significantly higher EGF levels were found in stimulated 

saliva from patients with Juvenile Periodontitis when the EGF levels were expressed against 

total salivary protein levels. With regards to wound healing following periodontal and oral 

surgery, salivary levels of EGF were found to be significantly raised within the first 48 hours 

post-surgery (Oxford et al., 1998, Oxford et al., 1999).  Interestingly, some studies have 

reported significantly reduced salivary EGF concentrations in smokers (Jones et al., 1992, 

Wang et al., 1992) and in patients with diabetes (Oxford et al., 2000). 

 

1.5.3.4  Fibroblast Growth Factors (FGF)  

Currently there are 23 members of this family of structurally related heparin-binding 

signalling proteins, named FGF1-23 (Itoh and Ornitz, 2004).  The name was derived from 

the mitogenic effect of pituitary extracts on mouse fibroblasts and the active factors were 

identified and named acidic FGF (FGF-1) and basic FGF (FGF-2).  The majority of these 

factors bind and activate a family of four high-affinity cell surface tyrosine kinase receptors 

(FGFR1-4) leading to a wide range of cellular events involved in embryonic and postnatal 

development, many of which involve angiogenesis (Johnson and Williams, 1993).  FGF-1 

and FGF-2 are the mostly widely studied members of the family and have been shown to be 

involved in several stages of angiogenesis, including endothelial cell proliferation, migration, 

protease production, integrin receptor expression and vessel maturation.  FGF-2 is thought 

to be a major angiogenic factor and plays an important role in wound healing by promoting 

fibroblast proliferation and granulation tissue formation (Pierce et al., 1992).  Evidence 

suggests FGF-2 and VEGF interact during angiogenesis.  Tillie et al. (2001) found that 

inhibition of VEGFR2 inhibited both VEGF and FGF-2 induced angiogenesis in vivo and in 

vitro.  These two factors were also found to have a synergistic effect on blood vessel density 

in xenografts of a human tumour cell line studied in a murine model.  However, these factors 

were shown to have differing effects on the blood vessel maturation and function, suggesting 

they have different roles in angiogenesis (Giavazzi et al., 2003).   
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FGF-1 has been detected in healthy and diseased human salivary gland tissue using 

immunohistochemistry (Myoken et al., 1996, Kusafuka et al., 2001), but has not been 

reported in saliva.  This may either be due to FGF-1 not being present in human saliva or that 

the levels are below the detectable range of the assays.   FGF-2 has been detected in salivary 

tissue and saliva (van Setten, 1995, Kongara et al., 2001).  A large study by Westermark et 

al. (2002) examined the FGF-2 levels in unstimulated whole saliva in 182 healthy non-

smokers and found that there were significantly higher concentrations of FGF-2 in young 

individuals compared to the middle-aged, who in turn had significantly higher levels than the 

elderly.  An earlier study by the same group found significantly higher levels of FGF-2 in 

middle-aged smokers, although the numbers used in this study was very small, only six 

smokers, so this finding should be viewed with caution (Ishizaki et al., 2000).  Neither of 

these studies found any gender or diurnal differences in the levels of salivary FGF-2.  Raised 

salivary FGF-2 has also been found in patients with oral lichen planus and in oral squamous 

cell carcinoma (OSCC) (Magnusson et al., 2004, Vucicevic Boras et al., 2005, Gorugantula 

et al., 2012).  Studies in animal models suggested that salivary FGF-2 can accelerate salivary 

gland and mucosal wound healing in desalivated rats and rabbits, although its effect on 

normal control animals was minimal (Kagami et al., 2000, Fujisawa et al., 2003).  Szabo et 

al.(1994) found that oral FGF-2 enhanced healing of experimentally induced duodenal ulcers 

in rats, which was associated with significantly increased vascularity of the ulcer beds.  It is 

possible that salivary FGF-2 may play a role in the maintenance of the entire upper gastro-

intestinal tract. 

 

1.5.3.5 Migration Stimulating Factor (MSF) 

Migration Stimulating Factor (MSF) is a 70kDa soluble protein encoded by the Fn1 gene on 

chromosome 2 (Grey et al., 1989, Schor et al., 1993, Schor and Schor, 2001, Schor et al., 

2003).  This protein is a truncated isoform of fibronectin (MSF; accession number AJ535086) 

corresponding to the amino-terminus of fibronectin with a unique 10 amino acid carboxyl-

terminus (Figure 1.5).   
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Figure 1.5  Structural homology between fibronectin and MSF (diagram from Schor and Schor, 2010). 

 

 

 

MSF has a range of biological activities including the induction of cell migration and 

hyaluronan synthesis, and is thought to be important in foetal development, wound healing 

and carcinogenesis (Schor et al., 1988a, Picardo et al., 1991, Schor and Schor, 2001, Schor 

et al., 2003, Houard et al., 2005, Perrier et al., 2012).   MSF has shown to be expressed in 

various foetal and tumour cells, in particular by fibroblasts, endothelial and epithelial cells, 

but is not normally expressed in healthy adult cells (Schor et al., 1988a, Schor et al., 2003, 

Schor and Schor, 2010).   One exception is in wound healing, where MSF is thought to play 

an important role through the induction of angiogenesis and its motogenic effect on various 

cell types, including fibroblasts, endothelial cells and pericytes (Ellis et al., 2010, Schor and 

Schor, 2010).  In vivo evidence for the possible role of MSF in physiological wound healing 

was shown by Picardo et al. (1992) who reported that MSF activity was detected in wound 

fluid in over 90% of cases undergoing surgery for non-malignant conditions.  However, MSF 

activity in serum was only detected in a small minority of cases pre-operatively, and in no 

cases post-operatively, implying MSF was produced locally at the wound site, rather than 

systemically.  More recently, Jones et al. (2007) demonstrated the presence of a MSF 

inhibitor (MSFI) in keratinocyte conditioned medium and identified this to be neutrophil 

gelatinase-associated lipocalin (NGAL), also known as lipocalin-2. 

 

Recombinant human MSF (rhMSF) has been shown to induce sprouting angiogenesis in 

embryonic chick yolk sac membrane assays and pre-treatment with rhMSF leads to profound 

new blood vessel formation within avascular collagen implants placed subcutaneously in rats 



63 
 

(Dr AM Schor: personal communication and discussed in Schor and Schor (2010)).  

Conversely, inhibition of MSF activity by use of an anti-MSF specific monoclonal antibody 

leads to the premature death of sprouting-phenotype endothelial cells, but leaves cobblestone 

resting cells intact, suggesting that MSF may act as a survival factor for sprouting endothelial 

cells (Schor et al., 2003).   

 

With regards to the periodontium, Irwin et al. (1994) demonstrated that sub-populations of 

oral gingival fibroblasts displayed more foetal-like phenotypes and were able to secrete high 

levels of MSF, which may account in some way for the enhanced wound healing 

characteristics of gingival tissue.  To date there has only been one publication which has 

examined MSF expression in oral disease.  In this immunohistochemistry study, Aljorani et 

al. (2011) examined MSF expression in benign (n=7) and malignant salivary tumours (n=27) 

in relation to adjacent histologically normal salivary tissue (n=16), which was used as a 

control.  MSF expression was found to significantly increase in a “stepwise fashion” from 

the normal, benign and malignant tumours (p=0.04-0.0001), with MSF expression being 

found in both epithelial and connective tissue cells (fibroblasts, endothelial and inflammatory 

cells) particularly in the malignant tumours. Unexpectedly, there was some MSF expression 

found in the control samples, however, as these samples were adjacent to the tumours (i.e. 

not true healthy control tissue) it could not be ruled out that a cancerisation/field change 

effect had occurred.   

 

Currently, no studies have examined MSF levels in serum, saliva or GCF in either periodontal 

health or in severe periodontitis.  Furthermore, it is not known whether smoking or diabetes 

significantly affects MSF levels, although MSF gene expression has been reported to be 

upregulated in a bronchioloalveolar carcinoma cell line following exposure to benzopyrene, 

a constituent of cigarette smoke (Yoshino et al., 2007). Therefore, MSF has been studied in 

this thesis and has been discussed in more detail Chapter 3.4.   

 

1.5.3.6  Nerve Growth Factor (NGF) 

Nerve Growth Factor (NGF), also called neurotrophin, is a 26kDa peptide derived from the 

proNGF precursor (Coelho et al., 2019).  NGF was originally isolated from mouse 
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submandibular glands (Cohen, 1960) and has mainly been associated with neuronal survival, 

growth and differentiation (Rocco et al., 2018).  It is only more recently that its angiogenic 

activity has been demonstrated, with one study finding that NGF induced dose-dependent 

angiogenesis in quail chorioallantoic membrane assays (Lazarovici et al., 2006).   

 

NGF importance in oral wound healing was suggested by the accelerated wound healing rate, 

through significantly reduced wound contraction times, when topical NGF was applied to 

wounds in sialoadenectomised mice (Li et al., 1980).  Although there have been a large 

number of studies which have examined NGF concentrations in human saliva, there has been 

few large studies.   Nam et al. (2007) measured salivary NGF in 127 healthy non-smoking 

individuals ranging from the ages of 20 to 81 years.  High mean concentrations (+SE) of 

NGF were recorded in unstimulated whole saliva (901.4+75.6pg ml-1), stimulated parotid 

saliva (885.9+79.9pg ml-1) and stimulated submandibular/sublingual saliva (1066.1+88.1pg 

ml-1).  Interestingly, NGF was found to be significantly higher in women and its 

concentration in stimulated submandibular/sublingual saliva reduced significantly with age.  

Unfortunately, this study did not measure the NGF concentration in stimulated whole saliva, 

although a different small study (10 control subjects) examined salivary NFG concentration 

in cases of gingival overgrowth and found a median concentration of NGF in stimulated 

whole saliva of 9644pg ml-1 (Ruhl et al., 2004).   

 

To date there have been no studies which have examined salivary levels of NGF in 

periodontal health and disease, or in smokers and non-smokers.  Likewise, there has only 

been one study which examined NGF concentrations in unstimulated whole saliva in humans 

with Type 2 diabetes and reported no statistical difference between diabetics and healthy 

controls (Tvarijonaviciute et al., 2017).  One criticism of this study is that they did not 

exclude smokers, which may have influenced the results, although they did exclude subjects 

with periodontal disease or recent periodontal treatment.  

 

Evidence now suggests that the early studies on mice do not equate to human saliva, where 

the pro-NGF precursors, which have angiogenic activity, are the main form of NGF in human 

saliva (Naesse et al., 2013).  In the review article by Schenck et al. (2017), they suggested 
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that this issue has led to an over-estimation of the active NGF levels in human saliva reported 

in studies which have used ELISAs.  A further complication, is the likelihood that 

endogenous factors in human saliva interfere with many NGF ELISA-kits, which have not 

been optimised for saliva studies (Engen et al., 2017). 

 

 

1.5.3.7 Platelet Derived Growth Factor (PDGF) 

PDGF has a dimeric structure made up of two structurally similar subunits, PDGF A and B 

chains, linked together by a disulphide bond.  Thus, PDGF exists in either homodimer 

isoforms, PDGF-AA or PDGF-BB, or in a heterodimer form, PDGF-AB.  PDGF is produced 

by a wide range of cells including endothelial cells, vascular smooth muscle cells, fibroblasts, 

macrophages/monocytes and is released from the α granules on platelet activation (Heldin 

and Westermark, 1999).  PDGF binds to two types of structurally related cell surface tyrosine 

kinase receptors termed α receptors and β receptors.  The α receptor has high affinity for both 

PDGF A and B chains while the β receptor only has high affinity for the B chains (Claesson-

Welsh et al., 1989).  PDGF is an important mitogen for endothelial cells, fibroblasts and 

vascular smooth muscle cells as well as being an angiogenic factor and so is an important 

factor in wound healing (Sato et al., 1993, Battegay et al., 1994).   

 

Several studies have detected PDGF during the early stages of human oral wound healing, 

following which the PDGF levels reduce (Green et al., 1997, Morelli et al., 2011, Pirebas et 

al., 2018).  A few studies have examined PDGF concentration in human saliva in relation to 

periodontal therapy which suggested salivary PDGF is not significantly different between 

periodontal health and periodontitis.  For example, Lee et al. (2018) reported PDGF 

concentrations in unstimulated whole saliva to be 2.7pg ml-1 (IQR 0.8-7.0pg ml-1) in 

periodontally healthy controls compared with 3.8pg ml-1 (IQR 0.8-6.2pg ml-1) in patients 

with severe periodontitis.  Similar findings were reported in patients with rapidly progressive 

periodontitis compared with periodontally healthy controls (probably equating to Stage 3/4 

Grade C Periodontitis in the 2017 World Workshop classification) (Pietruska et al., 2000).  

Kaval et al. (2014), however, in a small study (n=15 per group) reported reduced 

concentrations of PDGF in unstimulated whole saliva in smokers (3.87+5.36pg ml-1) 

compared with non-smokers (7.96+17.33pg ml-1), although the result was not significant.  
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1.5.3.8 Transforming Growth Factor-α (TGF-α) 

Transforming Growth Factor-α has close structural homology to EGF and shares the same 

receptor (EGFR or erbB1).  TGF-α is synthesised as a 160 amino acid transmembrane 

precursor molecule, which is cleaved by TNF-α converting enzyme (TACE) (Peschon et al., 

1998) to produce the active 50 amino acid TGF-α molecule (Schreiber et al., 1986).  TGF-α 

contains an EGF-like motif which has a complex 3D structure which is important for its high 

affinity receptor binding. TGF-α has been detected, generally at low concentrations, in a wide 

variety of normal adult and foetal tissues, as well as in some tumours (Singh and Coffey, 

2014).  Evidence suggests that it is an important factor in epithelial cell growth, wound 

healing, angiogenesis and possibly in neuronal development (Junier, 2000, Singh and Coffey, 

2014).   

 

Transforming growth factor-α has been detected in significant concentrations in both 

unstimulated and stimulated whole human saliva, and the concentration in unstimulated 

saliva was found to significantly reduce with age (Humphreys-Beher et al., 1994).  This study 

also provided evidence that TGF-α is produced locally within the parotid and submandibular 

glands in rats and mice.  Immunohistochemical techniques localised TGF-α to the granular 

ductal cells and RT-PCR showed the presence of TGF-α mRNA.  A similar study in human 

major and minor salivary glands also found significant TGF-α expression in ductal cells and 

in intra-ductal secretions strongly suggesting local production and secretion into the saliva 

(Ogbureke et al., 1995).  To date there have been no studies which have examined TGF-α 

concentration in human saliva in relation to periodontal health and disease. 

 

1.5.3.9 Transforming Growth Factor-β (TGF-β) 

Transforming Growth Factor-β is a ubiquitous multifunctional cytokine known to be 

important in the regulation of cellular proliferation, differentiation, migration and in 

angiogenesis (Pepper, 1997).  There are three principal isoforms of TGF-β expressed in 

mammals (TGF-β1-3) with TGF-β1 and TGFβ-3 being the most abundant isoforms in adults 

and in foetal tissue respectively (Millan et al., 1991).  TGF-β is secreted into the ECM in a 

latent form, which is thought to be activated by enzymatic cleavage.  TGF-β binds to and 

activates three high affinity specific cell surface receptors.  Type I TGF-β receptor (TβR1) 
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or Activin receptor-like kinase (ALK 1 to 7) and Type II TGF-β receptor (TβRII 1-5) are 

both serine/threonine kinase receptors.  Type III TGF-β receptor (TβRIII) is a transmembrane 

receptor called betaglycan, although in endothelial cells endoglin (CD105) can act as an 

accessory receptor in the presence of a Type II TGF-β receptor (Bertolino et al., 2005).     

TGF-β is an important stimulant for fibroblast proliferation and ECM production and is 

known to play an important role in wound healing.  The levels of TGF-β1 are thought to be 

an important difference between scar free foetal wound healing, where its levels are low, and 

scars associated with adult skin wound healing, where its levels are high.  Lin et al. (1995) 

found that the addition of exogenous TGF-β1 to foetal wounds resulted in scar formation.  

Likewise, Shah et al. (1995) found that the addition of TGF-β1 neutralising antibodies 

reduced adult skin scar formation in mice.  

 

In angiogenesis TGF-β has been shown to be important in the regulation of endothelial cell 

proliferation, migration, survival and differentiation as well as in the behaviour of the 

vascular smooth muscle cells.  Although inhibition of TGF-β with a neutralising antibody 

has been shown to strongly inhibit angiogenesis, the mechanisms underlying this are 

unknown (Tuxhorn et al., 2002).  Several in vitro studies have suggested that TGF-β appears 

to have bifunctional effects both on the behaviour of endothelial cells and on fibroblasts 

depending on the context, such as the origin of the cells, the tissue culture conditions and on 

the matrix used (Pepper et al., 1993, Pepper, 1997, Ellis and Schor, 1998).  TGF-β is known 

to be important in the regulation of vascular homeostasis and it has been proposed that the 

balance between two distinct TGF-β type 1 receptors, endothelial-restricted ALK-1 and the 

widely expressed ALK-5 receptors, may induce opposite effects on endothelial cell 

behaviour and angiogenesis seen in vitro (Bertolino et al., 2005).  Overall, the in vivo 

evidence strongly suggests that TGF-β is a potent angiogenic factor because mutation of 

endoglin and ALK-1 leads to the vascular disorder, hereditary haemorrhagic telangiectasia 

(Fernandez et al., 2006).  Furthermore, over-expression of endoglin is associated with 

increased angiogenesis in some forms of human neoplasia (Burrows et al., 1995).   

 

Immunohistochemistry studies have detected all three TGF-β isoforms in normal human 

salivary gland tissue (Brennan and Fox, 2000, Kusafuka et al., 2001), although one study 
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failed to detect the TGF-β1 isoform (Kusafuka et al., 2001).  Evidence suggests TGF-β is 

produced within salivary tissue and is subsequently secreted into the saliva (Amano et al., 

1991, Brennan and Fox, 2000, Kusafuka et al., 2001).  Two studies reported significantly 

different TGF-β concentrations in the healthy control groups (unstimulated saliva). One study 

found a mean (+SD) TGF-β1 concentration of 24.96+1.67pg ml-1 in 22 women (mean age 57 

years) (Yousefzadeh et al., 2006), while the other found a mean (+SD) TGF-β1 concentration 

of 2.36+0.52ng ml-1 in 20 age and sex matched subjects (mean age 41 years) (Rezaie et al., 

2006).  This difference may be age-related although no studies have examined the effect of 

age on TGF-β1 concentration in unstimulated whole saliva.  One study has examined the 

effect of age on TGF-β1 concentration in stimulated saliva and found that the concentration 

increased with age, this being associated with a reduction in stimulated saliva flow with 

increasing age (Streckfus et al., 2002).  Currently, there have been few studies which have 

examined TGF-β concentrations in human saliva in periodontal health and disease, however, 

Khalaf et al. (2014) reported significantly raised TGF-β concentrations in serum, GCF and 

in unstimulated whole saliva in subjects with periodontitis compared with healthy controls. 

 

1.5.3.10 Vascular Endothelial Growth Factor (VEGF) 

VEGF is a family of growth factors, VEGF-A to VEGF-D inclusive and placenta growth 

factor (PIGF), each having the characteristic VEGF homology domain (VHD) which 

contains receptor binding sites and a conserved cysteine-knot motif (McDonald and 

Hendrickson, 1993, Roy et al., 2006).  These factors bind, to a greater or lesser degree, to 

three structurally similar cell surface tyrosine kinase receptors called VEGFR-1 (Flt-1), 

VEGFR-2 (KDR/Flk-1) and VEGFR-3 (Flt-4). Furthermore, neuropilin receptors (NRP-1 

and NRP-2) can also act as co-receptors to the VEGFRs (Guerra et al., 2018).  The VEGFRs 

consist of an extracellular portion made up of seven immunoglobulin-like domains, a 

transmembrane region and an intracellular portion containing a split tyrosine-kinase domain.  

VEGF binding to these receptors causes dimerisation of the receptor and activation by 

transphosphorylation leading to stimulation of a cellular response (Ferrara et al., 2003). 

VEGF-C and D have been shown to be important in the regulation of lymphatic angiogenesis 

by binding to VEGFR-3 (Enholm et al., 2001).  The most important member of the VEGF 

family in terms of angiogenesis is VEGF-A, or more commonly known as VEGF. 
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VEGF is a potent key initiating factor in vasculogenesis and angiogenesis as well as causing 

increased vascular permeability through the induction of post capillary endothelial cell 

fenestration, hence it is also known as Vascular Permeability Factor (VPF) (Dvorak et al., 

1995, Roberts and Palade, 1995, Gale and Yancopoulos, 1999).  VEGF primarily affects the 

proliferation and migration of endothelial cells but has also been shown to have similar 

effects on monocytes/macrophages and on vascular smooth muscle (Clauss et al., 1990, 

Gerber et al., 2002, Bhardwaj et al., 2005).  The VEGF gene has been located to 6p21.3 and 

alternative mRNA splicing results in six isoforms, named by the number of amino acids they 

contain (VEGF121/145/165/183/189/206) (Vincenti et al., 1996).  The size of the isoforms affects 

their biological activities with the smallest isoform VEGF121 being freely soluble and the 

larger isoforms VEGF189 and VEGF206 being completely bound to the ECM and cell surfaces 

(Houck et al., 1992).  The latter two isoforms of VEGF become biologically active once they 

have been released from the ECM by the action of heparinase or plasmin.  Thus, it has been 

proposed that the ECM acts as a reservoir of growth factors which are only activated during 

its degradation such as in wound healing and angiogenesis (Park et al., 1993).  VEGF165 is 

the dominant isoform and occurs in ECM as bound and soluble forms.   

 

VEGF exerts its biological effects through binding to the VEGFR-1 and VEGFR-2 receptors.  

VEGFR-2 binding has been shown to cause the majority of VEGF’s cellular responses, while 

the exact action of binding to VEGFR-1 is still largely unknown (Carmeliet and Jain, 2011a).  

VEGFR-1 may modulate the VEGFR-2 signal expression or act as a decoy receptor reducing 

the amount of VEGF available to bind to VEGFR-2 (Apte et al., 2019).  Although VEGF 

mRNA transcription is induced by various growth factors and cytokines, such as PDGF, 

EGF, TNF-α, TGF-β and IL-1, tissue hypoxia is thought to be a major initial stimulus for 

angiogenesis.  Hypoxia induces the production of HIF which upregulates VEGF gene 

transcription (Elson et al., 2000).   

 

The importance of VEGF in wound healing has been shown by various tissue culture, 

immunohistochemistry, in-situ hybridisation and polymerase chain reaction (PCR) studies 

which have all shown high levels of VEGF expression in endothelial cells, keratinocytes and 

macrophages at various stages in wound healing (Brown et al., 1992, Frank et al., 1995, 
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Nissen et al., 1998, Lauer et al., 2000).  In the porcine wound model, the introduction of 

VEGF neutralising antibodies caused significant impairment of wound angiogenesis and 

reduced granulation tissue formation (Howdieshell et al., 2001).  Furthermore, disruption of 

either the VEGF receptors or the VEGF gene itself resulted in death of murine embryos at 

about nine days suggesting this factor is also crucial in embryonic development (Fong et al., 

1995, Shalaby et al., 1995, Carmeliet et al., 1996, Ferrara et al., 1996). 

 

VEGF has been detected in unstimulated and stimulated whole saliva in the majority of 

human subjects tested, although there appears to be a large range in the mean levels found.  

Pammer et al. (1998) found the mean unstimulated saliva VEGF concentration in 24 subjects 

to be 1400pg ml-1 (SD+770pg ml-1) compared to Booth et al. (1998) who found the mean to 

be around 2500pg ml-1 (the actual mean and standard deviation was not available in the paper) 

in 12 subjects.  In both papers it was unclear if any of the healthy subjects were either smokers 

or previous smokers, and there was no indication of the time of day the saliva was collected 

in the Booth et al. (1998) paper, both of which could influence the findings.  The Brozovic 

et al. (2002) study may give a more reliable mean unstimulated saliva VEGF concentration, 

1652pg ml-1(SD+567pg ml-1), as they clearly stated that their control group (n=27) of healthy 

individuals were systemically and orally healthy, non-smokers and diurnal variation was 

taken into account.  Taichman et al. (1998) is the only study to examine VEGF concentrations 

in stimulated whole saliva and from the individual major salivary glands.  Mean VEGF 

concentrations were 693pg ml-1 (SD+543pg ml-1) for stimulated whole saliva, 424pg ml-1 

(+470pg ml-1) for parotid saliva and 131pg ml-1 (+100pg ml-1) for submandibular-sublingual 

saliva.  Apart from the submandibular-sublingual saliva, the saliva VEGF concentrations 

were significantly higher than that found in the subject’s serum (168+58pg ml-1).  Once again, 

certain confounding factors were not taken into account in this study regarding smoking, time 

of day of saliva collection, small number of subjects relative to the age range and the possible 

effects of various medical conditions and their associated medication.  To date there is no 

evidence that salivary VEGF concentration is significantly affected by age.  This has been 

supported by an immunohistochemistry study which showed no statistical difference in 

VEGF expression in minor salivary glands with age (de Oliveira et al., 2002).  Some of the 

deficiencies in the above studies will be addressed in this thesis (Chapter 3.5).   
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Evidence suggests that VEGF is produced by the parotid, submandibular and minor salivary 

glands as VEGF and VEGF mRNA have been localised in serous acinar cells (Pammer et al., 

1998, Taichman et al., 1998).  Taichman et al. (1998) speculated that as there was little 

evidence of angiogenesis occurring within healthy salivary glands, the production of VEGF 

may play a role in the maintenance of the salivary gland tissue itself.  However, VEGF was 

also expressed in the ductal cells and in the infiltrating inflammatory cells in chronically 

inflamed salivary tissue, which possibly accounts for the increased salivary tissue vascularity 

found in some chronic salivary gland conditions such as sialadentitis (Pammer et al., 1998).   

 

 

1.5.4 Angiogenic inhibitors in oral wound healing and saliva  

 

1.5.4.1 Angiostatin 

Angiostatin is an endogenous angiogenic inhibitor derived by the proteolytic cleavage, 

probably by MMP-2/3/7/9 and 12, of the amino-terminal of plasminogen which contains the 

first four Kringle domains (Cao et al., 1996, Cornelius et al., 1998).  The resultant 38kDa 

fragments have been shown to have anti-angiogenic properties by the inhibition of 

endothelial cell migration, tube formation and proliferation (O'Reilly et al., 1994, Claesson-

Welsh et al., 1998).  Kringle 1-3 fragment appears to be mainly responsible for the inhibition 

of endothelial cell proliferation, while fragments containing Kringle 4 inhibit endothelial cell 

migration (Ji et al., 1998).  The exact mechanism of angiostatin’s anti-angiogenic action is 

poorly understood, but several mechanisms have been proposed.  Angiostatin is known to 

bind to both mitochondrial and endothelial cell surface ATP synthase, the latter causing 

inhibition of the proton pump, which leads to a reduction in intracellular pH and apoptosis 

(Moser et al., 1999).  Another proposed mechanism is that angiostatin, like plasmin, binds to 

αvβ3 integrin due to it containing an RGD sequence, which leads to inhibition of plasmin-

induced endothelial cell migration (Tarui et al., 2001).  Finally, angiostatin binds to cells 

which contain angiomotin, which enables angiostatin to be internalised into the cell.  This 

leads to induction of Focal Adhesion Kinase (FAK), which is involved in cell motility, 

adhesion-dependent cell survival and proton transport.  This is thought to inhibit endothelial 

cell migration and induce apoptosis (Plopper et al., 1995).  To date there have been no 
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publications which have reported angiostatin concentrations in human saliva or GCF levels 

in periodontal health and disease.   

 

1.5.4.2 Endostatin 

Endostatin is a matrix-derived 20kDa carboxy-terminal fragment of Collagen XVIII C 

terminal domain released by proteolytic cleavage and was initially found to inhibit growth of 

primary tumours and metastasis in several types of tumour in mice (Boehm et al., 1997, 

O'Reilly et al., 1997).  Endostatin has been shown to inhibit endothelial cell proliferation, 

migration and survival along with promoting new vessel stabilisation leading to inhibition of 

angiogenesis (O'Reilly et al., 1997, Yamaguchi et al., 1999, Dixelius et al., 2000, Ergun et 

al., 2001, Skovseth et al., 2005, Zhuo et al., 2011).  Several in vitro studies have shown that 

endostatin interferes with the action of several angiogenic factors, such as HIFα-1, which 

may account for its anti-angiogenic properties (Abdollahi et al., 2004).  Hanai et al. (2002) 

reported that endostatin inhibited the Wnt signalling pathway leading to suppressed VEGF 

and FGF-2 induced endothelial cell migration.  Other studies have suggested that endostatin 

interferes with FGF-2 signal transduction and cell-matrix adhesion, notably by the interaction 

with integrin αvβ1 on the cell surface of endothelial cells, leading to reduced endothelial cell 

motility (Dixelius et al., 2002, Wickstrom et al., 2002).  Although caution is needed with the 

interpretation of these studies due to the form of endostatin used, as with many factors, 

endostatin’s behaviour appears to vary depending on whether it is in the soluble or 

immobilised forms.  Rehn et al. (2001) suggested that only soluble endostatin inhibits 

endothelial cell migration again by interacting with integrins.  Another possible mechanism 

is by direct interaction of endostatin with VEGF-R2 receptor kinases leading to reduced 

VEGF-mediated signalling (Kim et al., 2002, Schmidt et al., 2005).  Endostatin is also 

thought to induce apoptosis in endothelial cells by down-regulating a variety of genes in 

growing endothelial cells, including genes for the anti-apoptotic proteins Bcl-2 and Bcl-XL 

(Dhanabal et al., 1999).  Endostatin may inhibit endothelial migration and tumour invasion 

by inhibiting the activation and activity of MMP-2, 9 and 13 (Kim et al., 2000, Nyberg et al., 

2003). 
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Currently, there have been no publications which have reported the endostatin concentrations 

in human saliva or GCF either in oral health or disease.  Furthermore, endostatin expression 

has not been reported in human gingival or periodontal tissues, either in periodontal health 

or periodontal disease.  As far as can be ascertained, there have been no publications which 

have examined the balance between endostatin and pro-angiogenic factors, such as Ang-1, 

MSF or VEGF in oral health or in periodontal disease.  This will be addressed in Chapter 

3.6.        

 

1.5.4.3 Thrombospondin (TSP) 

The thrombospondin family consists of five members, numbered TSP-1 to 5 respectively, 

and contains two subgroups.  Only TSP-1 and TSP-2, which structurally consist of three 

identical subunits (homotrimers), have been shown to have anti-angiogenic effects 

(Armstrong and Bornstein, 2003).  TSP-1 has been shown to have multiple biological 

functions including anti-angiogenic effects, induction of apoptosis, activation of TGF-β, 

immune regulation effects and protease activation (Nyberg et al., 2005).  TSP-1 has multiple 

receptors including CD36, CD47 and integrins.  TSP-1 is thought to inhibit angiogenesis 

through the interaction with the scavenger receptor CD36 expressed on endothelial cell 

surfaces, which leads to inhibition of endothelial cell proliferation and migration, and by 

directly suppressing FGF-2 mediated angiogenesis (Dawson et al., 1997, Armstrong and 

Bornstein, 2003).  Furthermore, the binding of TSP-1 and its fragments to CD36 is thought 

to lead to the activation of Fas and caspases leading to endothelial cell apoptosis (Jimenez et 

al., 2000).  Like TSP-1, TSP-2 anti-angiogenic activity appears to be mediated through the 

activation of CD36, but unlike TSP-1, it lacks the ability to activate TGF-β (Simantov et al., 

2005).  Noh et al. (2003) also showed TSP-2 inhibited VEGF induced endothelial cell 

migration, tube formation and increased endothelial cell apoptosis in vivo. 

 

In a small study by Crombie et al. (1998), the mean TSP-1 concentration in whole 

unstimulated saliva was found to be 4.1µg ml-1 (range 1.1-12.8µg ml-1).  Likewise, TSP-2 

concentrations have been reported in unstimulated saliva in a larger study, where it was found 

to be significantly raised in OSCC (n=49, mean 12.90ng ml-1, (SD)+32.81ng ml-1) compared 

with healthy controls (n=47, mean 0.68ng ml-1, (SD)+0.73ng ml-1) (Hsu et al., 2014).  
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Currently, there have not been any studies which have examined either TSP-1 or TSP-2 in 

oral fluids (saliva or GCF) in periodontal health or disease.  Likewise, no studies have 

examined the effect of smoking or diabetes on TSP-1 or TSP-2 levels in oral fluids.  

 

1.6 Periodontal disease 

1.6.1 Introduction 

Periodontal disease is a group of multifactorial inflammatory diseases affecting the 

supporting structures of the dentition involving the complex interaction between bacterial 

plaque biofilms, the host inflammatory/immune response, genetic/epigenetic factors and 

various modifying risk factors (Offenbacher et al., 2009, Meyle and Chapple, 2015).  The 

two most prevalent periodontal diseases are gingivitis, which causes no permanent damage 

to the periodontal support, and periodontitis, which results in bone loss and loss of attachment 

(LOA) (clinical attachment loss).  At the time of planning this thesis, the 1999 International 

Workshop for the Classification of Periodontal Diseases and Conditions was the standard 

classification system used in periodontal research (Armitage, 1999).  Hence, the clinical 

study selection criteria used in this thesis are based on the 1999 Periodontal Classification 

(Chapter 2.1.2 and 2.1.3).  Subsequently, at the time of writing this thesis the World 

Workshop on the Classification of Periodontal and Peri-implant Diseases and Conditions 

(2017) had been published (Table 1.3) (Caton et al., 2018), therefore it has been necessary to 

refer to both classifications in this thesis.  The 2017 World Workshop Periodontal 

Classification was developed following significant advances in periodontal research into the 

relationship between plaque biofilms and the host response during the transition from 

periodontal health (symbiosis) to gingivitis and periodontitis (dysbiosis) (Meyle and 

Chapple, 2015, Caton et al., 2018, Rosier et al., 2018).  
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Table 1.3  World Workshop on the Classification of Periodontal and Peri-implant Diseases and Conditions 

(2017) had been published (Caton et al., 2018). 

i) Periodontal health, gingival diseases and conditions (Chapple et al., 2018):   

 

 1. Periodontal health and gingival health (Lang and Bartold, 2018). 

 

2. Gingivitis - dental biofilm-induced (Murakami et al., 2018, Trombelli et al., 2018). 

 

3. Gingival diseases – non-dental biofilm-induced. 

 

ii) Periodontitis (Papapanou et al., 2018a):  

 

 1. Necrotising periodontal diseases. 

 

2. Periodontitis as a manifestation of systemic diseases. 

 

3. Periodontitis (Tonetti et al., 2018). 

 

iii) Other conditions affecting the periodontium* (Jepsen et al., 2018). 

 

iv) Peri-implant diseases and conditions* (Berglundh et al., 2018). 

 

* These categories are sub-divided but are not outlined as they are not relevant to this thesis. 

 

One of the key changes in the 2017 Periodontal diseases classification was the definition of 

clinical periodontal health, which had not previously been formally defined, as being cases 

with no LOA, pockets depths 3mm or less (<4mm, if post treatment) with less than 10% sites 

with bleeding on probing (BOP) (Chapple et al., 2018).  This differs slightly from the 

definition for periodontal health used in this thesis study protocol (Palmer and Floyd, 1995) 

(Chapter 2.1.2), which used BOP of 15% or less.  This means that a small number of subjects 

in the periodontally healthy (sub-group A) categories in this thesis would now be defined 

according to the 2017 Periodontal classification as having localised gingivitis (i.e. subjects 

with BOP scores from 10% to 15%), although it is unlikely that this issue would have had a 

significant impact on the findings of the present study. 

 

1.6.1.1 Gingivitis 

Clinical features of gingivitis include the classical signs of inflammation (redness and 

oedema but generally no pain), loss of mucosal stippling, increased flow of gingival 

crevicular fluid (GCF), BOP and increased pocket depths but no LOA or bone loss (Loe et 
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al., 1965, Loe and Holm-Pedersen, 1965, Muhlemann and Son, 1971, Mariotti, 1999, 

Trombelli et al., 2018).  Evidence from the classic experimental gingivitis studies 

demonstrated that gingivitis is a plaque-induced inflammatory disease (Loe et al., 1965), 

which does not inevitably progress to periodontitis in every individual or at every site in a 

susceptible individual (Lang et al., 1973, Baelum et al., 1988). Epidemiological studies have 

shown that gingivitis has a high prevalence globally across all age groups, although there are 

large variations in the prevalence data due to the inconsistencies in the epidemiological 

criteria used (Hugoson and Jordan, 1982, Stamm, 1986, Brown et al., 1989, White et al., 

2012, Trombelli et al., 2018).  Furthermore, like periodontitis, the prevalence of gingivitis is 

increased by a number of risk/modifying factors such as poor restorative margins, which 

promote plaque accumulation, and hormonal changes associated with puberty, pregnancy 

and the early forms of the oral contraceptive pill (progesterone and oestrogen) (Sutcliffe, 

1972, Mombelli et al., 1989, Nakagawa et al., 1994, Mariotti and Mawhinney, 2013, 

Niederman, 2013).     

 

 

1.6.1.2 Periodontitis 

Periodontitis shares several of the clinical features of gingivitis but also causes varying 

degrees of permanent damage to the periodontal support (bone loss and LOA) resulting in 

gingival recession, increased tooth mobility, furcation involvement, migration (drifting) and 

in severe cases, tooth loss (Papapanou et al., 2018a, Tonetti et al., 2018).  The resultant 

damage caused by periodontitis can lead to significant aesthetic and functional issues, leading 

to impaired quality of life and expensive dental care (Ferreira et al., 2017).   

One of the most significant changes in 2017 Periodontal Classifications is the incorporation 

of aggressive periodontitis (AgP) (1999 Classification) (Armitage, 1999) into the 

periodontitis category (Caton et al., 2018).  Although, the clinical features of localised AgP 

are probably the best defined disease characteristics in periodontology, there is no clear 

diagnostic criteria to justify retaining AgP as a separate disease entity (Papapanou et al., 

2018a, Tonetti et al., 2018).  Therefore, periodontitis is considered to cover a wide spectrum 

of patients whose susceptibility will vary greatly from highly susceptible patients, who 

develop rapidly destructive periodontitis at a young age (formerly classified as AgP), to those 
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who develop mild periodontitis by old age.  This change to the classification does not impact 

upon the selection criteria for this thesis, as the subjects with very high susceptibility to 

periodontitis, which equated to AgP or now Stage 3/4 Grade C in the 2017 classification, 

were excluded from the study (Chapter 2.1.3).    

Data from epidemiological studies show the high prevalence of periodontitis with 

approximately 50% of adults over 30 years old in the United States having periodontitis and 

approximately 10-15% globally affected by severe periodontitis (Eke et al., 2012, Kassebaum 

et al., 2014).  Furthermore, the key longitudinal epidemiological study by Loe et al. (1986) 

on Sri Lankan tea workers showed approximately 10% were at risk of rapid disease 

progression, 80% from moderate disease progression and 10% were resistant to periodontitis, 

which did not progress beyond gingivitis.  This study also showed that in this cohort, who 

had limited access to dental care, plaque and calculus alone could not account for individual 

susceptibility for periodontitis and other risk factors, such as genetics, must also be involved.   

As with the gingivitis prevalence studies, there are large variations in the prevalence data 

reported for periodontitis due to the variation in the disease criteria used.   

 

Studies have shown that gingivitis does not inevitably progress to periodontitis in all 

individuals or affect all sites equally in susceptible subjects, suggesting that innate 

susceptibility varies greatly between individuals (Baelum et al., 1986, Loe et al., 1986).  

Currently, there are no reliable means of predicting which sites, if any, will progress in any 

individual (Haffajee et al., 1983, Lang et al., 1986, Claffey et al., 1990, Kaldahl et al., 1990, 

Lang et al., 1990, Grbic et al., 1991, Haffajee et al., 1991).  Clinically BOP from the base of 

the pocket is commonly used to assess disease activity, but this has been shown to be a poor 

indicator of future disease progression.  Lang et al.(1986) showed that sites with persistent 

BOP on four consecutive occasions had a 30% risk of progression, although no attempt was 

made to account for the masking effect of smoking on BOP.  However, a similar study found 

that 98% of sites with persistent lack of BOP showed evidence of long-term periodontal 

stability making lack of BOP a more reliable indicator (Lang et al., 1990, Lang et al., 2009).  

Although the possession of risk factors, such as smoking, have been shown to increase the 

likelihood of periodontal disease progression, the best predictor for future disease 

progression is the previous disease experience (Machtei et al., 1997, Machtei et al., 1999). 
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Evidence from early epidemiological studies, which examined population levels of LOA in 

relation to age, suggested that the progression of periodontitis was an inevitable continuous 

process (linear model) unless treated (Loe et al., 1978).  This theory did take into account 

that some subjects were more susceptible and had more rapid disease progression.  Later 

longitudinal studies, which examined the behaviour of individual untreated periodontal sites, 

suggested that periodontitis is a dynamic condition involving progression, remission and 

periods of inactivity (Goodson et al., 1982).  This was termed the Random Burst Theory by 

Socransky et al. (1984) where episodic bursts of periodontal destruction occurred at random 

sites throughout the mouth, followed by long periods of quiescence, while other sites 

remained stable (Socransky et al., 1984).  An alternative model, the Asynchronous Multiple 

Burst Model, proposed clustered bursts of periodontal disease progression over a relatively 

short period of time followed by periods of quiescence.  However, these studies were 

conducted using manual periodontal probes which required high thresholds (2.5-3mm) in 

order to detect changes in pocket depths/LOA.  The later use of significantly more sensitive 

electronic pressure-sensitive periodontal probes suggested that the majority of progressive 

sites underwent a more gradual continuous LOA, with a small percentage of sites undergoing 

a more burst-like pattern (Jeffcoat and Reddy, 1991).  Current thinking is that periodontitis 

progresses in a more gradual continuous pattern with the potential for some sites to undergo 

more rapid burst-like progression, particularly in subjects with higher susceptibility. 

 

1.6.2 Aetiology and pathogenesis of periodontitis 

Although the histological changes that take place between periodontal health, gingivitis and 

periodontitis described by Page and Schroeder (1976), updated by Kinane et al. (2008) and 

summarised by Preshaw (2019), are still relevant there has been a significant shift in 

philosophy in recent years regarding the relationship between the periodontal plaque biofilm 

and the host response (inflammatory and immunological).  Evidence from experimental 

gingivitis studies have demonstrated that clinically healthy human gingival connective 

tissues contain low levels of inflammatory infiltrate, which is referred to as the physiological 

immune surveillance, even when extremely high levels of oral hygiene are maintained long-

term (Brecx et al., 1987a, Brecx et al., 1987b, Lang and Bartold, 2018).  Therefore, it is now 
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recognised that in clinical periodontal health a state of symbiosis is maintained between the 

plaque biofilm (low pathogenicity) in the gingival sulcus and the low levels of inflammatory 

infiltrate in the underlying gingival connective tissue.   However, the balance in the symbiotic 

relationship is disrupted if sufficient quantities of undisturbed supra-gingival plaque 

accumulates for sufficient time at the gingival margin.  Depending on the patient’s 

susceptibility, which is largely dictated by genetic factors, this will lead to gingival 

inflammation (gingivitis), as demonstrated by the classical experimental gingivitis studies 

(Loe et al., 1965, Theilade et al., 1966, Loe et al., 1967, Jensen et al., 1968, Loe and Schiott, 

1970).  This evidence was used to support the non-specific plaque hypothesis, which 

essentially proposed that the quantity of plaque, and the associated virulence factors, 

overwhelms the host response leading to gingival inflammation (Theilade, 1986).   

Although the non-specific plaque hypothesis could account for the development of gingivitis, 

it does not explain why some subjects never progress from gingivitis to periodontitis even in 

the presence of long-term poor oral hygiene (Baelum et al., 1986, Loe et al., 1986).  

Subsequently, evidence from checkerboard DNA-DNA hybridisation studies demonstrated 

close associations between microbial complexes of specific periodontal pathogenic bacteria 

(orange and red complexes) in periodontitis (Socransky et al., 1994, Socransky et al., 1998).  

This led to the development of the specific plaque hypothesis where bacteria, such as the red 

complex bacteria Porphyromonas gingivalis (Pg), Tannerella forsythia (Tf) and Treponema 

denticola (Td), were found to be associated with the development and progression of 

periodontitis (Loesche, 1976, Loesche, 1979, Socransky et al., 1994, Socransky et al., 1998).   

However, this theory could not adequately account for all the characteristics associated with 

periodontitis, for instance the presence of low levels of the supposedly pathogenic 

periodontal bacteria in healthy sites and the inability to cause periodontitis by inoculating 

sites with periodontal pathogens, such as Aggregatibacter actinomycetemcomitans (Aa) 

(Christersson et al., 1985, Bartold and Van Dyke, 2013).  

Essentially, the non-specific and specific plaque hypotheses suggested that the development 

of periodontitis is primarily driven by changes in the ecology of the bacterial plaque biofilm, 

from the predominately Gram positive aerobes in supragingival plaque in health, to a 

relatively small number of pathogenic bacterial species in the subgingival plaque biofilms in 
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periodontitis.  The development of gingivitis and periodontitis is now thought to be primarily 

driven by the host response to the presence of plaque bacteria, and if other modulating factors 

are present (e.g. genetic/epigenetic, behavioural and/or environmental risk factors), the host 

response leads not only to the majority of the periodontal tissue destruction associated with 

periodontitis, but also to creating the environment to allow the growth of the pathogenic 

anaerobic bacteria (Grossi et al., 1994, Marsh, 2003, Bartold and Van Dyke, 2013).  This 

equates to the ecological plaque hypothesis proposed by Marsh (1994), which describes the 

synergistic balance between host response and the plaque biofilm in periodontal health 

(symbiosis) and the breakdown of this relationship (dysbiosis) during the development of 

gingivitis through to periodontitis.  For example, the host response to plaque not only leads 

to inflammatory swelling and the development of periodontal pockets, which creates a 

sheltered environment supporting the ecological shift to anaerobic bacterial species, but in 

susceptible patients, to the release of excessive pro-inflammatory mediators which further 

drives the host response (Marsh, 2003, Curtis et al., 2020).  Furthermore, tissue damage from 

the release of various host factors, such as matrix metalloproteinases, oxygen radicals and 

various cytokines, leads to the release of products which act as nutrients for the growth of 

particular pathogenic species.  For example, the release of haem favours the growth of Pg 

(McKee et al., 1986).   

There are, however, many unresolved questions, such as what are the underlying mechanisms 

which trigger the progression from gingivitis to periodontitis in some patients/individual 

sites, but not in others?  Further research is on-going to resolve these issues, but it is likely 

to involve complex changes in the dynamic relationship between the host response and the 

plaque biofilm leading to changes in the inflammatory drive.  These changes are likely to 

involve genetic and epigenetic factors, as well as behavioural, environmental and nutritional 

factors (Kornman et al., 1997, Michalowicz et al., 2000, Genco and Borgnakke, 2013, Meyle 

and Chapple, 2015).  There is increasing evidence that epigenetic factors can influence the 

expression of a wide range of  factors including pro-inflammatory mediators and angiogenic 

factors.  For example, Offenbacher et al. (2009) showed significant changes in gene 

expression between periodontal health and gingival inflammation using a human 

experimental gingivitis model. They reported that development of gingivitis resulted in raised 

levels of expression of a wide range of genes for pro-inflammatory mediators, such as IL-1α, 
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IL-1β and IL-8R1, as well as angiogenic factors, such as Angiopoietin-like 1, which is 

resolved following the return to gingival health.  Interestingly, EGF gene expression is 

reduced during the development of gingivitis and increased on the return to gingival health.  

However, this study examined only a small number of the likely genes affected in periodontal 

inflammation and it is likely to be many years before there is a detailed understanding of the 

complex interactions between all the genes involved.  What is important, in terms of the 

management of gingivitis and periodontitis, is that the host-biofilm relationship is bi-

directional allowing conventional periodontal therapy (i.e. risk factor management, 

debridement, etc) to restore a healthy symbiotic relationship in most cases (Curtis et al., 

2020). 

 

1.6.2.1 Vascular changes in periodontal inflammation 

Multiple studies in both animal models and humans have shown that plaque-induced gingival 

inflammation results in vasodilation, activation of inactive capillary beds and angiogenesis, 

with increasing vascularity in the gingival connective tissue from gingival health to 

periodontitis (Page and Schroeder, 1976, Hock and Kim, 1987, Zoellner and Hunter, 1991, 

Bergstrom, 1992, Bonakdar et al., 1997, Johnson et al., 1999a, Chapple et al., 2000, Vladau 

et al., 2016).  However, there have been few studies in humans which have investigated 

changes in angiogenic factor expression in relation to changes in gingival vascularity in 

plaque-induced inflammation.  Johnson et al. (1999a) reported significantly raised vascular 

density and tissue concentrations of VEGF and IL-6 in severe periodontitis compared with 

periodontal health, although the highest VEGF concentrations was reported in gingival tissue 

from moderate periodontitis (pocket depths 4mm-6mm with BOP). The group speculated that 

the reduced VEGF concentration in severe periodontitis (pocket depths greater than 6mm 

with BOP) was probably due to the higher chance of enzymatic degradation or being bound 

to heparin in deeper pockets.  In an immunohistochemistry study using gingival biopsies 

harvested following extractions, Chapple et al. (2000) reported higher FGF-2 and VEGF 

expression in periodontally health (n=12) compared with severe periodontitis (n=10).  

Consistent with previous studies, vascular density in the gingival connective tissue sub-

adjacent to the pocket epithelium was significantly higher in severe periodontitis compared 
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with the gingivally healthy samples.  There were no significant differences in the FGF-2 

staining profile, which was mainly associated with the basement membranes of vessels, 

between the periodontally healthy and severe periodontitis samples.  VEGF staining was 

found to be associated with vessels, inflammatory cells and keratinocytes, although reduced 

staining intensity was found in the pocket epithelium.  In a larger study, Vladau et al. (2016) 

reported significantly increased vascularity associated with increased expression VEGF and 

VEGF receptor-2 (VEGFR2) in endothelial and epithelial cells between periodontal health 

and severe periodontitis.  However, further research is required to ascertain the role of the 

various angiogenic factors and inhibitors in the progression of periodontitis.  

 

1.6.3  Risk factors for periodontitis 

A further complication to the understanding of the development and progression of 

periodontitis is the presence of risk or modifying factors.  Although bacterial plaque is the 

principal aetiological factor for periodontal disease, it is clear that the disease trajectory can 

be greatly influenced by modifying risk factors (Salvi et al., 1997b, Genco and Borgnakke, 

2013).  A risk or modifying factor can be defined as an aspect of personal behaviour or 

lifestyle, an environmental exposure, or an inborn or inherited characteristic, which on the 

basis of epidemiological evidence is known to be associated with a health-related condition 

(Last, 1988).  Although a risk factor may increase the probability of an individual acquiring 

a disease, it does not necessarily imply that there is a direct cause and effect relationship.   

Systemic risk (modifying) factors for periodontal disease include genetic factors (Beaty et 

al., 1993, van der Velden et al., 1993, Hart and Kornman, 1997, Kornman et al., 1997, 

McDevitt et al., 2000, Michalowicz et al., 2000, Loos and Van Dyke, 2020), haematological 

disorders (Seymour and Heasman, 1992), behavioural risk factors such as smoking (Haber, 

1994, Haffajee and Socransky, 2001) and alcohol consumption (Tezal et al., 2001, Pitiphat 

et al., 2003, Tezal et al., 2004, Park et al., 2014), environmental risk factors such as drug 

influenced gingival enlargement (Seymour and Heasman, 1992), metabolic risk factors such 

as diabetes (Glavind et al., 1968, Cianciola et al., 1982, Shlossman et al., 1990, Emrich et al., 

1991, Oliver and Tervonen, 1994, Genco and Borgnakke, 2013) and life-style risk factors 

such as stress (Moss et al., 1996, Croucher et al., 1997, Genco et al., 1999, Aleksejuniene et 
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al., 2002, Vettore et al., 2003, Rai et al., 2011, Warren et al., 2014).  The major modifiable 

systemic risk factors for periodontitis, smoking and diabetes which are directly relevant to 

this thesis, will be discussed in more detail in Chapters 1.7 and 1.8 respectively.    

Local risk (predisposing) factors are essentially plaque retentive factors such as calculus, 

overhanging restorations, furcation involvements, root grooves and mal-aligned teeth 

(Leknes et al., 1994, Chapple et al., 2015, Chapple et al., 2018).  Ultimately, the management 

of modifiable risk factors (e.g. through oral hygiene instruction, smoking cessation and the 

removal of plaque retentive factors) is fundamental for successful management of 

periodontal disease and maintaining long-term stability. 

 

1.6.4 Association between periodontitis and systemic disease 

Since Mattila et al. (1989) proposed a link between poor dental health and acute myocardial 

infarction there been great interest into whether there are associations between periodontal 

disease and various systemic diseases such as cardiovascular disease (CVD) (Genco et al., 

2002, Janket et al., 2003, Bahekar et al., 2007, Carrizales-Sepulveda et al., 2018), Type II 

diabetes (Khader et al., 2006, Nascimento et al., 2018), kidney disease (Deschamps-Lenhardt 

et al., 2019, Kapellas et al., 2019, Zhao et al., 2020), pre-term pregnancy and low birth weight 

(Offenbacher et al., 1996, Corbella et al., 2016, Manrique-Corredor et al., 2019), rheumatoid 

arthritis (Kaur et al., 2013, Fuggle et al., 2016) and dementia/Alzheimer’s disease (Leira et 

al., 2017, Nadim et al., 2020).  However, these conditions have complex multifactorial 

aetiologies with evidence of both genetic and environment input, often sharing the same risk 

factors as periodontal disease such as smoking, stress, poor diet and low socio-economic 

status.  Therefore, evidence may show an association between various systemic conditions 

and periodontitis, but there is generally insufficient evidence of a direct cause and effect 

relationship between them (Williams et al., 2008, Cullinan and Seymour, 2013).  

The key issue arising from these studies is that it provides evidence of the intimate connection 

between the periodontal tissues and the systemic circulation. Studies have shown that during 

periodontal inflammation the surface area of the exposed ulcerated periodontal pockets open 

to the systemic circulation is extensive, perhaps as high as 300cm2 in a subject with 
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generalised 6mm-7mm pocketing (Waite and Bradley, 1965, Offenbacher, 1996, Hujoel et 

al., 2001, Park et al., 2017).  Immediately adjacent to the ulcerated periodontal pocket walls 

is the underlying periodontal connective tissue, which is effectively a large highly vascular 

chronically inflamed soft tissue wound covered in plaque biofilm.  Therefore, it has been 

proposed that periodontal pathogenic bacteria from the periodontal pocket biofilm and/or 

inflammatory mediators from the chronically inflamed periodontal connective tissue can 

readily enter the systemic bloodstream leading to systemic effects.  For example, evidence 

from a human autopsy study of carotid endarterectomy specimens reported 44% of samples 

were positive to one or more putative periodontal pathogens (Aa, Prevotella intermedia (Pi), 

Pg and Tf) (Haraszthy et al., 2000).  There is increasing evidence to support the theory that 

periodontal inflammation contributes to systemic inflammation, potentially exacerbating pre-

existing chronic systemic conditions (e.g. cardiovascular disease, diabetes, etc.) (D'Aiuto et 

al., 2013, Pink et al., 2015).  For example, several studies have associated periodontitis with 

increased systemic levels of factors including C-reactive protein (CRP), IL-1β, IL-2, TNFα 

and IFN-γ compared to periodontal health (Gorska et al., 2003, Paraskevas et al., 2008, 

Noack et al., 2001, Roca-Millan et al., 2018).  Furthermore, meta-analyses of the literature 

have also demonstrated that periodontal therapy results in significant reductions in systemic 

CRP levels (Paraskevas et al., 2008, Freitas et al., 2012, Roca-Millan et al., 2018).  However, 

there are currently insufficient long-term, large scale intervention studies, with the exception 

of poorly controlled diabetes, which provide any evidence that periodontal therapy reduces 

the severity or slows the progression of these systemic conditions (Beck et al., 2019).  

 

1.6.5 Gingival Crevicular Fluid (GCF) 

Gingival Crevicular Fluid (GCF) is generally considered to be a transudate of serum in 

gingival health and an inflammatory exudate in periodontal inflammation (Uitto, 2003, 

Wassall and Preshaw, 2016).  GCF is derived from the post-capillary venules of the 

dentogingival plexus sub-adjacent to the junctional epithelium, but also contains various 

factors from the periodontal tissues including neutrophils, pro-inflammatory mediators and 

angiogenic factors (Attstrom, 1971, Lamster, 1992, Armitage, 2004). GCF flows between 

the keratinocytes of the junctional epithelium into the gingival sulcus/periodontal pocket and 
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finally enters the oral cavity to become a minor constituent of saliva (Booth et al., 1998).  

Similar to saliva, GCF flow is subject to circadian rhythm and is generally higher during the 

day than at night (Bissada et al., 1967).  Experimental gingivitis studies demonstrated that 

plaque-induced inflammation causes vasodilation and increased vascular permeability within 

the gingival tissues leading to increased GCF flow (Garnick et al., 1979, Armitage, 1995).  

In gingival health, especially in smokers, it can be extremely difficult to accurately record 

the GCF flow rate due to the very low volumes involved, particularly if below 0.1µl (Persson 

et al., 1999, Griffiths, 2003).  GCF collection is considered to be a relatively non-invasive 

procedure allowing factors to be sampled from the gingival tissues without the need for 

biopsy (Griffiths, 2003, Armitage, 2004, Wassall and Preshaw, 2016).  However, it is 

extremely time consuming and technique-sensitive in terms of its collection, processing and 

storage (Curtis et al., 1988, Wassall and Preshaw, 2016).  Various methods are available to 

collect GCF from the gingival crevice/pocket, including washing, micropipettes and by the 

use of filter papers, such as the PerioPapers used in the present study (Skapski and Lehner, 

1976, Griffiths et al., 1988, Salonen and Paunio, 1991, Griffiths, 2003).  The use of filter 

papers has the advantage over the other techniques as it allows immediate measurement of 

the volume of GCF using a calibrated Periotron (Preshaw et al., 1996, Ciantar and Caruana, 

1998, Chapple et al., 1999, Wassall and Preshaw, 2016).  Details of the protocols used in this 

thesis to collect and quantify the volumes of GCF are outlined in Chapter 2.1.8 and in 

Appendix 4.  

 

1.6.6 Angiogenic factor levels in periodontitis  

1.6.6.1 Angiogenin (ANG) 

ANG was first detected in GCF by Sakai et al. (2006) as part of a GCF cytokine array study 

examining differences in various cytokine and growth factor levels in periodontal health and 

disease.  Significantly higher signal intensity for ANG was found in periodontitis (53%) 

compared with the periodontal health (11%), suggesting ANG levels are significantly raised 

in periodontal disease. Two other studies have examined ANG in GCF in samples taken prior 

to and in the weeks following augmented periodontal surgical therapy versus conventional 

surgical grafting techniques.  In both studies ANG expression peaked during the early stages 



86 
 

of wound healing, the first few days post-surgery, and then rapidly diminished (Morelli et 

al., 2011, Pirebas et al., 2018).   

 

1.6.6.2 Angiopoietin-1 (Ang-1) 

Currently there is little data on the role of Ang-1 in gingival health and disease. In a small 

immunohistochemistry study, which examined Ang-1 expression in human gingival biopsy 

tissue, Ang-1 expression was reported to be higher in periodontally diseased tissue compared 

with gingival health, although not significantly so (Yuan et al., 2000b).  However, Ang-1 

expression was only reported in a small proportion of the study samples and there was no 

information stated regarding the severity of the periodontal disease.  A much larger study, by 

Lester et al. (2009), examined the concentrations of a range of inflammatory and angiogenic 

factors, including Ang-1, in gingival tissue harvested following extractions. Prior to 

sampling, the gingival health of the tissue was stratified into periodontal health and varying 

degrees of periodontal disease (mild, moderate and severe) using pocket depths and whether 

BOP was present.  Gingival tissue Ang-1 concentrations were found to be inversely 

correlated to periodontal health status (i.e. significantly lower Ang-1 concentrations in severe 

periodontal disease compared with gingival health).  The opposite findings were reported for 

other factors such as IL-1β, IL-6, TNFα, VEGF and endothelin-1.  Currently, it is not known 

whether the reduced gingival tissue levels of Ang-1 in severe periodontitis correlates with 

levels of Ang-1 found in GCF or in saliva, hence salivary levels of Ang-1 will be investigated 

in this thesis.  There have been two studies which have examined Ang-1 levels in GCF 

following periodontal surgery and these studies have been discussed in more detail in Chapter 

3.3.1.2 (Rakmanee et al., 2010, Rakmanee et al., 2019).   

 

1.6.6.3 Epidermal Growth Factor (EGF) 

Like salivary levels of EGF, there are contradictory findings reported in the literature 

regarding EGF concentrations in GCF between periodontal health and disease.  Chang et al. 

(1996) reported significantly lower GCF concentrations of EGF in deep periodontal pockets 

(>5mm) compared with healthy sites.  EGF receptor expression and binding capacity was 

also found to be higher in the deep periodontal pockets, suggesting that the lower GCF 
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concentrations of EGF in diseased sites was due to increased receptor binding.  In a 

significantly larger study, Mogi et al. (1999) also reported lower EGF concentrations in 

severe periodontitis compared with healthy controls, although the results were not 

significant.  However, in a more recent antibody array analysis study, GCF levels of EGF 

were significantly higher in severe periodontitis compared with periodontal health (Sakai et 

al., 2006).  Whether the difference in these findings is technique-based or due to other factors, 

is currently unknown.  

 

1.6.6.4 Fibroblast Growth Factor-2 (FGF-2) 

Currently, there have been few studies which have reported FGF-2 in GCF in periodontal 

health and disease, although there have been several studies which have reported levels 

following periodontal therapy, conventional periodontal surgery and regenerative techniques 

(Rakmanee et al., 2010, Zekeridou et al., 2017, Pirebas et al., 2018).  However, Zekeridou et 

al. (2017) reported significantly lower GCF concentrations of FGF-2 in subjects with severe 

periodontitis, in both shallow and deep periodontal pockets, compared with periodontally 

healthy subjects.  Interestingly, Ozdemir et al. (2016) reported no significant difference in 

GCF levels of FGF-2 between periodontal health and gingivitis in both smokers and non-

smokers.  Taken together, the findings of these two studies suggest that the role of FGF-2 

changes between periodontal health-gingivitis and the development of periodontitis.  

 

1.6.6.5 Platelet Derived Growth Factor (PDGF) 

In terms of PDGF levels in periodontal disease, Pinheiro et al. (2003) reported significantly 

higher PDGF expression in human gingival biopsy tissue from periodontitis sites compared 

with periodontally healthy sites.  Furthermore, PDGF expression was most prominent in the 

periodontal pocket epithelial cells and the underlying pocket wall connective tissue cells.  

Interestingly, the findings of this study do not correspond to the PDGF levels reported in 

GCF.  For example, Zhu et al. (2015) reported no significant difference in serum or GCF 

PDGF concentrations in subjects with cardiovascular disease and periodontitis compared 

with healthy controls groups.  Likewise, no significant difference was found in GCF 

concentrations of PDGF between healthy controls and subjects with severe periodontitis 
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(generalised aggressive periodontitis) (Romano et al., 2018).  However, GCF levels of PDGF 

were found to be significant lower in periodontally healthy smokers compared with non-

smokers controls (p=0.014) (Eren et al., 2015). 

 

Several studies have detected high levels of PDGF during the early stages of human oral 

wound healing, following which the PDGF levels reduce (Green et al., 1997, Morelli et al., 

2011, Pirebas et al., 2018, Rakmanee et al., 2019).  Furthermore, the therapeutic addition of 

PDGF and IGF-1 has been shown to result in significantly improved periodontal regeneration 

around teeth and implants in surgical studies in dogs, suggesting PDGF may have a potential 

use in human periodontal regenerative surgery (Lynch et al., 1991, Stefani et al., 2000, Li et 

al., 2017).   

 

1.6.6.6 Vascular Endothelial Growth Factor (VEGF) 

VEGF levels in GCF have been widely reported to be significantly raised in subjects with 

periodontitis compared with healthy controls (Booth et al., 1998, Lee et al., 2003, Guneri et 

al., 2004, Prapulla et al., 2007, Pradeep et al., 2011, Padma et al., 2014, Sakallioglu et al., 

2015, Zhu et al., 2015, Pannicker and Mehta, 2016, Turer et al., 2017, Romano et al., 2018, 

Afacan et al., 2019, Tayman et al., 2019), with levels of which being significantly reduced 

following periodontal therapy (Prapulla et al., 2007, Pradeep et al., 2011, Padma et al., 2014, 

Pannicker and Mehta, 2016, Turer et al., 2017, Romano et al., 2018).  These studies have 

been discussed in more detail in Chapter 3.5.1.3. 

 

1.6.6.7 Angiostatin 

To date there have been no publications which have reported angiostatin concentrations, or 

other angiogenic inhibitors, in human saliva or GCF levels in periodontal health and disease.  

Two studies have reported elevated angiostatin levels in GCF immediately following 

periodontal surgery (Morelli et al., 2011, Pirebas et al., 2018).  However, significantly 

reduced angiostatin expression has been reported in an immunohistochemistry study in 

gingival samples from periodontitis cases compared with periodontally health subjects (Yuan 

et al., 2000a).   
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1.7 Smoking and periodontal disease 

1.7.1 Introduction 

It has been estimated that smoking accounts directly for at least 30% of deaths in the 

developed world (Vineis et al., 2004). Although globally, the prevalence of smoking has 

reduced (men 41% in 1980, 31% in 2012; women 10% in 1980, 6% in 2012), the numbers 

of smokers is increasing due to population growth (Ng et al., 2014).  Tobacco smoke is 

considered to be a multiple organ site carcinogen strongly linked with various cancers, 

especially lung cancer, as well cancers of the oesophagus, larynx, mouth, kidneys, pancreas 

and cervix (Warnakulasuriya et al., 2010, Preshaw et al., 2019).  Smoking is also a major 

dose-dependent risk factor for oral cancer, especially if combined with alcohol consumption 

(Figuero Ruiz et al., 2004).  Furthermore, smoking is a major risk factor for several chronic 

conditions associated with high mortality rates such as chronic respiratory diseases and 

various forms of cardiovascular disease (Wald and Hackshaw, 1996, Doll et al., 2004, Vineis 

et al., 2004).  Smoking is also a major risk factor in periodontitis and is associated with 

significantly reduced treatments outcomes following non-surgical and surgical periodontal 

therapy, as well as increased risk of implant failure (Genco and Borgnakke, 2013, Nociti et 

al., 2015, Buduneli and Scott, 2018, Leite et al., 2018b). 

 

Although nicotine is the most researched constituent, it is estimated that tobacco smoke 

contains over 4000 substances, of which at least 50 are known carcinogens or procarcinogens 

(Arbes et al., 2001, Roemer et al., 2004, Ho et al., 2007).  Procarcinogens require metabolic 

activation in order to exert their toxic effects and include polycyclic aromatic hydrocarbons, 

nitrosamines and aromatic amines.  Other toxic substances include gaseous toxins such as 

carbon monoxide, hydrogen cyanide, ammonia and acrolein as well as oxygen radicals and 

radioactive elements such as Polonium 210. Tobacco smoke also has a particulate phase 

containing a variety of tar compounds, including nicotine.  Evidence suggests that smoking 

results in widespread molecular changes which significantly compromise host response and 

affect all stages of wound healing, including angiogenesis (Jones and Triplett, 1992, Towler, 

2000, Palmer et al., 2005, Guo and Dipietro, 2010, Sorensen, 2012a, Sorensen, 2012b, 

McDaniel and Browning, 2014). 
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Nicotine in tobacco smoke is highly lipid soluble and rapidly enters the blood stream via the 

lungs and results in activation of the nicotine receptors in the mesostriatal dopaminergic 

neurones in the brain leading to dopamine release resulting in a sensation of pleasure 

(Pontieri et al., 1996).  Due to the relatively short half-life of nicotine, approximately 1-2 

hours, smokers tend to smoke regularly leading to chronic exposure to the toxic effects of 

tobacco smoke (Pilotti, 1980).  The most common method for assessing long-term 

cumulative smoking exposure, or dose, in periodontal research is through smoking histories 

and self-reporting questionnaires. This information allows the calculation of Pack Years 

which is the number of packets of cigarettes smoked per day (1 packet = 20 cigarettes) 

multiplied by the number of years smoked or for loose tobacco 1g is the equivalent to one 

cigarette (Grossi et al., 1994).  The conversion for cigar smoking is one small cigar is the 

equivalent of three cigarettes and a large cigar is the equivalent of five cigarettes (Jensen et 

al., 1998).  However, self-reporting tends to under-estimate the true cumulative dose, due to 

subjects either consciously or subconsciously denying the true extent of their habit (Scott et 

al., 2001, Rebagliato, 2002).  Various biochemical methods are available to assess current 

smoking status including carbon monoxide levels in exhaled air and blood 

(carboxyhaemoglobin) or systemic measurement of cotinine, nicotine and thiocyanate in 

plasma, saliva or urine (Marrone et al., 2011).  

 

1.7.2 Association between smoking and periodontitis 

Typical clinical features associated with smoking include staining, increased calculus 

deposits, deeper pocket depths, increased LOA and reduced evidence of gingival 

inflammation, visually and in terms of BOP, in comparison to the levels of plaque present 

(Bergstrom and Preber, 1986, Bergstrom, 1990, Grossi et al., 1994, Bergstrom et al., 2000, 

Dietrich et al., 2004).  Radiographically, smoking is associated with increased bone loss and 

reduced bone density  compared to non-smokers (Bergstrom and Floderus-Myrhed, 1983, 

Rosa et al., 2008).  Smoking is also associated with reduced baseline GCF flow compared 

with non-smokers (Persson et al., 1999, Apatzidou et al., 2005, Rosa et al., 2008).   

 

There is strong evidence that cigarette smoking is a major modifiable risk factor for 

periodontitis (Bergstrom, 1989, Grossi et al., 1994, Grossi et al., 1995, Gelskey et al., 1998, 
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Tomar and Asma, 2000, Calsina et al., 2002, Susin et al., 2004, Genco and Borgnakke, 2013, 

Leite et al., 2018a, Helal et al., 2019).  Once confounding variables, such as oral hygiene, 

have been statistically accounted for, these studies reported odds ratios for the effect of 

smoking on periodontitis between two and eight depending on the study criteria used 

(Bergstrom, 2003).  Evidence also suggests there is a dose-dependent related relationship 

between smoking and periodontitis (Grossi et al., 1994, Grossi et al., 1995, Tomar and Asma, 

2000, Han et al., 2012).  For example, Grossi et al. (1994) reported LOA was directly and 

positively related to the number of pack years smoked, with relative risk ranging from 2.05 

for light smokers to 4.75 for heavy smokers.  Smokers also have a higher risk of periodontal 

disease progression.  Data from longitudinal studies, varying from one to ten years, 

demonstrate that smokers are significantly at more risk of periodontal disease progression 

compared with non-smokers (Machtei et al., 1997, Bergstrom et al., 2000, Paulander et al., 

2004). 

 

Smoking has also been shown to significantly compromise treatment outcomes of non-

surgical periodontal treatment, compared with non-smokers, in terms of pocket depth 

reduction (Ah et al., 1994, Preber et al., 1995, Kaldahl et al., 1996, Grossi et al., 1997b, 

Haffajee et al., 1997, Machtei et al., 1998, Jin et al., 2000, Darby et al., 2005, Heasman et al., 

2006), gain in clinical attachment (Grossi et al., 1997b, Haffajee et al., 1997, Machtei et al., 

1997, Jin et al., 2000) and gain in bone levels (Machtei et al., 1997, Machtei et al., 1998).  

The majority of studies have shown clinical improvements in the periodontal parameters in 

smokers suggesting that smoking does not completely nullify the benefits of non-surgical 

periodontal treatment.  Evidence also demonstrates the benefits of stopping smoking, with 

previous smokers having periodontal treatment outcomes between those of smokers and 

never smokers, with the positive effects increasing with time following cessation (Bolin et 

al., 1993, Krall et al., 1997, Bergstrom et al., 2000, Tomar and Asma, 2000, Preshaw et al., 

2005, Heasman et al., 2006, Do et al., 2008, Chambrone et al., 2013, Leite et al., 2018a, SSY 

et al., 2019).  Interestingly, the suppression of BOP and GCF production have been shown 

to return to normal levels within weeks of stopping smoking (Morozumi et al., 2004).  

However, more longitudinal smoking cessation studies are required to fully ascertain the 

potential benefits on periodontal health. 
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Likewise, smoking has also been shown to significantly reduce treatment outcomes of 

various periodontal surgical procedures, including regenerative techniques (Preber and 

Bergstrom, 1990, Ah et al., 1994, Tonetti et al., 1995, Kaldahl et al., 1996, Bostrom et al., 

1998, Scabbia et al., 2001, Tonetti et al., 2002, Trombelli et al., 2003, Stavropoulos et al., 

2004, Slotte et al., 2007, Kotsakis et al., 2015).  Furthermore, smoking is associated with 

reduced implant treatment outcomes including increased risk of marginal bone loss and 

implant failure (Klokkevold and Han, 2007, Chrcanovic et al., 2015, Alfadda, 2018).   

 

1.7.3 Effect of smoking on the periodontium 

It is often suggested that the increased association between smoking and periodontal disease 

is due to higher levels of plaque found in smokers (Preber et al., 1980), however, studies 

which have taken plaque levels into account have not reported a significant association 

between them (Bergstrom, 1989).  Evidence suggests that smoking has widespread negative 

effects on periodontal health through changes in the relationship between host response to 

the plaque biofilm, the gingival vasculature and tissue cell function.  Many of these changes, 

especially with regard to the effects on the host tissue response and angiogenesis, are still 

poorly understood.    

 

1.7.3.1  Effect of smoking on the host response  

There is now widespread evidence that smoking compromises the host response, both in 

terms of the inflammatory and immunological response, in favour of increased tissue 

damage, although the exact mechanisms for this are varied and still poorly understood 

(Mooney et al., 2001).  Smoking has been shown to have multiple negative effects on 

neutrophil function including reduced chemotaxis and phagocytosis, defective respiratory 

burst leading to reduced bactericidal effects and increased release of damaging oxidative 

products (Seow et al., 1994, Ryder et al., 1998, Darby et al., 2005, Xu et al., 2008).  Although 

smoking is associated with increased levels of neutrophils in the peripheral blood there is 

reduced neutrophil migration into the periodontal tissues in smokers (Pauletto et al., 2000, 

Sorensen et al., 2004).  This is thought to be due to changes in the actin component of the 

neutrophil cytoskeleton, resulting in reduced deformability, and to changes in the expression 

of adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1) and E-selectin 
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(Drost et al., 1992, Palmer et al., 2002).  Vascular expression of both ICAM-1 and E-selectin 

have been found to be significantly higher in the periodontally inflamed sites in both smokers 

and non-smokers compared with healthy sites (Rezavandi et al., 2002).  Furthermore, there 

was significantly higher number of vessels which expressed ICAM-1 in non-inflamed areas 

in non-smokers than smokers. This group hypothesised that the inflammatory response in 

smokers with periodontitis was associated with reduced expression of endothelial ICAM-1 

resulting in reduced neutrophil trafficking.  The same group also reported a dose-dependent 

increase in circulating levels of soluble ICAM-1 in the peripheral blood of smokers, which 

reduced to the level of non-smokers a year after stopping smoking (Palmer et al., 2002).  

Furthermore, nicotine has been shown in vitro to promote neutrophil degranulation 

potentially increasing the release of damaging enzymes such as elastase (Seow et al., 1994).  

 

Potentially, many of the negatives effects of smoking on neutrophil function also apply to 

macrophage function in the periodontal tissues (Pabst et al., 1995).  Nicotine has also been 

shown to significantly increase the secretion of prostaglandin-E2 (PGE2), an important 

mediator in periodontal bone loss, by Pg lipopolysaccharide (LPS) stimulated peripheral 

blood monocytes (Payne et al., 1996).  Nicotine also causes up-regulation of genes involved 

in PGE2 production in a human macrophage-like cell line (Koshi et al., 2007).  A similar 

study reported that when peripheral blood monocytes from healthy non-smokers were 

exposed to tobacco smoke it resulted in up-regulation of several genes for factors known to 

be important in the pathogenesis of periodontitis including IL-1α, cyclooxygenase-2, NADH 

dehydrogenase, cathepsin L and plasminogen activator (Ryder et al., 2004).   

 

1.7.3.2  Effect of smoking on periodontal pocket flora 

Smoking per se does not appear to cause significantly increased supragingival plaque 

accumulation (Bergstrom and Preber, 1986), but the literature is split on whether smoking is 

associated with significant changes in the subgingival microflora, in particular on the 

presence of periodontal pathogens.  Zambon et al. (1996) used indirect immunofluorescence 

microscopy to study the subgingival microflora in 628 non-smokers and 798 previous/current 

smokers.  The prevalence of Aa, Pg and Tf was reported to be increased in current smokers, 

with the relative risk of Tf infection being 2.3 times that of previous or non-smokers.  Studies 
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using other laboratory techniques have reported smokers to higher prevalence of Td using 

PCR techniques (Umeda et al., 1998), while higher prevalence of Fn and Pi were reported 

using culturing techniques (van Winkelhoff et al., 2001).  One major study, which used 

checkerboard DNA-DNA hybridisation, showed not only increased prevalence of Fn, Pi, Tf, 

Pg and Td in smokers but this was particularly the case in shallow pockets (<4mm) (Haffajee 

and Socransky, 2001).  This finding suggested that smoking promoted the development of 

pathogenic subgingival microflora in shallow pockets, which may strongly influence future 

disease progression. 

 

However, many studies using similar techniques have failed to report any significant 

difference in the prevalence of periodontal pathogens in smokers (Preber et al., 1992, Darby 

et al., 2000, Van der Velden et al., 2003, Apatzidou et al., 2005, Natto et al., 2005).  The 

cause of this discrepancy in the literature is likely to be due to differences in the sampling 

and bacterial identification methodology.  Current evidence suggests that the altered host 

response in smokers results in changes in the subgingival micro-environment (dysbiosis) 

which favour the growth of a more pathogenic microflora (Haffajee et al., 1997, Darby et al., 

2005, Guglielmetti et al., 2014, Feres et al., 2015, Moon et al., 2015). 

 

1.7.3.3 Effect of smoking on gingival blood flow and vascularity 

Smoking has been shown to have a strong dose-dependent suppressive effect on gingival 

inflammation (Dietrich et al., 2004), clinically shown by reduced BOP, although the exact 

cause of this effect is currently a controversial subject.  For many years this was thought to 

be due to sympathetic-induced vasoconstrictive effects of nicotine, leading to reduced 

gingival blood flow  (Clarke et al., 1981).  This resulted in reduced pocket oxygen tension, 

compromised nutrient and inflammatory cell supply, and reduced removal of metabolic waste 

products (Hanioka et al., 2000).  However, laser doppler flowmetry studies have contradicted 

this view (Baab and Oberg, 1987, Meekin et al., 2000, Mavropoulos et al., 2003, Morozumi 

et al., 2004).  Baab and Oberg (1987) reported increased relative gingival blood flow, 

compared with resting levels, immediately following smoking in 12 young smokers.  

Evidence of a simultaneous minor reduction in forearm skin blood flow suggested that 

smoking caused peripheral vasoconstriction, but not in the gingival tissues.  A similar finding 
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was reported by Mavropoulos et al. (2003), who hypothesised that the vasoconstrictive effect 

of nicotine was partially compensated for by the increased heart rate and blood pressure 

resulting in increased gingival blood flow. Another study was unable to demonstrate any 

significant difference in relative gingival blood flow between non-smokers, light and heavy 

smokers, although light smokers were found to have significantly increased forehead skin 

blood flow following smoking (Meekin et al., 2000).  This group hypothesised that heavy 

smoking resulted in vascular tolerance in terms of gingival blood flow.  However, gingival 

blood flow and GCF volume were found to significantly increase five days following 

smoking cessation in periodontally healthy male smokers (Morozumi et al., 2004).  This 

suggested that gingival blood flow is in some way suppressed in smoking and smoking 

cessation results in rapid improvement in vascular supply.  Interestingly, Mavropoulos et al. 

(2007) reported that there was no significant difference in resting gingival blood flow 

between smokers and non-smoker, however, smoking may result in reduced gingival blood 

flow in patients with periodontitis.  Further studies are required to clarify the gingival blood 

flow characteristics in smokers, especially in periodontitis.       

 

Evidence from immunohistochemistry and stereophotography studies which examined 

vascularity in gingival tissue, have reported that there were no significant differences in 

vascular densities in the gingival tissues between non-smokers and smokers (Persson and 

Bergstrom, 1998, Mirbod et al., 2001, Sonmez et al., 2003).  Several studies, however, have 

reported significant differences in the structure of the gingival vessels between smokers and 

non-smokers.  In a small study carried out by Mirbod et al. (2001), the gingival vasculature 

of smokers consisted of a higher percentage of small vessels and a lower percentage of large 

vessels compared with the non-smokers.  This finding was consistent with a clinical study 

which used video capillaroscopy to study the morphology of the gingival vessels in smokers 

and non-smokers (Scardina and Messina, 2005).  The gingival vasculature associated with 

smokers consisted of significantly higher numbers of smaller calibre capillaries and the 

papillary vessels were significantly more tortuous compared to those seen in non-smokers.  

Although the development of periodontitis is known to be associated with increased 

vascularity and vessel size, the gingival tissue is not uniformly affected (Zoellner and Hunter, 

1991).  When vascularity was compared between healthy and sites of periodontal 
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inflammation there were clear differences between smokers and non-smokers (Rezavandi et 

al., 2002).  In non-smokers there was a significant increase in the numbers of vessels 

(capillaries and post-capillary venules) in the inflamed gingival tissue compared with the 

non-inflamed tissue.  No such difference was found in the equivalent tissues in smokers.  

Furthermore, the number of vessels was significantly higher in the inflamed tissue in the non-

smokers compared with the smokers.  Therefore, the inflammatory reaction to plaque in 

smokers appears to result in a reduced vascular response/suppressed angiogenesis, which 

may in turn account for the reduced BOP in smokers (Scott and Singer, 2004, Buduneli and 

Scott, 2018).  Currently, there have been few studies which have compared angiogenic 

factors levels in periodontal health and periodontitis in smokers. 

 

1.7.3.4 Effect of smoking on gingival and periodontal fibroblasts 

The importance of gingival fibroblasts in oral wound healing has been discussed in Chapter 

1.4.2.4.  Tissue culture studies have suggested that nicotine impairs gingival fibroblast 

migration, proliferation, attachment and impairs myofibroblast differentiation (Tipton and 

Dabbous, 1995, Tanur et al., 2000, Fang and Svoboda, 2005a, Fang and Svoboda, 2005b).  

Furthermore, nicotine also impaired gingival fibroblast ECM production by significantly 

reducing fibronectin and type I collagen synthesis, while also significantly increasing 

collagenase production (Tipton and Dabbous, 1995).  Similar negative effects been reported 

as a result of exposure to volatile components of tobacco smoke, such as acrolein and 

acetaldehyde, on gingival fibroblast attachment and proliferation (Cattaneo et al., 2000, 

Poggi et al., 2002).   

 

Similar findings have been reported in periodontal ligament (PDL) fibroblasts with nicotine 

causing dose-dependent inhibition of fibroblast proliferation, chemotaxis, attachment and 

protein synthesis (Giannopoulou et al., 1999, Chang et al., 2002).  Nicotine has been reported 

to be present on the root surfaces in smokers with periodontitis and its levels can be reduced 

by non-surgical periodontal treatment (Cuff et al., 1989).  In light of these findings, Gamal 

and Bayomy (2002) studied the effect of smoking on PDL fibroblast attachment to extracted 

teeth root surfaces which had undergone non-surgical periodontal treatment one week prior 

to extraction.  PDL fibroblast attachment to the root surfaces was significantly reduced in 
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smokers compared to non-smokers, but no significant difference in attachment was found 

between light and heavy smokers.   

 

Overall, these studies suggest that smoking impairs many of the important functions of both 

gingival and periodontal fibroblasts in tissue maintenance and in wound healing, however, a 

recent tissue culture study reported that smoking has a greater negative impact on periodontal 

fibroblast function than gingival fibroblasts (Lallier et al., 2017).  However, caution needs to 

be applied in the interpretation of these tissue culture studies, especially with regard to the 

culture conditions and doses of the components of smoke. 

 

1.8 Diabetes mellitus (DM) and periodontal disease 

1.8.1 Introduction 

Diabetes mellitus (DM) is a heterogeneous group of metabolic disorders which result in 

chronic hyperglycaemia leading to significant morbidity and mortality (Chapple et al., 2013, 

American Diabetes, 2018).  The two main types of diabetes are Type 1 DM and Type 2 DM, 

however gestational diabetes may occur during pregnancy (American Diabetes, 2018, WHO, 

2019).  Type 1 DM is caused by autoimmune destruction of the insulin producing beta cells 

in the pancreatic Islets of Langerhans leading to chronic insufficient insulin production 

(Eisenbarth, 1986).  Type 1 DM has a strong genetic basis, but usually requires the presence 

of an environment factor, such as a viral infection, to initiate the disease (Skamagas et al., 

2008, Tuomi et al., 2014).  In Type 2 DM insulin production is maintained, although often 

reduced, and there is peripheral resistance or reduced sensitivity to circulating insulin (a 

qualitative reduction).  Type 2 DM accounts for approximately 90% of cases and the 

prevalence is increasing globally, especially in Western societies where it has been linked 

with increasing obesity and lack of exercise, although genetic factors are also involved (Ford 

et al., 1997, Tuomi et al., 2014).  This has resulted in Type 2 DM becoming more common 

in younger age groups and many of these subjects may go undiagnosed for many years, 

increasing the risk of complications from the condition (Tuomi et al., 2014, Cai et al., 2020).  

The higher prevalence of Type 2 DM in the UK population accounts for why the majority of 

diabetic subjects studied in this thesis were from this category.  There is also an increasing 

prevalence of pre-diabetes globally, which has a significant risk of progressing to full 
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diabetes (Tabak et al., 2012).  The prevalence of diabetes in the UK in 2019 was 3.8 million 

people, up from 1.4 million in 1996, with an estimated additional one million people with 

undiagnosed diabetes (Diabetes, 2019).  Globally it has been estimated that diabetes is now 

the seventh most common cause of death (WHO, 2018). 

Although the aetiology of Type 1 and Type 2 diabetes are different, the consequences of the 

resultant chronic hyperglycaemia are similar with varying degrees of dysfunction of the 

carbohydrate, lipid and protein metabolism causing widespread cellular and molecular 

dysfunction (Tuomi et al., 2014, Graves et al., 2020).  This causes significant disturbance of 

immune response, angiogenesis and wound healing leading to microvascular and 

macrovascular systemic pathology (Soory, 2002, Fowler, 2011).  Classically DM is described 

as having five major complications which are atherosclerosis, retinopathy, nephropathy, 

neuropathy and impaired wound healing.  Later, Loe (1993) described periodontal disease as 

being the sixth complication of diabetes.  Macrovascular changes result in potentially life 

threatening complications associated with large vessel disease (atherosclerosis), which is 

often exacerbated by other environmental factors such as smoking and poor diet, leading to 

ischaemic heart disease, strokes and peripheral vascular disease (Fowler, 2011, Cai et al., 

2020).  Microvascular changes particular affect the small vessels in the retina, renal 

glomerulus and the nerve sheath leading to significant ocular, kidney and neuronal problems 

respectively (Fowler, 2011).  Impaired wound healing in diabetes is thought to play a 

significant role in many of the pathological conditions and surgical complications associated 

with diabetes (Tuomi et al., 2014).  

 

1.8.2 Association between diabetes mellitus and periodontal disease 

The association between DM and periodontal disease was first reported in a cross-sectional 

study where hospital patients with poorly controlled diabetes were associated with higher 

levels of periodontal destruction (Sandler and Stahl, 1960). Several cross-sectional studies 

have demonstrated that gingivitis (gingival inflammation) is significantly more prevalent in 

children and young adults with Type 1 DM, and is associated with poor glycaemic control 

(Gislen et al., 1980, Novaes Junior et al., 1991, de Pommereau et al., 1992, Pinson et al., 

1995, Karjalainen and Knuuttila, 1996).   
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Epidemiological studies have found significantly higher prevalence of periodontitis in adults 

in both Type 1 DM (Hugoson et al., 1989, Thorstensson and Hugoson, 1993, Moore et al., 

1999) and Type 2 DM (Nelson et al., 1990, Emrich et al., 1991, Grossi et al., 1994, Taylor et 

al., 1998a, Taylor et al., 1998b)  compared with healthy non-diabetic subjects.  Many of these 

studies involved Pima Indian populations, who have a very high prevalence of Type 2 DM 

(Knowler et al., 1990).  Nelson et al. (1990) examined 2273 adult Pima Indians and reported 

the prevalence of severe periodontitis, quantified by tooth and alveolar bone loss, in Type 2 

DM to be 60% compared to 36% in the non-diabetic controls.  In both Type 1 and Type 2 

DM the prevalence, severity and risk of progression of periodontitis is strongly associated 

with the poor long-term glycaemic control (Gusberti et al., 1983, Ervasti et al., 1985, Seppala 

et al., 1993, Tervonen and Oliver, 1993, Seppala and Ainamo, 1994, Karjalainen and 

Knuuttila, 1996, Novaes Junior et al., 1996, Taylor et al., 1998b, Tsai et al., 2002, Lim et al., 

2007, Demmer et al., 2012).  Furthermore, evidence suggests that there is a dose-dependent 

relationship between glycaemic control and the severity and risk of progression of 

periodontitis, including in the periodontal maintenance phase (i.e. higher glycated 

haemoglobin scores are associated with a higher risk of periodontal destruction) (Seppala et 

al., 1993, Tervonen and Oliver, 1993, Tervonen and Karjalainen, 1997, Costa et al., 2013).  

Furthermore, there is increasing evidence that being overweight or obese can increase the 

risk of periodontitis and the likelihood of reduced treatment outcomes following periodontal 

therapy (Keller et al., 2015).  Conversely, patients with well controlled diabetes (glycated 

haemoglobin scores <7%; 53 mmol mol-1) have a similar risk of periodontitis as non-diabetic 

subjects (Tervonen and Knuuttila, 1986, Tervonen and Oliver, 1993).   

 

Likewise, studies have reported that the outcome of both non-surgical and surgical 

periodontal therapy in subjects with well controlled diabetes, both Type 1 and Type 2 DM, 

is similar to healthy controls (Bay et al., 1974, Tervonen et al., 1991, Westfelt et al., 1996, 

Christgau et al., 1998).  However, the response to periodontal therapy was significantly 

impaired in subjects with poor glycaemic control (Seppala et al., 1993, Tervonen and 

Karjalainen, 1997).  
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There is growing evidence that periodontitis may exacerbate various systemic chronic 

conditions, probably by increasing systemic inflammation, with the strongest evidence being 

the relationship between periodontitis and diabetes (Genco et al., 2020).  There is strong 

evidence that there is a bi-directional relationship between diabetes and periodontitis, where 

poorly controlled diabetes increases the risk of periodontal disease (see above) but successful 

periodontal therapy, especially involving severe periodontitis, has a positive effect on 

glycaemic control in both Type 1 and 2 DM (Grossi et al., 1996, Grossi et al., 1997a, Grossi 

and Genco, 1998, Stewart et al., 2001, Rodrigues et al., 2003, Kiran et al., 2005, Promsudthi 

et al., 2005).  Although meta-analysis studies reported that periodontal therapy results in a 

relatively small reduction in glycated haemoglobin, by approximately 0.4%, it is likely to be 

sufficient to result in clinical benefits with regards to reducing the complications of diabetes 

(Janket et al., 2005, Simpson et al., 2010, Sgolastra et al., 2013, Casanova et al., 2014).  

Furthermore, evidence from a meta-analysis of the literature suggested that periodontal 

therapy in subjects with Type 2 DM resulted in significant reductions in some markers of 

systemic inflammation, such as CRP and TNFα (Artese et al., 2015). 

 

1.8.3 Effect of DM on the periodontium 

The mechanisms by which poorly controlled diabetes impacts on periodontal health are 

complex and are not fully understood, but are thought to involve several mechanisms which 

negatively affect the host response to the plaque biofilm and collagen metabolism as well as 

reducing wound healing potential, partly due to reduced angiogenesis (Graves et al., 2020, 

Polak et al., 2020).  Although there is good evidence that there is a greater inflammatory 

response to periodontal plaque bacteria in diabetes, at least in rodents, there is contradictory 

evidence regarding whether diabetes affects the composition of the plaque biofilm (Graves 

et al., 2005, Pacios et al., 2012).  Current consensus is that diabetes does not significantly 

alter bacterial composition of the plaque biofilm (Chapple et al., 2013, Taylor et al., 2013), 

however, a more recent study in mice found diabetes reduced bacterial diversity in favour of 

more pathogenic species, which in turn promotes dysbiosis (Xiao et al., 2017).  Furthermore, 

as briefly discussed in Chapter 1.6.4, there is evidence that systemic spill over of periodontal 

pathogens into the systemic circulation (bacteraemia) may contribute to increased systemic 



101 
 

inflammation leading to raised hyperglycaemia and acerbation of diabetes (Genco et al., 

2020).  

  

1.8.3.1 Advanced Glycation End (AGE) products 

 

Prolonged hyperglycaemia promotes glycation of lipids, proteins and nucleic acids with 

greater glycation being associated with poorer levels of control (Brownlee, 1994, Monnier et 

al., 1996, Graves et al., 2006, Cho et al., 2007, Singh et al., 2014, Shaikh-Kader et al., 2019).  

The non-enzymatic glycation of proteins results in stable AGE products, which alters their 

structural and functional properties, leading to changes in cellular and matrix interactions.  

Excessive accumulation of AGE products is closely linked to both the macro- and 

microvascular complications of DM (Fowler, 2011).  AGE-modification impairs collagen 

turnover through cross-linkage of tissue collagen, reduced collagen production and increased 

MMP production by fibroblasts.  Macrovascular complications result from AGE-modified 

collagen accumulating in large vessel walls leading to vessel wall thickening and narrowing 

of the vessel lumen (Monnier et al., 1996).  Microvascular changes occur by the accumulation 

of AGE-modified collagen in the basement membranes of small blood vessels increasing 

membrane thickness and altering molecular transport across the membrane.  With regards to 

periodontitis, significantly higher levels of AGE products has been reported in periodontal 

tissues in both Type 1 and Type 2 DM compared with healthy controls (Zizzi et al., 2013b).  

Furthermore, this group found a significant positive correlation between AGE expression and 

the length of time since diagnosis with DM, but not with other factors such as glycated 

haemoglobin levels. 

AGE products also affects cellular function through binding to specific cell surface receptors 

(RAGE) on various cell types, such as endothelial cells, fibroblasts, vascular smooth muscle 

cells, neurones, monocytes and macrophages (Brett et al., 1993).  RAGE activation results in 

increased cellular oxidative stress and activation of the transcription factor nuclear factor-

kB, which stimulates periodontal bone loss, and causes apoptosis of periodontal ligament 

fibroblasts (Schmidt et al., 1996, Vlassara and Bucala, 1996, Li et al., 2014).  In addition to 

high levels of RAGE, hyperglycaemia has also been shown to cause periodontal ligament 

fibroblast apoptosis via the caspase-3 activation (Liu et al., 2013).  Hyperglycaemia increases 

RAGE expression leading to increased vascular permeability and increased expression of 
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Vascular Cell Adhesion Molecule-1 (VCAM-1), which is potentially involved in monocyte 

related vascular complications of diabetes (Esposito et al., 1989, Schmidt et al., 1995).  Lalla 

et al. (2000) showed the importance of RAGE in Pg induced alveolar bone loss in diabetic 

mice.  However blockading RAGE using soluble RAGE resulted in a dose-dependent 

reduction of alveolar bone loss, reduced levels of pro-inflammatory mediators, such as TNFα 

and IL-6, and reduced MMP levels.  A similar study reported blocking RAGE resulted in 

enhanced wound closure and healing times associated with a reduced inflammatory response 

in diabetic mice (Goova et al., 2001).  A recent tissue culture study showed that AGE resulted 

in raised expression of RAGE, IL-6, ICAM-1 and reactive oxygen species in human gingival 

fibroblasts, all of which could potentially promote periodontal damage (Nonaka et al., 2018).  

 

1.8.3.2  Effect of DM on the inflammatory response and periodontal bone loss  

Diabetes has been shown to lead to a dysfunctional host response to the plaque biofilm. 

Hyperglycaemia causes impaired neutrophil adherence, chemotaxis and phagocytosis, as 

well as increased production of various cytokines (IL-1, IL-6 and TNFα) and the release of 

damaging  MMPs and reactive oxygen species (Manouchehr-Pour et al., 1981, McMullen et 

al., 1981, Marhoffer et al., 1993, Gursoy et al., 2008, Omori et al., 2008, Roberts et al., 2015).  

Macrophages tend to display a hyper-responsive phenotype resulting in increased secretion 

of pro-inflammatory mediators, such as IL-1, TNF-α and PGE2, and MMPs leading to the 

pronounced chronic inflammatory response associated with DM (Salvi et al., 1997a, Salvi et 

al., 1997c, Salvi et al., 1998, Mirza and Koh, 2011).  Furthermore, macrophages in diabetic 

wounds have been shown to have reduced production of important angiogenic factors, such 

as VEGF and Insulin-like Growth Factor-1 (IGF-1) (Mirza and Koh, 2011). This phenotypic 

change is thought to be mediated through cell surface AGE-RAGE interaction (Schmidt et 

al., 1996).  Consequently, these changes lead to an exaggerated inflammatory response to the 

plaque biofilm resulting in excessive periodontal tissue damage. 

Hyperglycaemia has also been shown to cause increased periodontal bone loss through 

changes in the receptor activator of nuclear factor kappa-β ligand (RANKL) to 

osteoprotegerin ratio in favour of RANKL (Santos et al., 2010).  Clearly, poorly controlled 
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diabetes has widespread profound negative effects on the periodontium, leading to increased 

risk of periodontal disease progression. 

 

1.8.3.3  Effect of DM on angiogenesis 

With particular regards to this thesis, it has been shown that diabetes affects all stages of 

wound healing, in particular the angiogenic element of the proliferative phase, leading to 

increased risk of poor dermal and oral wound healing (Abiko and Selimovic, 2010, Guo and 

Dipietro, 2010, Okonkwo and DiPietro, 2017).  Furthermore, many of the processes 

described above also have a negative impact on diabetic wound healing.  Evidence suggests 

that diabetic wound healing is associated with down-regulated angiogenic activity, although 

in certain conditions, such as diabetic retinopathy, angiogenic activity is increased leading to 

pathology (Simo-Servat et al., 2019).  As a result of down regulated angiogenesis, diabetic 

wounds are less vascular and show evidence of reduced branching and total vessel length, 

and delayed vessel maturation (Urao et al., 2016, Okonkwo et al., 2020).  It is likely that the 

reduced angiogenic activity in diabetes is the result of several complex mechanisms, many 

of which are still poorly understood.  Several studies have shown that diabetic wound healing 

is associated with significant reductions in several angiogenic factors, such as VEGF, PDGF 

and IGFs (Frank et al., 1995, Beer et al., 1997, Brown et al., 1997, Okonkwo et al., 2020).  

Furthermore, the normal balance between angiogenic factors and inhibitors appears to be 

altered in diabetic wounds.  For example, the ratio of Ang-1 to Ang-2 in diabetic wounds was 

found to be reduced, in addition to reduced VEGF levels, which may partly account for the 

prolonged delay in vascular maturity (Kampfer et al., 2001, Isidori et al., 2016).  Currently, 

the relationship between angiogenic factors and inhibitors in diabetic wound healing is poorly 

understood and further research is required.  

Other factors shown to be negatively affected in diabetic wound healing, which have an 

impact on angiogenesis, include dysfunctional endothelial cell and pericyte function, and 

reduced recruitment of endothelial progenitor cells (Tepper et al., 2002, Piconi et al., 2006, 

Kolluru et al., 2012, Bodnar et al., 2016).  A recent study by Okonkwo et al. (2020), reported 

pericyte coverage of newly formed vessels was significantly reduced leading to increased 

vascular permeability and delayed vessel maturation.   
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Currently, there is little data on angiogenic factor levels in saliva and GCF in periodontal 

health and disease in subjects with diabetes.  This will be discussed further with regards to 

Ang-1, MSF, VEGF and endostatin in the relevant chapters in this thesis. 

 

1.9 Aims of the thesis 

The aims of this thesis were: 

1) To investigate whether serum and salivary concentrations of the angiogenic factors 

Ang-1, MSF and VEGF, and the inhibitor endostatin, differ significantly between 

periodontal health and severe periodontitis.  

2) To investigate whether serum and salivary concentrations of Ang-1, MSF, VEGF and 

endostatin are significantly altered in smokers and in patients with diabetes, compared 

with matched healthy controls. 

3) To investigate whether the quantification of vascularity in periapical granulomas and 

healthy periodontal ligament, using different endothelial markers, has value as an 

index of angiogenesis. 

 

There were two broad elements to this thesis, the ELISA and immunohistochemistry studies 

(Chapters 3 and 4 respectively).  One of the initial aims was to examine MSF expression in 

healthy PDL tissue and correlate it to MSF levels in GCF and saliva, which is the reason why 

MSF was the only angiogenic factor examined in the immunohistochemistry study. Another 

link between the two elements of the thesis was to establish whether a periodontal-related 

model of angiogenesis could be developed similar to the OSCC-NOM model commonly used 

in the study of angiogenesis in the development of tumours (Chapter 4).  A periodontal-

related model of angiogenesis would provide actual evidence of angiogenic activity in 

relation to tissue expression of angiogenic factors, which could be correlated to the levels of 

the same factors in oral fluids and serum.  This could provide important information with 

regards to the role angiogenesis in the development of periodontal disease.  
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1.10 Null hypotheses of the thesis  

The null hypotheses for this thesis were: 

1. Severe periodontitis does not result in significant changes in serum and salivary 

concentrations of Ang-1, MSF, VEGF and endostatin compared with periodontal 

health. 

2. Smoking and diabetes does not result in significant changes in serum and salivary 

concentrations of Ang-1, MSF, VEGF and endostatin compared with systemically 

healthy controls. 

3. Indices of vascularity and MSF expression do not provide evidence of angiogenesis 

in periapical granulomas. 
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Chapter 2 

Material and Methods 
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2.1 Clinical techniques 

2.1.1 Patient selection protocol 

Ethical approval for this study was obtained from The Tayside Committee on Medical 

Research Ethics (129/02).   Subjects were recruited and selected into one of three study 

groups (Table 2.1).  Groups 1 and 2 both comprised of systemically fit and healthy patients 

who were not taking any medication.  A full list of patient exclusion criteria is given in section 

2.1.3.  These exclusions were necessary to rule out confounding effects of various systemic 

diseases and medications.  In addition, Group 1 subjects had never smoked, while Group 2 

subjects were current long-term smokers (smoked >10 years).  Pack Years was calculated to 

estimate the individual cumulative exposure to tobacco smoke (Prignot, 1987) and smokers 

were further stratified into either light smokers (<20 pack years) or heavy smokers (>20 pack 

years) (Elter et al., 2003).  Subjects with a previous history of smoking were excluded to 

make the differentiation between Groups 1 and 2 as clear as possible.   

 

Table 2.1 Classification of the clinical samples according to the clinical characteristics of the donors. 

 
Study Group Sub-groups Study Group Criteria 

1. Systemically 

healthy 

non-smokers  

1a. Periodontally 

healthy 

• Never smoked 

1b. Periodontitis 

 

2. Systemically 

healthy smokers 

2a. Periodontally 

healthy 

• Current long-term smokers (smoked >10 years) 

Cumulative smoking exposure calculated 

in Pack Years 2b. Periodontitis 

 

3. Subjects with 

Diabetes 

3a. Periodontally 

healthy 

• Smokers and non-smokers  

Cumulative smoking exposure calculated 

in Pack Years 

• Diabetes Types 1 and 2 included 

Diabetic control quantified by most recent 

glycated haemoglobin (HbA1c) result. 

3b. Periodontitis 

 

Group 3 comprised a wide range of subjects with Diabetes mellitus (Type 1 and Type 2).  

Many patients with diabetes take multiple medications, not only to help to stabilise their 

blood glucose levels, but also to prevent/treat the side effects of the condition.  This was true 

for many subjects in this study group.  Long-term glycaemic control was assessed using the 

subject’s most recent glycated haemoglobin (HbA1c) score, retrieved from either their 

General Medical Practitioner (GMP) or the diabetes clinic at Ninewells Hospital, Dundee. 
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2.1.2 Clinical sub-groups 

Each of the three study groups were further divided into two sub-groups, (a) and (b).  Sub-

group (a) subjects were periodontally healthy and Sub-group (b) subjects had severe 

Periodontitis.  These sub-groups were defined as follows: 

• Sub-group (a): Periodontally healthy subjects with no loss of attachment (LOA), 

periodontal probing depths <3mm and minimal full mouth bleeding on probing scores 

(BOP) (<15%) (Palmer and Floyd, 1995). 

• Sub-group (b): Subjects with evidence of severe periodontitis (Papapanou et al., 

2018b) with significant LOA (>5mm), >5mm periodontal probing depths (true 

pocketing) and generalised BOP (>40% full mouth bleeding scores) (Palmer and 

Floyd, 1995). 

 

2.1.3 Exclusion criteria 

The following were applied: 

• Subjects needed to have at least two bilateral upper posterior teeth to allow 

standardised Gingival Crevicular Fluid (GCF) sampling.   

• Periodontal treatment within the last six months were excluded to ensure the 

periodontal microenvironment was undisturbed prior to sampling.  

• History of previous or irregular smoking were excluded to ensure clear differentiation 

between Group 1 (never smokers) and Group 2 (current long-term smokers).   

• Subjects diagnosed with Periodontitis Stage 3 or 4 Grade C (Papapanou et al., 2018b), 

where there was evidence of rapidly progressing disease were excluded due to the 

potential of confounding factors. 

• Pregnant subjects were excluded to ensure that the associated periodontal effects did 

not affect the results.  Women of child-bearing age were specifically asked if they 

were likely to be pregnant, if so, they were also excluded.  This was a requirement of 

the Ethics Committee approval. 

• Subjects who were currently taking or had recently taken medications that could 

affect the periodontal health were excluded.  These included: 

▪ Non-Steroidal Anti-Inflammatory Drugs (NSAID) 
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▪ Steroids 

▪ Antibiotics within the previous three months   

• Subjects with complex medical histories where recording of clinical data and/or 

taking of clinical samples would require extra pre-cautions to be taken for patient 

safety reasons were excluded.  These included: 

▪ Patients with a known infectious disease (Hepatitis B/C, HIV) 

▪ Immuno-compromised patients 

 

2.1.4 Power calculation 

The initial aim was to only measure Migration Stimulating Factor (MSF) levels in the clinical 

samples.  As there was limited data at the time on MSF levels in serum, saliva and GCF, it 

was not possible to carry out a power calculation to estimate the number of subjects required.  

It was initially estimated, after consulting a statistician, that a total of 100-120 subjects, 

equally spread between the study groups, would be required to ensure significant differences 

could be detected with a high degree of statistical confidence. Subsequently, a post-hoc 

power sample size calculation was carried out using G*Power software (Faul et al., 2009), 

which estimated that 64 subjects would be required to achieve an adequate level of power at 

the 80% level (effect size f=0.40; p=0.05; df=2; 6 groups).  Greater than 64 samples (serum 

or saliva) were assayed for each of the angiogenic factors examined in this thesis. 

 

2.1.5 Clinical sampling 

Subjects were recruited from the Periodontology Clinic at Dundee Dental Hospital and 

School.  A brief verbal explanation of the study was given and followed up with a Patient 

Information Sheet giving details about the study (Appendix 1). Ethics Committee 

requirements ensured that subjects were given a 24-hour period to reconsider their choice to 

take part in the study.  Subjects were booked in for a single one hour morning appointment, 

prior to any periodontal treatment appointments, in order to collect the clinical samples and 

clinical data for this cross-sectional study.  All sampling, recording of clinical data and 

laboratory work was carried out by one investigator (KJD). Prior to sampling, consent forms 

and detailed medical, dental, family and social history forms were completed (Appendix 1). 

 



110 
 

In this thesis, three pro-angiogenic factors (Angiopoietin-1 (Ang-1), Migration Stimulating 

Factor (MSF) and Vascular Endothelial Growth Factor (VEGF)) and one anti-angiogenic 

factor (Endostatin) were investigated. Unstimulated and stimulated whole saliva samples 

were collected in order to ascertain whether there were any differences in angiogenic factor 

content. Gingival Crevicular Fluid (GCF) was sampled from standard sites as detailed below 

(Section 2.1.8).  Blood samples were taken in order to harvest serum. This permitted the 

comparison of the concentration of factors in the oral fluid samples (saliva and GCF) with 

the systemic circulation (serum).  Standard clinical periodontal measurements (Section 2.1.9) 

were recorded using a 20g constant pressure electronic Florida probe system (Florida Probe 

Corporation) and the data stored on a laptop computer (Samsung Corporation).        

 

2.1.6 Saliva collection, laboratory processing and storage 

The protocols used were adapted from previous publications (Chapple et al., 1997, Booth et 

al., 1998, Taichman et al., 1998).  Unstimulated saliva was collected first using a protocol 

described by Booth et al. (1998).  Subjects were advised not to eat, chew gum, brush their 

teeth or smoke for two hours prior to sampling.  All saliva sampling was carried out between 

9:30-11:00am in order to overcome the diurnal variation in saliva production (Chapple et al., 

1997).  Prior to sampling, subjects rinsed their mouths with sterile water to remove any food 

debris or previously pooled saliva, and then sat upright quietly for two to three minutes.  

Subjects were then left alone to drool saliva for five minutes into a sterile Universal container 

(Sterilin).  The Universal containers were then placed into an ice bucket prior to the samples 

being centrifuged at 5000g at 4oC for five minutes to remove bacterial and cellular debris.  

The saliva was carefully aliquoted into non-stick 0.5ml Eppendorf tubes in order not to 

disturb the pellet of debris.  Non-stick Eppendorf tubes were used to reduce the risk of 

proteins binding to the sides of the container during storage.  The volume of the saliva was 

also measured during aliquoting.  The aliquots were labelled using an anonymous subject 

reference number (section 2.1.10) and stored at -80oC prior to assaying. 

 

An almost identical protocol was followed for the stimulated saliva sampling except that a 

sterile marble was used to stimulate saliva flow (Chapple et al., 1997).  The subjects were 

instructed not to bite, swallow or inhale the marble and if the patients felt that the marble was 
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going to cause a problem, they were instructed to immediately spit the marble into the 

collecting vessel. 

 

2.1.7 Venepuncture, serum collection and storage 

Approximately 10ml of venous blood was collected from the antecubital fossa using a 

standard venepuncture technique.  Blood was collected using the BD Vacutainer system 

(Becton, Dickinson and Company) into untreated (red) 10ml Vacutainer tubes.  Samples were 

allowed to stand for at least 30 minutes at 4oC to clot and then sterile plastic spatulas were 

used to rim the internal circumference of the Vacutainer tubes.  This procedure ensured good 

layering of the serum during centrifugation.  Samples were centrifuged at 10000g for five 

minutes at 4oC.  The resultant serum was carefully pipetted into sterile Falcon tubes, using 

wide-bore Pasteur pipettes.  This ensured that the serum samples were homogenous prior to 

aliquoting into 0.5ml non-stick Eppendorf tubes.  These were then stored at -80oC prior to 

assaying. 

 

2.1.8 Clinical Gingival Crevicular Fluid (GCF) collection, processing and storage 

The protocol used was adapted from Chen et al. (1998).  GCF flow rates vary in different 

areas of the mouth, with lower GCF flow rates in anterior sites than posterior sites, so 

consistency in sampling sites was important (Smith et al., 1992, Ozkavaf et al., 2000).  Mesial 

buccal sites on the upper pre-molars and first molars were used for GCF collection, due to 

easier access, and the mesial buccal sites on upper second molars were only used when the 

first upper molars were missing.  GCF samples were collected from both upper posterior 

sextants.  In the periodontally healthy study sub-groups, four sites were sampled on each side 

which were not immediately adjacent to a diseased site: i.e. not in the same embrasure. In the 

periodontally diseased sub-groups, GCF was sampled from at least four periodontally 

diseased sites and from four periodontally healthy sites on each side.  Probing of pockets 

immediately prior to GCF sampling was avoided, as this greatly changes the nature of the 

GCF samples, thus the sampling sites were pre-selected at the most recent periodontal 

appointments.  
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The GCF sample sites were isolated with cotton wool rolls and carefully air dried using the 

3-in-1 handpiece.  Air was not blown directly into the periodontal pockets to avoid disturbing 

the GCF.  Buccal and palatal sides of the tooth were carefully dried to prevent pooling of 

saliva in the embrasure area.  Any supragingival plaque was carefully removed with a straight 

probe without entering the gingival sulcus (Chapple et al., 1997). Sterile PerioPaper 

collection strips (Pro Flow) was placed into the selected periodontal pockets using sterile 

College tweezers, with the white end of the strip going into the pocket until gentle resistance 

was detected.  The collection strips were left for 30 seconds prior to being removed and 

immediately read on a pre-calibrated Periotron 8000 (Oraflow Inc) (Chapple et al., 1999).  

This machine allowed the minute volumes of GCF collected on the PerioPaper collection 

strips to be calculated from a standardised calibration curve (Appendix 4).  To ease handling 

of the PerioPaper collection strips a PerioPaper Holder (Oraflow Inc) was used.  The 

Periotron reading was recorded and the collection strips were placed into 0.5ml Eppendorf 

tubes containing 30µl of sterile Phosphate Buffered Saline (PBS), making sure that the white 

filter paper end of the collection strips were immersed in the fluid.  Two collection strips 

from site-matched GCF sample sites were pooled into each Eppendorf, which was then 

placed into an ice bucket prior to elution and storage.  The orange section of the collection 

strips only were handled so that the collected GCF sample was not contaminated.  During 

sampling if there was any bleeding from the pocket or a likelihood of salivary contamination 

the collection strips were discarded.  

  

The GCF was eluted from the collection strips using an adapted soak and centrifugal method 

described by Booth et al. (1998).  The GCF collection strips were incubated in 0.5 ml 

Eppendorf tubes at 4oC for 60 minutes to encourage proteins to elute from the PerioPaper 

collection strips into the PBS.  A hole was then made in the base of the Eppendorf tubes with 

a gauge-25 needle, making sure that the lids of the Eppendorf tubes were open otherwise the 

eluate would be lost.  Fresh needles were used for each sample to prevent cross 

contamination.  The Eppendorf tubes were then placed into 1.5 ml non-stick Eppendorf tubes 

and centrifuged at 10000g for five minutes at 4oC.  A further 30µl of sterile PBS was pipetted 

onto the tops of the collection strips and incubated for a further five minutes at 4oC prior to 

repeating the centrifuge step.  A further 30µl of sterile PBS was added, as above, and the 
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centrifuge step repeated.  The resultant supernatant, in the 1.5ml Eppendorf tubes, was 

aliquoted into two 40µl aliquots (in 0.5 ml non-stick Eppendorf tubes) and stored at -80oC 

prior to assaying.   

 

2.1.9 Periodontal clinical data 

Periodontal clinical data was recorded using the Florida probe system (Florida Probe 

Corporation) in conjunction with a standard laptop computer (Samsung Corporation).  The 

Florida probe is a constant pressure electronic probing system which records pocket depths 

more accurately than standard manual probes.  This is due to the system using a constant 

probing force and it records measurements electronically rather than being judged by eye.  A 

20g Florida Pocket Probe Handpiece was used in this study.  A six point full mouth double 

periodontal pocket chart was recorded for each subject which included the following 

parameters: 

• Periodontal probing depths 

• Gingival margin levels 

• Dichotomous plaque scores 

• Dichotomous bleeding scores 

• Mobility (Miller’s index) 

• Furcation involvement (Hamp et al., 1975) 

One major problem with the Florida probe FP32 software (Florida Probe Corporation) was 

that it assumed that the gingival margin was at or apical to the Amelocemental Junction 

(ACJ).  In circumstances when the gingival margin level was coronal to the ACJ, the software 

recorded the gingival margin at the ACJ, which resulted in the LOA being over-estimated.  

The charts were stored on the laptop computer, but the raw data could also be converted into 

Excel files (Microsoft) using a data converter programme supplied with the Florida probe 

system.  This allowed the data to be analysed using other software. 

 

2.1.10 Clinical study documentation 

As a requirement of the Ethics Committee approval each subject was assigned an anonymous 

reference number.  All of the study documentation (Appendix 1) was kept in sealed A4 

envelopes with only the subject’s reference number on the outside.  All documentation was 
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securely stored in a locked cabinet and only the principal researcher (KJD) had access to this 

information.  The clinical information from the Florida probe was password protected on the 

laptop (Data Protection Act registered). 

 

 

2.1.11 Travelling expenses 

Full travelling expenses and a small inconvenience fee of £5 was paid to each subject as 

requested by the Local Ethics Committee.  This was funded by a grant from the British 

Society of Periodontology (BSP). 

 

2.2 Enzyme-Linked Immunosorbent Assay (ELISA) 

The clinical samples were analysed for various angiogenic and anti-angiogenic factors using 

ELISAs.  The Migration Stimulating Factor (MSF) ELISA was developed in the laboratory 

in collaboration with Dr Katerina Kankova, while commercial ELISA kits were used for all 

of the other factors.  These ELISA kits required optimisation prior to assaying the clinical 

samples. 

 

2.2.1 General DuoSet ELISA Development System protocol 

Commercial ELISA kits (DuoSet ELISA Development System, R & D Systems) were used 

to assay the clinical samples for Angiopoietin-1 (Ang-1), Vascular Endothelial Growth 

Factor (VEGF) and Endostatin. These basic ELISA kits supplied the specific antibodies, 

recombinant factors as standards and Streptavidin-Horseradish Peroxidase (Section 2.53), 

with each kit sharing the same general protocol (supplied by the manufacturer).  Many of 

these kits had not been previously calibrated for use on some of the types of clinical samples 

used in this thesis and so some further optimisation was required (Section 2.2.3).   

 

These indirect sandwich ELISA kits required a two-stage protocol with an initial ELISA plate 

preparation stage, an overnight incubation and then the assaying stage.  Due to these assays 

requiring multiple steps great care was taken to prevent experimental errors.  Potential 

sources of experimental errors included inaccurate pipetting, inadequate washing stages, 

differential plate temperatures and dehydration during incubation stages (Crowther, 2001).  

These ELISA kits required stationary incubation, which resulted in long incubation times at 
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a constant room temperature (air conditioned to 19oC).  During incubation the plates were 

kept away from direct sunlight and machinery to ensure even heating.  However, the air 

conditioning in the laboratory was turned off during washing and pipetting stages to prevent 

drying of the plates. 

 

In all of the assays, colourless BD Falcon Microtest 96-well ELISA Plates (BD Biosciences) 

were used.  For each assay the component reagents were aliquoted and frozen according to 

the manufacturer’s instructions.  The mouse anti-human capture antibodies were diluted to 

the working concentration (Table 2.2) in sterile PBS and 100µl was used to coat each well in 

the ELISA plate.  After pipetting it was important to gently tap the plates to ensure thorough 

mixing and to eradicate any air bubbles.  This was necessary as air bubbles can greatly reduce 

the coverage of the walls of the wells by the assay reagents and reduce the effectiveness of 

washing stages, thus leading to differences between the duplicate wells.  A reverse pipetting 

technique was used to reduce the production of air bubbles during pipetting (Crowther, 2001). 

To prevent dehydration, the ELISA plates were sealed with Parafilm (Alcan Packaging) and 

placed flat into a sealed humidified container (lined with paper towels dampened with 

distilled water). The plates were then incubated overnight at room temperature (air 

conditioned to 19oC for 15 hours).   

 

The next morning the ELISA plate seals were removed and the wells checked for signs of 

dehydration.  If such a change was detected the wells were noted.  The capture antibody was 

then forcibly expelled into a sink and the plate inverted and tapped sharply onto clean paper 

towels to remove as much fluid as possible.  Using a multi-channel micropipette (Gilson) 

each well was washed with 400µl of wash buffer (0.05% v/v Tween 20 in PBS).  Then the 

fluid was again forcibly expelled into a sink and the plate tapped dry onto clean paper towels.  

The washing process was repeated a further two times.  This washing procedure was 

important to remove all of the unbound antibody to ensure good assay performance.   
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Table 2.2 Summary of the ELISA protocol antibodies (capture, secondary and detection) and the recombinant 

human factors. 
 

Factor Capture Antibody Detection Antibody Recombinant Standard 

Factor 

Ang-1 

 

Mouse anti-human Ang-1 

monoclonal antibody (R 

& D Systems) diluted to 

4µg ml-1 in sterile PBS. 

 

No cross-reactivity or 

interference with 

recombinant human:- 

• Ang-2 

• Ang-4 

Biotinylated goat anti-

human  

Ang-1 antibody (R & D 

Systems) diluted to 200ng 

ml-1 in 1% w/v sterile 

BSA. 

Human Ang-1 (R & D 

Systems) diluted in 1% 

w/v sterile BSA to give a 

working range (serial 

dilution) of 10000 to 

156pg ml-1. 

MSF 

 

Mouse anti-human Pep 

Q5.1 monoclonal 

antibody (Moravin 

Biotech) (Schor et al., 

2003) diluted to 10µg ml-1 

in coating buffer (Thermo 

Fischer Scientific Inc). 

 

No cross-reactivity or 

interference with 

recombinant human:- 

• Fibronectin 

Rabbit anti-human Rp 

VSI polyclonal secondary 

antibody (Moravin 

Biotech) diluted to 10µg 

ml-1 in 1% w/v sterile 

BSA. 

 

Goat anti-rabbit HRP 

detection polyclonal 

antibody (Thermo Fisher 

Scientific Inc.) diluted 

1:1000 in 1%  w/v sterile 

BSA. 

Bacterial rhMSF-aa 

(Dundee) diluted in 1% 

w/v sterile BSA to give a 

working range (serial 

dilution) of 200 to 

3.125ng ml-1. 

VEGF 

 

Mouse anti-human VEGF 

monoclonal antibody (R 

& D Systems) diluted to 

1µg ml-1 in sterile PBS.  

Specific for human 

VEGF121 and 165. 

 

No cross-reactivity or 

interference with 

recombinant human:- 

• PIGF 

• VEGF-C 

• VEGF-D 

Biotinylated goat anti-

human VEGF polyclonal 

antibody (R & D 

Systems) diluted to 50ng 

ml-1 in 1% w/v sterile 

BSA. 

Human VEGF (R & D 

Systems) diluted in 1% 

w/v sterile BSA to give a 

working range (serial 

dilution) of 2000 to 

31.25pg ml-1. 

Endostatin 

 

Mouse anti-human 

Endostatin monoclonal 

antibody (R & D 

Systems) diluted to 4µg 

ml-1 in sterile PBS. 

 

No cross-reactivity or 

interference with 

recombinant human:- 

• Ang-2 

• Ephrin-A5/Fc 

Chimera 

• Tie-2/Fc 

Chimera 

Biotinylated goat anti-

human Endostatin 

polyclonal antibody  

(R & D Systems) diluted 

to 100ng ml-1 in 1% w/v 

sterile BSA. 

Human Endostatin (R & 

D Systems) diluted in 1% 

w/v sterile BSA to give a 

working range (serial 

dilution) of 4000 to 

62.5pg ml-1. 
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Prevention of non-specific binding (NSB) of other proteins to the wells in the plates was 

achieved by blocking them by the addition of 300µl of ELISA reagent diluent (1% w/v BSA 

in PBS) to each well and incubating for one hour at room temperature.  The plates were then 

sealed to prevent dehydration in the same way used during the overnight incubation.  The 

plates were then washed using the same protocol as described above. Next the plates were 

incubated with either 100µl per well of the diluted clinical samples or the recombinant factor 

standards dilution (Section 2.2.3 and Table 2.2).  For each assay, clinical samples were 

selected to cover all the study groups and storage times. All of the dilutions were made up in 

the ELISA reagent diluent, including the standards, and each sample was assayed in 

duplicate. Recombinant factors were supplied with the kits and diluted to the recommended 

high standard concentration (Table 2.2).  These were then diluted to give a series of seven 

factor-of-two standard dilutions, using a passing down the line method, with the most 

concentrated being the recommended high standard concentration supplied by the 

manufacturer. This standard dilution series allowed a standard curve to be drawn for each 

factor in order to allow the concentrations of the factors in each clinical sample to be 

calculated.  It was important that a standard curve was done for every plate to compensate 

for the differences in the readings due to the changes in the conditions for each assay run.  

When pipetting the serial dilutions onto the plate, the most dilute serial concentration was 

pipetted first, and after expelling all of the remaining solution in the tip, the same pipette tip 

was used for the next dilution in the series.  This process was repeated up the standard factor 

serial dilutions.  This resulted in efficient plating and a good standard curve.  Two blank 

wells, which only contained ELISA reagent diluent, were used to record the background 

noise of the assay.   

 

Forty duplicate clinical samples could be assayed on each plate.  All dilutions were made up 

in 1.5ml Eppendorf tubes and stored in an ice bucket immediately before use.  The plates 

were sealed and incubated, as before, for two hours at room temperature and then the plates 

were washed as before.  Throughout the assay any unused wells were filled with reagent 

diluent in order to prevent “edge effects” which may affect the readings in the adjacent test 

wells (Crowther, 2001).  
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The factor specific anti-human biotinylated detection antibody was diluted with ELISA 

reagent diluent to the working concentration recommended by the manufacturer (Table 2.2) 

and 100µl was added to each well.  The plates were then sealed and incubated for two hours 

at room temperature and then washed as before. Streptavidin-Horseradish Peroxidase was 

diluted 1 in 200 in ELISA reagent diluent (actual concentration not supplied) and 100µl was 

added to each well.  This was sealed and incubated for 20 minutes at room temperature 

avoiding direct sunlight.  The plates were then washed as before. 

 

Then 100µl of undiluted Tetramethylbenzidine (TMB) Substrate-Chromogen (DAKO 

Corporation) ELISA Substrate Solution was added to each well and incubated for 20 minutes 

at room temperature, again avoiding direct sunlight.  Wells containing any bound factor 

resulted in a blue colour change during this incubation.  After 20 minutes 50µl of Stop 

Solution (2M H2SO4) was added to each well and the wells containing any bound factor 

changed to a yellow colour.  The Optical Density (OD) of each well was immediately read 

using a microplate reader (MRX ELISA Reader, Dynex Technologies) set to 450nm.  This 

machine was wavelength corrected to 630nm.  The average of the duplicate OD readings for 

each standard and clinical sample were calculated and the average zero standard OD (blank 

wells) was subtracted from these to give the actual OD readings. This could be calculated 

automatically by the Dynex Revelation 3.2 software (Dynex Technologies) supplied with the 

microplate reader.  Any sample duplicate readings with a greater than 5% variation were 

discarded and the sample re-assayed.   

 

A summary of this ELISA technique is shown in Figure 2.1.  In order to detect any bound 

factor in the wells the ELISA kits rely on the strong affinity reaction between Avidin and 

Biotin.  The detection antibody is biotinylated and strongly binds to the Avidin component 

of the Streptavidin-Horseradish Peroxidase. The Horseradish Peroxidase (HRP) component 

then converts the TMB substrate solution into a coloured substrate allowing detection by the 

ELISA plate reader. 
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Figure 2.1 A diagram summarising the direct-ELISA protocol. 

 

 

 

 

 

 
 

 

In order to calculate the concentration of the factors in the clinical samples, standard curves 

were produced using Excel (Microsoft Corporation) from the averaged and corrected optical 

density readings generated from the two-fold serial dilutions of recombinant human standard 

factors (Figure 2.2).  Corrected optical density readings refers to the duplicate blank wells, 

containing only reagent diluent (100µl), used to record the background noise of the assays.  

The averaged optical density readings from these blank wells (background noise) were 

subtracted from both the optical density readings from the recombinant standards wells and 

the sample wells to give the final readings.  The mean optical density reading for each 

standard concentration (y-axis) was plotted against the log of the standard concentration (x-

axis) using a four-parameter logistic curve-fit (4th polynomial), as recommended by the 

manufacturer (R & D Systems).  The concentration of the factors could then be calculated 

from the graph using the mathematical formula generated from the graph. The resultant trend 

lines showed a very high level of precision fit to the data points (R2=1.0), with the working 

ranges for each assay largely being within the straight-line aspect of the standard curves.  As 
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the clinical samples were diluted in the ELISA reagent diluent these results were multiplied 

by this dilution factor to give the actual factor concentration in the clinical samples.     

 

 

Figure 2.2 Calibration curves for the ELISA kits: (a) Ang-1, (b) VEGF and (c) Endostain. Optical density 

versus the log of the concentration of recombinant human VEGF (pg ml-1).    
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                 (c) 

 
 

Standard curve plotted to the 4th polynomial as recommended by the manufacturer (R&D Systems), trend line 

fit R2=1. 

 

 

Confidence in the protocol was demonstrated by the very low optical density readings for the 

blank wells (background noise) which suggested there was no significant non-specific 

binding and no additional blocking was required.  It was noted that the background noise for 

the MSF ELISA increased in later assays, probably as a result of the degradation of the MSF 

capture antibody (Chapter 3.4).   

 

Intra-assay variation was examined in two ways, the percentage co-efficient of variation 

between duplicate wells (Table 2.3) and, for some factors, having two or more sets of the 

same sample in different parts of the plate (cross plate variation).  The percentage co-efficient 

of variation between duplicate wells were found to be low in both the serial dilutions of the 

recombinant factors and the clinical samples (range 1.6% to 4.5%), which suggested 

consistent mixing of the samples and accurate pipetting.  Cross plate variation was examined 

for the Endostatin ELISA where six serum samples were assayed in different parts of the 

same plate (in duplicates), resulting in an overall mean co-efficient of variation of 5.4% 

across all the samples.  Cross plate variation was also examined in some of the MSF ELISAs, 

where one of the samples was plated in different parts of the plates with co-efficient of 

variation ranging from 3.8% to 9.1%.  These findings are consistent with acceptable levels 

of intra-assay variation of 10% or below.  In order to ensure consistency in the resultant 
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concentrations generated between plates reference serial dilutions of the recombinant factors 

were used (Table 2.2).  Although pooled clinical samples were not routinely used between 

plates, inter-assay variation was examined by assessing the co-efficient of variation of the 

highest concentration of recombinant factor (Ang-1 19.9%; MSF 4.9%; VEGF 12.9%; 

Endostatin 14.3%).  In all of the ELISA kits the highest recombinant factor optical density 

reading was found to increase near to the use by date of the kits, leading to increased 

variation.  For the MSF ELISA, some clinical samples were repeated between plates with co-

efficient of variation ranging from 9.1% to 11.6%.  These findings are generally consistent 

with acceptable levels of inter-assay variation of 15% or below.   

 

Table 2.3 Co-efficient of variation for each factor ELISA kit between: (i) duplicate wells for the serial dilution 

of the recombinant factors and (ii) multiple serum, unstimulated and stimulated saliva samples. 

 
Factor Co-efficient of Variation (%+SD) 

 

Recombinant 

Standards  

Serum Unstimulated 

Saliva 

Stimulated 

Saliva 

Ang-1 

 

2.6% 1.6% 2.3% 2.2% 

Endostatin 

 

2.9% 2.2% - - 

MSF 

 

1.8% 2.1% - - 

VEGF 

 

3.8% 1.9% 3.1% 4.5% 

 

 

The limit of detection (LOD) of the assays was defined as the analyte concentration which 

was equivalent to the mean optical density reading of the dilution medium plus three standard 

deviations (Steiner et al., 2000, Crowther, 2001, Hosseini et al., 2018).  Using data from five 

independent plates the maximum sensitivity of each assay was calculated (Table 2.4). For 

each ELISA the LOD of the assay was found to be above the lowest point in the working 

range quoted by the manufacturer, although this may be accounted for by the different 

definitions used to calculate LOD.   
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Table 2.4 Comparison of the ELISA kits limit of detection (manufacturer and calculated). 

 
Factor Sensitivity (LOD) (pg ml-1) 

Manufacturer Calculated 

Ang-1 

 

156pg ml-1 370pg ml-1 

Endostatin 

 

62.5pg ml-1 148pg ml-1 

MSF 

 

- 2ng ml-1* 

VEGF 

 

31.25pg ml-1   81pg ml-1 

*ELISA developed in-house; Personal communication Dr Katerina Kankova. 

 

2.2.2 MSF ELISA protocol 

The MSF indirect sandwich ELISA was developed and optimised for use with serum samples 

by Dr Katerina Kankova and the protocol was similar to the general ELISA protocol outlined 

in Section 2.2.1.  As this was a non-commercial ELISA, more extensive optimisation was 

required prior to assaying the clinical samples (Chapter 3.4.2).  In this assay colourless Costar 

3590 96-well ELISA plates (Corning Incorporated) were used. The plate washing procedure 

consisted of consecutive washes, 200μl per well, of PBS, twice with PBST (0.05% v/v) and 

finally with PBS.  The plates were blocked with 1% w/v sterile BSA buffer under constant 

orbital shaking for 1 hour, and the subsequent antibodies (Table 2.2) were all diluted in 1% 

w/v sterile BSA and incubated (stationary) at room temperature (air conditioned to 19oC) for 

90 minutes.  Refer to Section 2.2.3 for details regarding the optimisation for the clinical 

samples.  The TMB (DAKO) step consisted of the addition of 50μl per well and the plate 

was placed onto the orbital shaker for 10 minutes prior to the addition of the stop solution.  

The OD was read using the Orion II Microplate Luminometer (Berthold Detection Systems) 

set to 450nm and 570 nm (for reference).  

 

2.2.3  Optimisation of the ELISAs with the clinical samples 

An initial optimisation procedure was carried out to assess the performance of each ELISA 

kit in relation to both the manufacturer’s performance data and to ensure optimal performance 

with the clinical samples collected.  Optimisation was carried out on a broad range of samples 

from each study group in order to account for possible variations in factor levels due to 

individual variation, age effects and storage time.  Serial dilutions of serum and stimulated 

saliva samples were assessed to find the sample dilutions which consistently resulted in OD 
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readings (averaged and corrected) within the straight-line aspect of the standard curves for 

each factor (Table 2.5).  Dilutions less than 1:10 were not examined due to the high risk of 

non-specific binding with the serum samples (Personal communication: Dr Richard Kay) and 

the saliva samples being too viscous to accurately pipette and to homogenise. Stimulated 

saliva was used for the optimisation of the various ELISAs due to the small volumes of 

unstimulated saliva harvested from most subjects.     

 
Table 2.5 Optimised clinical sample dilutions (serum and stimulated saliva) for the ELISA kits.  
 

Factor Ang-1 MSF VEGF Endostatin 

 

Serum 1:10 dilution in 

1% sterile BSA 

 

1:100 dilution in 

sterile PBS-T-PI 

1:10 dilution in 

1% sterile BSA 

1:20 dilution in 

1% sterile BSA 

Stimulated 

Saliva 

1:10 dilution in 

1% sterile BSA 

 

1:10 dilution in 

sterile PBS-T-PI 

1:10 dilution in 

1% sterile BSA 

1:10 dilution in 

1% sterile BSA 

 

Key: 

BSA – Bovine Serum Albumin 
PBS-T-PI – Phosphate Buffered Saline, 0.5% v/v Tween 20, Protease Inhibitor (Roche) 

 

 

2.3 Immunohistochemistry – Periapical granuloma study       

2.3.1 Specimens 

A total of 44 formalin-fixed paraffin-embedded sections were obtained from the archives of 

the Oral Pathology laboratory, University of Dundee and from the University of Münster, 

Germany.  These samples were collected under the Ethics regulations current at the time.  

The specimens included 13 chronic periapical granulomas (PG), obtained after extraction or 

periradicular surgery, and 13 normal periodontal ligaments (PDL) obtained from extracted 

teeth.  In addition, four PDL specimens from adjacent non-endodontically involved teeth 

were also examined.  Histologically, the chronic PG specimens consisted of granulomatous 

tissue containing varying degrees of inflammatory cell infiltrate (lymphocytes, plasma cells 

and macrophages), fibroblasts, vessels and in some specimens epithelial cells. Fourteen oral 

squamous cell carcinoma (OSCC) specimens, a tissue known to have high angiogenic 

activity, were used as a positive control.  Six of the OSCC sections showed histologically 

normal peri-tumour oral mucosa (NOM) adjacent to the tumours.  This normal tissue was 

used as a control for the OSCC.  Consecutive sections from the middle third of each specimen 

were alternately stained with CD105, MSF and vWF antibodies.  At least two sections from 
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each specimen were stained with each antibody.  A limited number (up to six) of random 

sections from other areas of the specimens were also examined for a small number (n=10) of 

specimens. No significant histological variation was observed between the replicate sections. 

All laboratory work was carried out by the principal researcher (KJD) unless otherwise 

stated. 

  

2.3.2 General immunohistochemistry staining protocol 

Specimens were sectioned at 5µm using a Microtome (Microm HM320, GmbH) and 

mounted on silane-coated slides (Superfrost microscope slides, Shandon).  The sections were 

placed into a metal slide rack with duplicate slides placed apart in order to check for 

differences due to the processing procedure. Slides were deparaffinised by placing twice in 

100% xylene for five minutes and then rehydrating for two minutes in 100% and then 95% 

ethanol followed by distilled water.  Endogenous peroxidase activity was blocked by 

immersion of the slides into 3% v/v hydrogen peroxide solution in PBS (40ml 30% hydrogen 

peroxide + 360ml PBS) for 30 minutes followed by washing them twice in PBS for five 

minutes, with all of these stages being carried out on a rocking platform. The slides were 

carefully dried using paper tissues, without touching the actual tissue section, and never 

allowing the tissue sections to dry out.  Individual tissue sections were then ringed with a 

Dako pen (DakoCytomation) to restrict the loss of reagents from the tissue sections during 

incubation. Antigen retrieval was enhanced by use of one of three types of pre-treatment 

detailed below (see section 2.3.3).  Slides were then washed twice for five minutes in PBS 

and following this, the Dako pen ring was examined and any defects in continuity were 

repaired as required. 

 

Non-specific binding was blocked using 100% v/v normal goat serum (NGS) (Diagnostics 

Scotland) for 20 minutes in a humidified container at room temperature.  In all of the 

incubation steps in this protocol the actual volume of reagents used depended on the size of 

the tissue section (30µl for small sections, 100µl for standard sections and 250µl for large 

sections).  All of the incubations were carried out in sealed humidified plastic containers 

lined with damp paper (distilled water) at room temperature, unless otherwise stated.   This 

was followed by two further five-minute washes in PBS.  A further blocking stage was 
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carried out using an Avidin-Biotin Blocking kit (Vector Labs Ltd).  This involved two 15 

minute incubations, the first in Avidin D (bottle A) and the second in Biotin (bottle B), and 

between these two incubations the sections were washed with PBS from a wash bottle and 

then gently dried with tissue paper.  The Biotin was tipped off, the sections dried with tissue 

paper and the sections were then incubated with the primary antibody (CD105, MSF or vWF) 

overnight at 4oC in sealed humidified containers (16 hours).  For the negative control 

sections, mouse IgG (Dako) was used at a dilution equal to the primary antibody protein 

levels in the test sections.  Due to the large number of sections used, staining was carried out 

on different occasions, so a positive standardised control slide was used to compare the 

staining intensity between staining runs.  This quality control measure allowed staining to be 

compared between staining runs.  Throughout the protocols all antibody dilutions were made 

up and placed in ice immediately, prior to use. 

 

The next morning the primary antibody was washed off using PBS from a wash bottle 

followed by two five-minute washes in 0.05% v/v Tween 20 and a five-minute wash in PBS.  

The sections were dried with paper tissues as before.  A further blocking stage was carried 

out by incubating with 100% NGS for 10 minutes.  The NGS was tipped off and tissue paper 

was used to remove the majority of the serum. Then the slides were incubated for 40 minutes 

with the biotinylated secondary antibody (Vector Labs Ltd) and during this incubation the 

Avidin-Biotin peroxidase ABC complex (Vector Labs Ltd) was prepared.  This stage was 

necessary as this complex must be made up at least 30 minutes prior to use at room 

temperature.  The secondary antibody was washed off the slides and a further Tween 20 and 

PBS wash sequence was repeated as above and the slides dried with paper tissues.  The slides 

were incubated for 30 minutes with the ABC complex followed by the Tween 20 and PBS 

wash sequence.  The slides were not dried after this but were immediately placed into 0.04% 

v/v DAB solution (3,3’ diaminobenzidine, Sigma) in PBS for 5 minutes on a rocking 

platform.  This process allowed the visualisation of the antibody complex.  A small quantity 

of the ABC complex was retained and 200µl of DAB solution was added to it in order to 

check that the DAB solution was working.  The slides were then washed in running tap water 

for two minutes and then counterstained by being placed into Mayer’s haematoxylin (TBS) 

for 30 seconds.  The slides were again washed for two minutes in running tap water and then 



127 
 

placed in Blueing agent (Thermo Shandon) for one minute followed by another two-minute 

wash in running tap water.  The sections were then dehydrated by placing in 96% v/v and 

then 100% ethanol for one minute followed by a further two minutes in 100% ethanol and 

finally five minutes in Xylene.  The slides were remounted using DPX microscopy mountant 

(BDH Laboratory Supplies), glass cover slips were applied and the slides were dried at 37oC 

for 3-4 hours.  Figure 2.3 shows a summary of the immunohistochemistry protocol described 

above.  

 
Figure 2.3 Summary diagram of the immunohistochemistry protocol.  

 
 

2.3.3 Pre-treatments 

Three types of pre-treatments were used to enhance antigen retrieval, either by heat treatment 

(Autoclave and Microwave pre-treatments) in fresh citrate buffer (2.1g citric acid dissolved 

in 1L distilled water and adjusted to pH6 with 1M NaOH) or by the enzyme Protease XXIV 

(Sigma-Aldrich). 
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The Autoclave pre-treatment required the slides to be placed into a metal rack, with the rest 

of the rack being filled with blank slides to ensure even heating.  This rack was placed into a 

plastic container of citrate buffer solution, ensuring that the slides were completely 

immersed.  A large plastic beaker was placed upside down in the autoclave and the plastic 

container containing the slides placed on top of it.  The slides were autoclaved for 11 minutes 

at 1260C (Prestige Medical Series 2100 Clinical Autoclave) with the whole process taking 

about 45 minutes.  Once cool enough to handle, the sections were washed twice in distilled 

water for five minutes on a rocking platform. 

 

The Microwave pre-treatment required the slides to be placed into a plastic rack, with the 

rest of the rack being filled with blank slides to ensure even heating.  This rack was placed 

into a plastic container of citrate buffer solution, ensuring that the slides were completely 

immersed, and the plastic container covered in cling film.  The slides were then microwaved 

(Tecnolec Microwave T250T 750W) for five minutes and then the citrate buffer was topped 

up before another five-minute microwave treatment.  The cling film was removed and the 

buffer was allowed to cool for ten minutes before transferring the slides into a metal rack, 

which was placed in distilled water.  The sections were washed twice in distilled water for 

five minutes on a rocking platform. 

 

The Protease XXIV enzymatic pre-treatment was carried out by adding 100µl 0.01% w/v 

Protease XXIV (Sigma) and incubating for 20 minutes at 37oC in a humidified sealed box 

lined with damp paper (distilled water).  The Protease XXIV was then carefully washed off 

with PBS from a wash bottle, while being careful not to wash directly onto the tissue. 

 

2.3.4 MSF immunohistochemistry staining protocol 

The protocol used for the MSF expression was based on the general protocol above (Chapter 

4.3.4 details the optimisation process adopted).  The final MSF staining protocol used the 

MSF 7.1 Ascites Fluid (AF) mouse anti-human monoclonal primary antibody (Moravin 

Biotech) diluted 1:1200 in PBS.  The secondary antibody was a goat anti-mouse biotinylated 

secondary antibody (Vector Labs) diluted in a 1 in 5 dilution of NGS in PBS to give a working 

concentration of 9µg ml-1.  No pre-treatment was used. 
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2.3.5 vWF immunohistochemistry staining protocol 

A similar protocol was used for vWF except that 0.01% w/v Protease XXIV (Sigma) pre-

treatment was used.  No Avidin-Biotin blocking stage was done and the primary monoclonal 

antibody was a vWF IgG rabbit anti-human antibody (stock 1.5 mg ml-1) diluted 1:3000 

(DAKO) in PBS.  The negative control was a rabbit IgG (DAKO) diluted 1 in 10500 to give 

the equivalent antibody proteins levels as the test samples.  The secondary antibody was a 

biotinylated goat anti-rabbit antibody (Vector Labs) diluted in a 1 in 5 dilution of NGS in 

PBS to give a working concentration 9µg ml-1. 

 

2.3.6 CD105 (Endoglin) immunohistochemistry staining protocol 

The protocol for the CD105 also used an autoclave pre-treatment step. The primary antibody 

was mouse anti-human CD105 monoclonal antibody (Novocasta) diluted 1 in 75 in PBS.  

The secondary antibody was a biotinylated goat anti-mouse IgG (Vector Labs) diluted in a 1 

in 5 dilution of NGS in PBS to give a working concentration 9µg ml-1.   

          

2.3.7 Quantification of antibody staining 

The intensity of the antibody staining was graded using pre-determined in-house calibration 

slides as either no staining (-), weak staining (+), moderate (++) or strong MSF (+++) staining 

using a standard binocular light microscope (Olympus BH2 Binocular Phase Contrast 

Microscope, Olympus America Inc).  The slides were assessed at low magnification (x100), 

to get a general overall staining profile, and at high magnification (x200-x400) to assess the 

staining of the various cell types.  The slides were graded by two to four independent 

observers and the final grades were obtained by consensus.  

 

2.3.8 Quantification of vascularity 

Modified standard light microscopy stereological methods were used to measure the 

Microvascular volume (MVV), average-Microvascular Density (MVD) and highest-

Microvascular Density (h-MVD) for the vWF and CD105 stained sections using an eyepiece 

graticule (Mertz 100 point) (Chandrachud et al., 1997, Schor et al., 1998b). Initial training 

for MVV and MVD assessment was carried out using three standardised vWF stained human 

papilloma training slides (h-MVD was introduced later after the introduction of oral 

squamous cell carcinoma positive control sections).  Instead of the standard 100 point counts 
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at x200 magnification, 25 point counts were carried out at x400 magnification (Davey et al., 

2008).  This was done to allow meaningful counts from the very thin periodontal ligament 

sections (Chapter 4.3.2.1).  Fifteen random fields were counted for each section (375 points) 

for both the normal periodontal ligament (PDL) sections and the periapical granuloma (PG) 

sections.  The final methodology was as follows:  

(i) Microvascular volume (MVV):  Stained vessel walls which coincided with the 

graticule points were counted in 15 random fields per section (375 points) and the 

results expressed as percentage, taking the mean (+ standard deviation (SD)) for 

the 15 fields. 

(ii) Average-Microvascular Density (MVD): Using the same grid, magnification and 

number of random fields, all stained vessels that fell within the area of the grid 

were counted.  Vessels that touched the margins of the grid were only counted if 

they touched the upper or right-hand margins (unbiased counting frame).  The 

results were converted to mean vessels per millimetre square (mm-2) (+ SD) for 

the 15 fields.  

(iii) Highest-Microvascular Density (h-MVD): The area of highest microvascular 

density was located by scanning the section at x100 magnification.  Three separate 

fields were counted in the same way as average-MVD, and the mean value was 

taken as the h-MVD and expressed as the number of vessels per mm2 (+SD).  No 

vascular hot spots were found in the PG and PDL sections, so h-MVD was 

calculated as the mean of the highest three MVD field values found per section. 

 

Following initial training, the study sections were quantified by two to four independent 

observers and any sections with an inter-observer variation above 15% were recounted and 

agreed by consensus.  Intra-observer variation was assessed by one observer (KJD) 

recounting all the sections on two separate occasions.  

 

2.3.9 Assessment of inflammatory infiltration 

One slide from each tissue block was stained with Haematoxylin (TBS) and Eosin (TBS) (H 

and E) using a standard protocol (Appendix 5).  The extent of the inflammatory infiltration 

of each section was independently assessed by two examiners using four pre-determined 
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calibration H and E stained slides.  The slides were scored either as Grade 0 (no inflammatory 

infiltrate), Grade 1 (mild degree of inflammatory infiltrate), Grade 2 (moderate degree of 

inflammatory infiltrate) or Grade 3 (Severe inflammatory infiltration).  Precautions to 

minimise inter and intra-observer variation was taken (Chapter 4.4.1).  The final scores were 

agreed by consensus. 

 

2.4 Statistical analysis 

All data was analysed at the time of the study using non-parametric tests with SPSS version 

15 (SPSS Inc.).  At the time of completion of the thesis the data was reanalysed using SPSS 

version 22 (IBM).  Data for individual groups were pooled and means, standard deviations 

(SD), medians and interquartile ranges were determined.  Two-way analysis of variance 

(ANOVA) and Bonferroni correction were used to compare the angiogenic factor levels in 

the multiple groups in the clinical samples. Diagnostic statistical analysis of the data was 

carried using Levene’s, Standardized Residual and Cook’s Distance tests.  When appropriate 

a Bootstrapping methodology was carried out to ensure accuracy of the 95% confidence 

intervals.  Comparisons between any two groups were carried out using Mann-Whitney U-

test and correlations using Spearman rank correlation.  The Chi-square test was used to 

compare frequencies.  Intra- and inter-observer variation were analysed using Wilcoxon 

paired sample test.  Results were considered to be significant at the 95% level of confidence 

(p<0.05).   

 

Concentrations of angiogenic factors levels in clinical samples quoted in the literature (e.g. 

in serum, plasma, GCF and saliva), are by convention, stated in pg ml-1. This convention has 

been used in thesis, unless otherwise stated. 
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2.5 Hardware, software and reagents 

 

2.5.1 General hardware 

 

Florida Probe System: Including 20g Florida Pocket Probe Handpiece. Florida Probe 

Corporation, Gainesville FL 32606, USA.  

 

Microm HM320 Microtome: GmbH, Heidelberg 36900, Germany. 

 

Microwave T250T 750W Oven: Tecnolec, Malaysia. 

 

MRX ELISA Reader: Dynex Technologies, Chantilly, Virginia 20151-1621 USA. 

 

Olympus BH2 Binocular Phase Contrast Microscope: Olympus America Inc, Center 

Valley, Pennsylvania 18034-0610 USA. 

 

Orion II Microplate Luminometer: Berthold Detection Systems, Pforzheim D-75173, 

Germany. 

  

Periotron 8000: Oraflow Inc, Plainview, New York, USA.  Calibrated every three months 

with a standardised serum according to the manufacturer’s recommendations. 

 

Prestige Medical Series 2100 Clinical Autoclave: Prestige Medical Limited, Blackburn, 

Lancashire, UK. 

 

Samsung V20 Laptop computer: Samsung Corporation, Suwon City, Kyungki-Do, Korea.   

 

 

2.5.2 Software packages 

 

Access XP: Database package, Microsoft Corporation, Redmond, WA 98052-6399, USA. 

 

Dynex Revelation 3.2: ELISA plate reader software, Dynex Technologies, Chantilly, 

Virginia 20151-1621 USA. 

 

Excel versions 97-2003 and 2013: Microsoft Corporation, Redmond, WA 98052-6399, 

USA. 

 

G*Power: Statistical package (power calculations), version 3.1.9.7, Heinrich Heine 

University, Düsseldorf, Germany. 

 https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-

arbeitspsychologie/gpower.html 

  

FP32: Periodontal Charting Programme, Florida Probe Corporation, Gainesville, FL 32606, 

USA. 

 

https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower.html
https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower.html
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Simplicity 4.02: Orion II Luminometer plate reader software, Berthold Detection Systems, 

Pforzheim D-75173, Germany. 

 

SPSS version 15: Statistical package for the Social Sciences (SPSS 15), SPSS Inc., Chicago, 

IL, USA. 

 

SPSS version 25: IBM SPSS statistics for Windows, version 25.0. IBM Corp., Armonk, 

New York, USA. 

 

 

2.5.3 Antibodies and recombinant human protein standards 

 

CD105 Mouse Anti-Human Monoclonal Antibody: Novocasta, Newcastle upon Tyne, 

UK. 1.5mg ml-1 stock diluted 1:5 NGS:PBS to give a working concentration of 9µg ml-1. 

         

DuoSet ELISA Development System kits: R & D Systems Inc., Minneapolis, MN 554 13, 

USA. See Table 2.2. 

 

Goat Anti-Mouse Biotinylated Secondary Antibody: Vector Labs Ltd, Burlingame, USA. 

1.5mg ml-1 stock diluted 1:5 NGS:PBS to give a working concentration of 9µg ml-1. 

 

Goat Anti-Rabbit Biotinylated Secondary Antibody: Vector Labs, Burlingame, USA. 

1.5mg ml-1 stock diluted 1:5 NGS:PBS to give a working concentration of 9µg ml-1. 

 

Goat Anti-Rabbit IgG HRP Conjugate: Thermo Fisher Scientific Inc, PO Box 117, 

Rockford, IL 61105, USA.  0.8mg ml-1 stock diluted 1:1000 in dried milk buffer or 1% w/v 

BSA. 

 

Mouse IgG Negative Control: Dako, Glostrup, Denmark.  Diluted in PBS to give a protein 

equivalence to the primary antibody used. 

 

MSF 7.1AF: Mouse anti-human monoclonal antibody, Moravin Biotech, Brno, Czech 

Republic.  Diluted 1:1200 in PBS. 

 

MSF Pep Q 5.1: Mouse anti-human monoclonal antibody raised against the IGD region of 

MSF.  Batch 5 group1.  Moravin Biotech, Brno, Czech Republic.  2.25mg ml-1 stock diluted 

to a working concentration of 10μg ml-1 in either 1% w/v dried milk or 1% w/v BSA buffer. 

 

MSF RpVSI: Rabbit anti-human polyclonal antibody raised against the MSF unique C-

terminal 10 amino acid sequence (VSIPPRNLGY).  Moravin Biotech, Brno, Czech Republic. 

4.92mg ml-1 stock diluted to a working concentration of 16.7μl ml-1 in either 1% w/v dried 

milk or 1% w/v BSA buffer. 

 

Rabbit IgG Negative Control: DAKO, Glostrup, Denmark. 
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Recombinant MSF: Bacterial rMSF-aa Batch 7.  University of Dundee.  30μg ml-1 diluted 

in blocking buffer to give a working range of 200 to 3.125ng ml-1. 
 

vWF IgG Rabbit Anti-Human Monoclonal Antibody: DAKO, Glostrup, Denmark. 

 

 

2.5.4 Standard buffers and reagents 

 

Avidin-Biotin Blocking kit: Vector Labs Ltd, Peterborough, UK. 

 

ABC Complex: Vector Labs Ltd, Peterborough, UK.  12µl of each reagent per ml PBS. [36µl 

reagent A + 36µl reagent B + 3ml PBS]. Must be made up at least 30 minutes prior to use 

(room temperature). 

 

Blueing Agent: Thermo Shandon, Runcorn, Cheshire, UK. 

 

Bovine Serum Albumin (BSA): Sigma-Aldrich Co, PO Box 14508, St Louis MO 63178, 

USA. 

 

Citrate Buffer: 9ml 0.1M Citric acid + 41ml 0.1M Sodium citrate + 10 drops of Conc. 

Sodium hydroxide + 450ml distilled water + check pH at pH6. 

 

DAB Solution (3,3’ diaminobenzidine): Sigma, Gillingham, UK. 0.04% in PBS. 400ml 

PBS + 400µl 30% H2O2 + 2 x 800µl 10% DAB aliquots. 

 

DPX Microscopy Mountant: BDH Laboratory Supplies, Poole, Dorset, UK. 

 

Dried Milk Buffer: 1% w/v in PBST buffer. Marvel dried skimmed milk, Premier 

International Foods, Spalding, Lincolnshire, UK.   

 

ELISA Reagent Diluent: 1% w/v BSA in PBS, pH 7.2-7.4, 0.2µm filtered 1% w/v BSA in 

PBS, pH 7.2-7.4, 0.2µm filtered. 

   - 2g BSA in 200ml of distilled water with 1 PBS tablet. 

 

ELISA Stop Solution: 2M H2SO4.  5.46 ml Sulphuric acid (18.3 Molar) in 94.54ml distilled 

water. 

 

ELISA Streptavidin-HRP (R&D Systems Part 890803): 1ml of Streptavidin conjugated 

to horseradish-peroxidase.  Must not be frozen.  Diluted 1 in 200 in ELISA reagent diluent. 

 

ELISA Substrate Solution: TMB (Tetramethylbenzidine) + Substrate-Chromogen.  DAKO 

Corporation, Carpinteria CA, USA.  

 

Eosin: TBS, Skelmersdale, UK. 

 

Ethanol: BDH Laboratory Supplies, Poole, Dorset, UK. 
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Hydrogen Peroxide 30%: Sigma-Aldrich Co., St Louis Mo 63103, USA.  

 

Mayer’s haematoxylin: TBS, Skelmersdale, UK. 

 

MSF Coating Buffer: BupH 0.2M Carbonate-Bicarbonate buffer pH 9.4.  Dissolve 1 pouch 

in 500ml distilled water. Filtered. Thermo Fisher Scientific Inc, PO Box 117, Rockford IL 

61105, USA.  

 

Normal Goat Serum: Diagnostics Scotland, Law Hospital, Carluke, UK. 

 

PBS: 137 mM NaCl, 2.7mM KCl, 8.1mM Na2HPO4, 1.5 mM KH2P04, pH 7.2-7.4. Sigma-

Aldrich Co, PO Box 14508, St Louis MO 63178, USA.   

 

Protease XXIV: Sigma-Aldrich, Gillingham, UK.  Diluted in PBS 1% stock to give 0.01% 

working concentration. 

 

Protease Inhibitor Cocktail Tablets: EDTA-free.  Dilute in 10ml filtered PBS or PBST.  

Roche Diagnostics GmbH, Mannheim +49 621 75 90, Germany.  

 

Tween 20 Washing Buffer (PBST): Sigma-Aldrich Co, PO Box 14508, St Louis MO 

63178, USA.  Diluted to 0.05% in PBS, pH 7.2-7.4. 

- 2 litres PBS + 1ml Tween 20. 

 

Xylene: BDH Laboratory Supplies, Poole, Dorset, UK. 

 

 

 

2.5.5 General laboratory plasticware/consumables 

 

BD Falcon Microtest 96-well ELISA Plate: colourless enhanced surface. BD Biosciences, 

2 Oak Park, Bedford MA 01730, USA.  

 

BD Vacutainer System: Becton Dickinson and Company, Franklin Lakes, NJ 07417, USA. 

 

Costar 3590 96-well ELISA Plate: colourless high binding polystyrene. Corning 

Incorporated, Corning NY 14831, USA.  

 

Dako Pen: DAKO Corporation, Carpinteria CA, USA.  

 

Eppendorf 0.5ml and 1.5ml Non-stick Microtubes: Alpha Laboratories Ltd, Eastleigh, 

Hampshire, UK. 

 

Falcon 15ml Polypropylene Conical Tubes: Becton Dickinson and Company, Franklin 

Lakes, NJ 07417, USA. 

 

Filter 0.45μm Membranes: Millipore Corporation, Bedford MA 01730, USA. 
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Parafilm: Alcan Packaging, Neenah WI 54956, USA. 

 

PerioPaper GCF Collection Strips: Pro Flow, Amityville, New York 11701, USA. LOT 

6178. 

 

Slide Cover Glass Slips (22x22mm and 22x32mm): VWR International, Lutterworth, 

Leicestershire, UK. 

 

Sterilin Bijou 7ml Containers: Barloworld Scientific Ltd, Stone, Staffordshire, UK. 

 

Sterilin Universal Containers: Barloworld Scientific Ltd, Stone, Staffordshire, UK. 

 

Superfrost microscope slides: Shandon, Cheshire, UK. 
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Chapter 3  

Angiogenic Factor Levels in Oral Health and Periodontal 

Disease 
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3.1 Aims of the study 

The aims of this study were: 

1. To determine concentrations of Ang-1, MSF, VEGF and endostatin in human serum 

and saliva (unstimulated and stimulated saliva). 

2. To determine MSF concentrations in GCF. 

3. To investigate whether Ang-1, MSF, VEGF and endostatin concentrations in serum 

and saliva, including MSF concentrations in GCF, are significantly different between 

periodontal health and severe periodontitis. 

4. To investigate whether Ang-1, MSF, VEGF and endostatin concentrations in serum 

and saliva, including MSF concentrations in GCF, are significantly altered in smokers 

and in patients with diabetes, compared with samples from matched healthy controls. 

5. To explore the relationship between endostatin and the pro-angiogenic factors  

Ang-1, MSF and VEGF. 

 

3.2 Methods 

Details of the materials and methods used in this study are outlined in Chapter 2.2. 

 

3.3 Angiopoietin-1 (Ang-1): Levels in Oral Health and Periodontal Disease 

 

3.3.1 Background 

3.3.1.1 Ang-1 levels in serum and plasma 

Serum and plasma concentrations of the pro-angiogenic factor Ang-1 have been reported in 

a variety of human pathological conditions, in comparison to healthy control subjects 

(Chapter 1.5.3.2). Significantly raised serum and plasma Ang-1 concentrations, in 

comparison with healthy control subjects, have been reported in breast cancer (Caine et al., 

2003), proliferative sickle retinopathy (Mohan et al., 2005) and in pregnancy (Nadar et al., 

2005) (Table 3.1).  However, some studies have reported no significant differences in       

Ang-1 levels, for example in prostate cancer (Caine et al., 2003) and sickle cell disease (Duits 

et al., 2006), while significantly reduced concentrations has been reported in thyroid cancer 

(Niedzwiecki et al., 2006).  
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Table 3.1 shows a representative selection of publications describing serum Ang-1 

concentrations in healthy control subjects and provides a baseline level to compare with the 

subjects examined in this thesis.  Currently, there have been no publications which have 

compared serum Ang-1 concentrations in periodontal health with periodontitis, or whether 

smoking or diabetes have any additional effects on serum Ang-1 levels.   

 

3.3.1.2 Ang-1 levels in saliva and GCF 

Currently no publications have reported Ang-1 levels in saliva or GCF either in periodontal 

health or severe periodontitis, although two studies have examined Ang-1 levels in GCF 

following periodontal surgery (Rakmanee et al., 2010, Rakmanee et al., 2019).  Rakmanee et 

al. (2010) studied GCF levels of Ang-1 (total protein levels) at periodontally healthy sites 

(n=15) and compared this with periodontitis sites seven days post periodontal surgery (n=15).  

Significantly higher GCF Ang-1 levels were found at surgical sites compared with healthy 

control sites in the same subjects (p<0.05).  In a more recent study, Rakmanee et al. (2019) 

carried out a 12 month longitudinal study in patients with aggressive periodontitis (1999 

Periodontal classification (Lang et al., 1999)) who underwent either guided tissue 

regeneration (GTR) or conventional access flap (AF) surgery (n=18 in both groups).  In both 

types of surgery, maximum GCF levels of Ang-1 were found 7 days post-surgery, after which 

the levels returned to baseline levels.  GCF levels of Ang-1 (total protein per site) was 

significantly higher in the GTR group 30 days post-surgery compared with the healthy 

controls.  However, at 6 months there were no significant differences in total GCF Ang-1 

levels between the GTR or AF sites.  Neither study examined GCF Ang-1 concentrations in 

periodontal health compared with conventional periodontitis.  
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Table 3.1 A representative selection of publications for Ang-1 concentrations in human serum and plasma. 

 
SERUM PLASMA 

Duits et al. (2006) 

• Healthy controls (n=35) mean=39109pg ml-1 

• Sickle cell disease (n=23) mean=29136pg ml-1 

• No significant difference (p=0.13) 

 

 

Caine et al. (2003) 

• Healthy female controls (n=12) mean 4ng ml-1 

• Breast cancer (n=30) mean=15.5ng ml-1 

• Significantly higher Ang-1 concentration in breast 

cancer> control (p=0.0005) 

• Prostate cancer (n=30) mean 8ng ml-1; healthy male 

controls (n=12) mean 8ng ml-1 

• No significant difference between prostate cancer and 

healthy controls (p=0.072) 

• Significantly higher concentration in male healthy 

controls versus female (p=0.0073) 

Niedzwiecki  et al. (2006) 

• Healthy controls (n=27) mean=51108+3084pg ml-1 

(SE) 

• Thyroid cancers patients (n=52) mean=29307+2305pg 

ml-1 (SE) 

• Significantly lower Ang-1 concentrations in thyroid 

cancer patients than controls (p<0.003) 

 

Nadar et al. (2005) 

• Healthy non-pregnant controls (n=30) mean=3ng ml-1 

• Healthy pregnant (n=64) mean=8ng ml-1 

• Pregnancy hypertension (n=37) mean=15ng ml-1 

• Pre-eclampsia (n=35) mean=23ng ml-1 

• Significantly increased Ang-1 concentrations of all 

pregnancy groups compared with healthy non-pregnant 

controls (p<0.001) 

Iribarren et al. (2011) 

• Healthy controls (n=345) median=32.5ng ml-1 

(IQR=12.7) 

• Acute myocardial infarction (n=347) median =33.1ng 

ml-1 (IQR 13.6)          

• No significant difference in serum Ang-1 concentration 

in acute myocardial infarction group compared with 

healthy controls (p=0.52) 

Mohan et al. (2005)  

• Healthy controls (n=23) mean=0.5ng ml-1 (range 0.5-

2.5ng ml-1) 

• Proliferative sickle retinopathy (n=24) mean=2.2ng ml-1 

(range 1.0-11.4ng ml-1) 

• Significantly increased Ang-1 concentrations in 

proliferative sickle retinopathy compared with healthy 

controls (p=0.0004) 

Guveli et al. (2016) 

• Healthy controls (n=20) median=41.65pg ml-1 

(min=9.8; max=86.9pg ml-1)        

• Nasopharynx cancer (n=40) median=33.35pg ml-1 

(min=11.8; max=128.3pg ml-1)       

• Larynx cancer (n=20) median=42pg ml-1 (min=18.1; 

max=109.8pg ml-1)      

• Significantly raised Ang-1 concentration in advanced 

nasopharyngeal cancers compared with healthy controls 

and early stages of tumours 

X 

Data from manufacturer  

• Healthy controls (n=46) mean=37122pg ml-1 (range 

14272-65570pg ml-1) 

x 
 

 

 

 

3.3.2 Results 

3.3.2.1 Ang-1 concentration in serum 

Ang-1 was detected in the majority of serum samples and the results are summarised in Table 

3.2 and are shown in Figure 3.1. Descriptors of the study groups and sub-groups are shown 

in Chapter 2.1.1 and 2.1.2 respectively.  Ang-1 was quantified in 96 serum samples with 

mean concentrations for the study sub-groups ranging from 32910 to 46560pg ml-1, although 

there were large variations in the levels detected.  No significant differences were found 

between either the study groups (Two-way ANOVA test F(2,90)=1.229, p=0.297) or between 

periodontal health and severe periodontitis sub-groups (Two-way ANOVA test 
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F(1,90)=0.885, p=0.349), and there was no significant interaction found between periodontal 

health status and the study groups (Table 3.3).  A non-significant reduction was found in the 

smoking group (Group 2) in periodontal health compared with the healthy control (Group 1) 

and diabetes groups (Group 3) (Figure 3.2).  Bonferroni post hoc tests confirmed that there 

were no significant differences between the study sub-groups (Table 3.4).  Diagnostic 

statistical analysis revealed that there was an outlier in the data which had a significant 

influence on the overall statistical outcome (Studentized residual highest=3.01, lowest=  

-1.77; highest Cook’s distance=0.14; sample KJD58 was deemed to be an outlier). Sensitivity 

analysis, where data from the outlier was removed from the dataset, confirmed there were no 

significant differences in the serum Ang-1 levels between the study groups (Two-way 

ANOVA test F(2,89)=2.261, p=0.110; Table 3.3 and Figure 3.3).  Bonferroni post hoc tests 

revealed, however, significantly higher serum Ang-1 concentrations in the systemically 

healthy non-smokers (study group 1) compared with the diabetes group (study group 3) 

(study group 1>3 p=0.034) (Table 3.4).  No significant difference was found between the 

systemically healthy and smoking groups.   

 

Table 3.2 Descriptive statistics for Ang-1 serum concentrations (pg ml-1) for the study groups and sub-groups. 

Statistical data in brackets are the results following removal of extreme outliers (>3xSD) from the data set. 
 

Group Number 

Valid Cases* 

Mean + SD 

(pg ml-1) 

Median 

(pg ml-1) 

Interquartile 

Range 

Range 

 

1a 

 

37 46560+15739 45916 20975 77238 

1b 

 

12 43646+15469 46415 27177 47539 

Study 

Group 1 

49 45847+15563 45916 22440 80582 

2a 

 

11 

 

39555+22338 29506 41041 60743 

2b 

 

9 42526+17900 45156 34660 52670 

Study 

Group 2 

20 40892+19996 43890 34336 60743 

3a 

 

12 

(11) 

43871+19827 

(39411+13035) 

37275 

(35280) 

18642 

(9956) 

67102 

(46117) 

3b 

 

15 32910+13982 28225 25183 43247 

Study 

Group 3 

27 

(26) 

37781+17389 

(35660+13718) 

34150 

(34132) 

22931 

(17129) 

81013 

(60028) 

 
*Excluding either no sample available or factor not detected. 
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Figure 3.1 Serum Ang-1 concentrations (pg ml-1) for (a) study sub-groups and (b) study groups.  The box 

represents the interquartile range, the horizontal line the median and the whiskers the range. 

 

(a)   

 
 

 

 

(b) 
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Table 3.3 Statistical comparison of serum Ang-1 concentrations of the study groups and periodontal health-

severe periodontitis using Two-way ANOVA test. Data in brackets are the results following removal of outlier 

KJD58 from the data set. 

 

Group Degrees of  

Freedom (df) 

F Significance   

(p-value) 

Periodontal Health – Severe Periodontitis 

 

1 0.885 

(0.334) 

0.349 

(0.565) 

Study Groups (1, 2 and 3) 

 

2 1.229 

(2.261) 

0.297 

(0.110) 

Periodontal Health – Severe Periodontitis 

Versus Study Groups (interaction) 

2 0.987 

(0.475) 

0.377 

(0.624) 
 

 

 

Table 3.4 Statistical comparison between study sub-groups for serum Ang-1 (Bonferroni test p-values). Data 

in brackets are the results following removal of outlier KJD58 from the data set. 

 

Study Groups   

 

Mean Difference 

 

Significance 

(p-value) 

95% Confidence Interval 

Lower Bound Upper Bound 

Group 1     Group 2 

                   

 

                  Group 3 

 

4954.71 

(4954.71) 

 

8065.42 

(10186.37) 

0.829 

(0.762) 

 

0.154 

(0.034*) 

-6082.33 

(-5574.89) 

 

-1903.96 

(558.13) 

15991.76 

(15484.32) 

 

18034.80 

(19814.60) 

Group 2     Group 1 

 

                   

                  Group 3 

 

-4954.71 

(-4954.71) 

 

3110.70 

(5231.65) 

0.829 

(0.762) 

 

1.000 

(0.847) 

-15991.76 

(-15484.32) 

 

-9160.67 

(-6570.95) 

6082.33 

(5574.89) 

 

15382.08 

(17034.26) 

Group 3      Group 1 

 

                   

                   Group 2 

 

-8065.42 

(-10186.37) 

 

-3110.70 

(-5231.65) 

0.154 

(0.034*) 

 

1.000 

(0.847) 

-18034.80 

(-19814.60) 

 

-15382.08 

(-17034.26) 

1903.96 

(-558.13) 

 

9160.67 

(6570.95) 
 

* - Significant difference <0.05 
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Figure 3.2 Profile plot of periodontal health and severe periodontitis against estimated marginal mean serum 

Ang-1 concentrations (pg ml-1) for the three study groups. 

 

 
 

 

Figure 3.3 Serum Ang-1 concentrations (pg ml-1) with the extreme outlier (>3xSD – KJD58) removed for (a) 

study sub-groups and (b) study groups. The box represents the interquartile range, the horizontal line the median 

and the whiskers the range. 

 

(a) 
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(b) 

 
No significant correlations were found between serum Ang-1 concentration with smoking 

dose (Spearman rho -0.143, p=0.170) or glycaemic control (Spearman rho -0.219, p=0.271), 

however, a significant weak negative correlation was found with age (Spearman rho -0.211, 

p=0.039; without outliers Spearman rho=-0.248, p=0.015) (Figure 3.4).  No significant 

difference was found regarding gender and serum Ang-1 concentration across the whole 

sample (Mann Whitney p=0.352). 

 

Figure 3.4  Scatterplot of the correlation between serum Ang-1 concentration (pg ml-1) with age (Years).  Line 

of best fit shown*. 

 

*Line of best fit R2=0.029 (Spearman rho -0.211, p=0.039; without outliers Spearman rho=-0.248, p=0.015). 



146 
 

3.3.2.2 Ang-1 concentration in saliva 

3.3.2.2.1 Ang-1 concentration in stimulated saliva 

Ang-1 was detected in the majority of stimulated saliva samples and the results are 

summarised in Table 3.5 and shown in Figure 3.5.  Ang-1 was quantified in 84 stimulated 

saliva samples with mean concentrations for the study sub-groups ranging from 26879 to 

47399pg ml-1, although there were large variations in the levels found.  No significant 

differences were found between either the study groups (Two-way ANOVA test 

F(2,78)=0.694, p=0.503) or between periodontally healthy and severe periodontitis sub-

groups (Two-way ANOVA test F(1,78)=0.866, p=0.355), and there was no significant 

interaction found between periodontal health status and the study groups (Table 3.6).  A non-

significant reduction was found in the smoking group (Group 2) in periodontal health 

compared with the healthy control (Group 1) and the diabetes (Group 3) groups (Figure 3.6).  

Bonferroni post hoc tests confirmed that there were no significant differences between the 

study sub-groups (Table 3.7).  Diagnostic statistical analysis revealed that there were outliers 

in the data which had a significant influence on the overall statistical outcome (Studentized 

residual highest=2.97, lowest=-1.54; highest Cook’s distance=0.10; samples KJD20 and 

KJD25 were deemed to be outliers).  Sensitivity analysis, where the outliers (KJD20 and 

KJD25) were removed from the dataset, confirmed no significant differences between the 

study groups (Two-way ANOVA test F(2,78)=0.443, p=0.644) or between periodontally 

healthy and severe periodontitis sub-groups (Two-way ANOVA test F(1,78)=1.412, 

p=0.238) (Table 3.6 and Figure 3.7).  There was no significant interaction found between 

periodontal health status and the study groups.  Bonferroni post hoc tests confirmed that there 

were no significant differences in Ang-1 concentration in stimulated saliva between the study 

groups (Table 3.7).   

 

No significant correlations were found between Ang-1 concentration in stimulated saliva 

with smoking dose (Spearman rho 0.078, p=0.483), glycaemic control (Spearman rho 0.038, 

p=0.852) or age (Spearman rho 0.038, p=0.852).  No significant difference was found 

regarding gender and stimulated saliva Ang-1 concentration across the whole sample (Mann 

Whitney p=0.324). 
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Table 3.5 Descriptive statistics for Ang-1 stimulated (SS) and unstimulated saliva (US) concentrations (pg  

ml-1) for the study groups and sub-groups. Statistical data in brackets are the results following removal of 

extreme outliers (>3xSD) from the data set. 

   
 Group Number 

Valid Cases* 

Mean + SD 

(pg ml-1) 

Median 

(pg ml-1) 

Interquartile 

Range 

Range 

 

SS 1a 

 

26 
(25) 

46808+34569 
(43998+32108) 

48406 
(44071) 

55037 
(56558) 

115174 
(108528) 

1b 

 

13 26879+20329 20889 26713 69880 

Study 

Group 1 

39 
(38) 

40165+31737 
(38141+29504) 

34946 
(34730) 

53875 
(52167) 

115174 
(108528) 

2a 

 

9 32729+22404 30874 29937 74772 

2b 

 

9 38767+15809 42140 13234 56654 

Study 

Group 2 

18 35748+19065 38968 21920 74936 

3a 

 

12 47399+29226 49379 45819 94765 

3b 

 

15 

(14) 

42036+36133 

(35911+28285) 

41438 

(34827) 

57855 

(46537) 

123008 

(82903) 

Study 

Group 3 

27 
(26) 

44420+32738 
(41213+28740) 

46537 
(44943) 

54766 
(50230) 

123312 
(94765) 

US 1a 

 

26 45338+35630 37034 53278 114472 

1b 

 

14 30644+27499 20299 39308 85744 

Study 

Group 1 

40 40195+33410 30055 51867 114472 

2a 

 

8 

 

29017+25739 31381 40844 73572 

2b 

 

9 36288+16725 36121 18787 58757 

Study 

Group 2 

17 32866+21064 36121 29354 73572 

3a 

 

13 50159+33383 43479 51663 101087 

3b 

 

15 36904+27736 33915 49582 95148 

Study 

Group 3 

28 43058+30651 41783 53900 101087 

 
*Excluding either no sample available or factor not detected. 
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Figure 3.5 Stimulated saliva Ang-1 concentrations (pg ml-1) for (a) study sub-groups and (b) study groups.  The 

box represents the interquartile range, the horizontal line the median and the whiskers the range.  

 

(a)       

 
(b) 

 
 

Table 3.6 Statistical comparison of stimulated saliva Ang-1 concentrations of the study groups and periodontal 

health-severe periodontitis using Two-way ANOVA test. Data in brackets are the results following removal of 

outliers KJD020 and KJD025 from the data set. 

 

Group Degrees of  

Freedom (df) 

F Significance 

(p-value) 

Periodontal Health – Severe Periodontitis 

 

1 0.866 

(1.412) 

0.355 

(0.238) 

Study Groups (1, 2 and 3) 

 

2 0.694 

(0.443) 

0.503 

(0.644) 

Periodontal Health – Severe Periodontitis 

Versus Study Groups (interaction) 

2 1.218 

(1.099) 

0.301 

(0.339) 
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Table 3.7 Statistical comparison between study sub-groups for stimulated saliva Ang-1 (Bonferroni test  

p-values). Data in brackets are the results following removal of outliers KJD020 and KJD025 from the data set. 

 

Study Groups      

 

Mean Difference 

 

Significance 

(p-value) 

95% Confidence Interval 

Lower Bound Upper Bound 

Group 1     Group 2 

                   

 

                  Group 3 

 

4416.94 

(2393.37) 

 

-4254.70 

(-3071.96) 

1.000 

(1.000) 

 

0.154 

(1.000) 

-16247.38 

(-16538.19) 

 

-22410.28 

(-19911.56) 

25081.27 

(21324.92) 

 

13900.88 

(13767.64) 

Group 2     Group 1 

 

                   

                  Group 3 

 

-4416.94 

(-2393.37) 

 

-8671.65 

(-5465.33) 

1.000 

(1.000) 

 

1.000 

(1.000) 

-25081.27 

(-21324.92) 

 

-30738.50 

(-25752.60) 

16247.38 

(16538.19) 

 

13395.21 

(14821.95) 

Group 3     Group 1 

 

                   

                  Group 2 

 

4254.70 

(3071.96) 

 

8671.65 

(5465.33) 

1.000 

(1.000) 

 

1.000 

(1.000) 

-13900.88 

(-13767.64) 

 

-13395.21 

(-14821.95) 

22410.28 

(19911.56) 

 

30738.50 

(25752.60) 

 

 

Figure 3.6 Profile plot of periodontal health and severe periodontitis against estimated marginal mean 

stimulated saliva Ang-1 concentrations (pg ml-1) for the three study groups. 
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Figure 3.7 Stimulated saliva Ang-1 concentrations (pg ml-1) with the extreme outlier (>3xSD – KJD58) 

removed for (a) study sub-groups and (b) study groups. The box represents the interquartile range, the horizontal 

line the median and the whiskers the range. 

(a) 

 

(b) 

 

 

3.3.2.2.2 Ang-1 concentration in unstimulated saliva  

Ang-1 was detected in the majority of unstimulated saliva samples and the results are 

summarised in Table 3.5 and shown in Figure 3.8.  Ang-1 was quantified in 85 unstimulated 

saliva samples with mean concentrations for the study sub-groups ranging from 29017 to 

50159pg ml-1, although there were large variations in the levels found.  No significant 
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differences were found between either the study groups (Two-way ANOVA test 

F(2,82)=0.701, p=0.499) or between periodontally healthy and severe periodontitis sub-

groups (Two-way ANOVA test F(1,82)=0.950, p=0.333), and there was no significant 

interaction found between periodontal health status and the study groups (Table 3.8).  A non-

significant reduction was found in the smoking group (Group 2) in periodontal health 

compared with the healthy control (Group 1) and diabetes (Group 3) groups (Figure 3.9).  

Bonferroni post hoc tests confirmed that there were no significant differences between the 

study sub-groups (Table 3.9). Diagnostic statistical analysis revealed that there were no 

significant outliers in the data and the influence of any outliers on the overall statistical 

outcome was very low (Studentized residual highest=2.44, lowest=-1.68; highest Cook’s 

distance=0.06). Therefore, no further diagnostic statistics was necessary. 

 

 

 

Figure 3.8  Unstimulated saliva Ang-1 concentrations (pg ml-1) for (a) study sub-groups and (b) study groups.  

The box represents the interquartile range, the horizontal line the median and the whiskers the range.   

(a)       
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(b) 

 
 

 

 

Table 3.8 Statistical comparison of unstimulated saliva Ang-1 concentrations of the study groups and 

periodontal health-severe periodontitis using Two-way ANOVA test.  

 

Group Degrees of  

Freedom (df) 

F Significance 

(p-value) 

Periodontal Health – Severe Periodontitis 

 

1 0.950 0.333 

Study Groups (1, 2 and 3) 

 

2 0.701 0.499 

Periodontal Health – Severe Periodontitis 

Versus Study Groups (interaction) 

2 0.835 0.438 

 

 

 

Table 3.9 Statistical comparison between study sub-groups for unstimulated saliva Ang-1 (Bonferroni test  

p-values).  

 

Study Groups    

 

Mean Difference 

 

Significance 

(p-value) 

95% Confidence Interval 

Lower Bound Upper Bound 

Group 1     Group 2 

                   

                   Group 3 

7328.86 

 

-2863.22 

1.000 

 

1.000 

 

-14137.36 

 

-21132.36 

28795.09 

 

15405.92 

Group 2     Group 1 

                   

                   Group 3 

 

-7328.86 

 

-10192.09 

 

1.000 

 

0.832 

 

-28795.09 

 

-32988.97 

14137.36 

 

12604.79 

Group 3     Group 1 

                   

                   Group 2 

 

2863.22 

 

10192.09 

 

1.000 

 

0.832 

 

-15405.92 

 

-12604.79 

21132.36 

 

32988.97 
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Figure 3.9 Profile plot of periodontal health and severe periodontitis against estimated marginal mean 

unstimulated saliva Ang-1 concentrations (pg ml-1) for the three study groups. 

 
 

 

No significant correlations were found between Ang-1 concentration in unstimulated saliva 

with smoking dose (Spearman rho 0.006, p=0.956) or glycaemic control (Spearman rho -

0.048, p=0.810).  A significant weak positive correlation was found between Ang-1 

concentration in unstimulated saliva and age (Spearman rho 0.237, p=0.029) (Figure 3.10).  

No significant difference was found regarding gender and unstimulated saliva Ang-1 

concentration across the whole sample (Mann Whitney p=0.475). 
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Figure 3.10  Scatterplot of the correlation between unstimulated saliva Ang-1 concentration (pg ml-1) with Age 

(Years). Line of best fit shown*. 

 
*Line of best fit R2=0.056 (Spearman rho 0.237, p=0.029). 

 

3.3.2.3   Relationship between Ang-1 concentrations in serum and saliva 

No significant correlations were found between serum Ang-1 concentrations with either the 

levels found in the unstimulated (Spearman rho=-0.68, p=0.554) or stimulated saliva 

(Spearman rho=-0.059, p=0.607).  A highly significant very strong positive correlation was 

found between paired unstimulated and stimulated saliva Ang-1 concentrations (Spearman 

rho=0.862, p<0.001; without outliers Spearman rho=0.858, p<0.001) (Figure 3.11).   
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Figure 3.11 Scatterplot of the correlation between the Ang-1 concentration (pg ml-1) in unstimulated and 

stimulated saliva. Line of best fit shown*. 

 

*Line of best fit R2=0.689 (Spearman rho 0.862, p<0.001; without outliers Spearman rho=0.858, p<0.001). 

 

 

3.3.3  Discussion 

In this study, the concentration of the pro-angiogenic factor Ang-1 was measured in serum, 

unstimulated and stimulated saliva samples from three groups of subjects: (i) systemically 

healthy, (ii) systemically healthy smokers and in (iii) subjects with diabetes.  Each clinical 

group was divided into two sub-groups: (a) periodontally healthy and (b) subjects with severe 

periodontitis. Confidence in the assay methodology was demonstrated by the good assay 

standard curves, low assay background noise, acceptable levels of intra- and inter-assay 

variation.  Ang-1 was detected in the majority of samples assayed and the mean serum 

concentrations, standard deviations and ranges were found to be within levels previously 

reported in the literature, (Tables 3.1).  High levels of Ang-1 were observed in serum, and 

for the first time in both unstimulated and stimulated saliva, however, no significant 

differences were observed between any of the sub-groups or study groups.  No significant 

differences were found in Ang-1 concentrations in either serum or saliva (unstimulated and 

stimulated saliva) between the periodontally healthy or periodontitis sub-groups.  However, 

once a statistical outlier was removed from the data, serum Ang-1 concentrations were found 

to be significantly higher in the systemically healthy non-smokers (Group 1) compared with 
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the diabetes group (Group 3).  Significant correlations were found between Ang-1 

concentrations in unstimulated and stimulated saliva and between Ang-1 concentrations in 

unstimulated saliva and age.  Furthermore, a significant negative correlation was found 

between serum Ang-1 concentration and age. 

  

As far as can be ascertained this is the first study to examine serum Ang-l concentrations in 

periodontal health and disease.  Serum Ang-1 concentrations have previously been studied 

in several human conditions, in comparison with healthy control subjects. Currently there is 

great interest regarding the relationship between periodontal disease and systemic health with 

increasing evidence that periodontal inflammation may contribute to systemic inflammation 

(D'Aiuto et al., 2013, Pink et al., 2015).  For example, several studies have associated 

periodontitis with increased systemic levels of factors including C-reactive protein (CRP), 

IL-1β, IL-2, TNFα and IFN-γ (Noack et al., 2001, Gorska et al., 2003, Paraskevas et al., 

2008).  Therefore, systemic spill over from periodontal inflammation is thought to acerbate 

various chronic systemic diseases, which are also known to have altered angiogenic-mediated 

responses, such as diabetes mellitus (Khader et al., 2006, Nascimento et al., 2018), 

cardiovascular disease (Genco et al., 2002, Janket et al., 2003, Bahekar et al., 2007, 

Carrizales-Sepulveda et al., 2018) and rheumatoid arthritis (Kaur et al., 2013, Fuggle et al., 

2016).  However, there was no evidence indicated in the present study that severe 

periodontitis significantly altered serum or salivary Ang-1 concentrations.   

 

An explanation for this finding may come from an ELISA study by Lester et al. (2009) which 

reported the concentrations of a range of inflammatory and angiogenic factors, including 

Ang-1, in gingival biopsies harvested from extracted teeth.  Prior to sampling, the health of 

the tissue was stratified into periodontal health and varying degrees of periodontal disease 

(mild, moderate and severe) using pocket depths and whether bleeding on probing was 

present.  Ang-1 concentrations were found to be inversely correlated to periodontal health 

status (i.e. significantly lower Ang-1 concentrations in severe periodontal disease compared 

with gingival health).  The opposite findings were reported for other factors such as IL-1β, 

IL-6, TNFα, VEGF and endothelin-1.  From this finding the group hypothesised that reduced 

Ang-1 levels, in periodontal disease, promoted inflammation through reduced inhibition of 
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VEGF and endothelin.  However, a major criticism of this study was that smoking was not 

taken into account, which may have influenced the findings.  Although no significant 

differences were found between the study groups in serum or salivary Ang-1 concentrations 

in the present study, non-significant reductions in Ang-1 concentrations were found in 

periodontally healthy smokers in serum and saliva (stimulated and unstimulated saliva).  

However, these were non-significant results and require further investigation.   

 

An interesting finding in the present study was the significant, albeit weak, negative 

correlation between age and serum Ang-1 concentration suggesting that serum Ang-1 

concentration reduces with increasing age. Similar findings have been previously reported 

with other angiogenic factors, for example, mean serum VEGF concentrations were found to 

be significantly higher in children compared with adults (Okamoto et al., 2008).  Relatively 

few studies have examined the effect of age on serum or plasma Ang-1 concentrations, 

however, the consensus suggests that Ang-1 concentration is not significantly influenced by 

age (Lim et al., 2005, Lukasz et al., 2008, Meng et al., 2009).  Although, one study did report 

a significant positive correlation with age (Bennett et al., 2013).  A possible reason for this 

discrepancy could be due to the relatively low number of subjects examined in many of these 

studies, which may have reduced the statistical power of the data.  A note of caution needs 

to be taken with the finding of the significant correlation in the present study due to the 

relatively weak strength of the correlation, suggesting this may have been a statistical 

anomaly and further research is required to verify this finding.    

 

As far as can be ascertained, this is the first study to have investigated the concentration of 

Ang-1 in saliva.  Both stimulated and unstimulated saliva were found to contain high 

concentrations of Ang-1 suggesting that Ang-1, along with other pro-angiogenic factors in 

saliva, may be important in oral wound healing and maintenance of the oral soft tissues.  It 

had been anticipated that there would be significant reductions in salivary levels of Ang-1 in 

the smoking and diabetes study groups. However, no significant differences were found in 

the present study between these groups and the healthy controls.  Another unexpected finding 

was the significant, albeit weak, positive correlation between unstimulated salivary Ang-1 

concentrations and age (i.e. the mean Ang-1 concentration in unstimulated saliva increased 



158 
 

with age).  This finding differs from other pro-angiogenic factors recorded in saliva, such as 

Fibroblast Growth Factor-2 (FGF-2) and Nerve Growth Factor (NGF), which have been 

found to be significantly reduced in older subjects (Westermark et al., 2002).  However, a 

similar reduction in factor concentration with age was reported in a small study which 

examined VEGF concentrations in unstimulated saliva (Upile et al., 2009).  Unfortunately, 

at the time of writing there have been no publications indicating whether Ang-1 is produced 

in salivary glands, and if it is, whether its production is significantly reduced in older subjects.  

A possible explanation for the increased Ang-1 concentration in unstimulated saliva could 

be due to the reduced unstimulated salivary flow rates associated with old age (Affoo et al., 

2015).  Stimulated saliva flow rates have been shown not to be significantly affected in older 

people, which may explain why no significant correlation was found in the present study 

between the Ang-1 concentration in stimulated saliva with age.  Future studies could examine 

flow rate, as well as Ang-1 concentration and total protein concentration, in order to ascertain 

whether age-related changes in flow rate account for the findings in this study.  Furthermore, 

immunohistochemistry and in-situ hybridisation studies could determine whether and where     

Ang-1 is produced in salivary gland tissue. 

 

Smoking is known to have a negative effect of oral and periodontal health, and significantly 

reduces oral wound healing potential (Chapter 1.7).  Several theories have been proposed to 

account for this, such as the toxic effects of the chemical constituents of smoke on tissue 

cells, reduced inflammatory reaction and its influence on the levels of the angiogenic factor 

levels (Chapter 1.7.3).  Currently, few studies have reported the effect of smoking on Ang-1 

levels, especially between healthy smokers and non-smoking controls. Bennett et al. (2013) 

reported no statistical difference in serum Ang-1 concentrations between healthy smokers 

and healthy non-smokers.  Ang-1 concentrations in sputum have been reported in asthma 

studies with contradictory results.  Kanazawa et al. (2009) found no significant difference in 

sputum Ang-1 levels between healthy smokers and non-smokers, while Petta et al. (2015) 

reported significantly higher levels in smokers.  In the present study, there was no evidence 

that smoking significantly influenced the concentration of Ang-1 found either in serum or in 

saliva, both in terms of smoking per se or the number of pack years (dose).  This suggested 

that the negative influence of smoking on oral/periodontal health was not directly attributable 
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to changes in levels of Ang-1 in either serum or saliva.  However, non-significant decreases 

in serum and salivary Ang-1 concentrations were found in periodontally healthy smokers 

compared with the healthy control and diabetes study groups.  Although this finding was 

non-significant, and should be viewed with caution, it may be in part due to the reduced 

gingival inflammatory reaction and/or changes in vasculature in smokers (Pauletto et al., 

2000, Mirbod et al., 2001, Rezavandi et al., 2002, Scardina and Messina, 2005).  Further 

studies are required to ascertain whether smoking significantly affects the expression of    

Ang-1 in periodontal tissue and levels in GCF.  Also, an immunohistochemistry study could 

examine Ang-1 expression in relation to vascularity in gingival tissue, in  periodontal health 

and periodontitis, including samples from smokers and non-smokers. 

 

Altered angiogenesis is widely thought to be one of many mechanisms by which chronic 

hyperglycaemia in diabetes results in poor wound healing (Chapter 1.8) (Goodson and Hung, 

1977, Bohlen and Niggl, 1979, Rasul et al., 2012).  In the present study, no significant 

differences were found initially in the serum and salivary Ang-1 concentrations between the 

diabetes and healthy controls groups.  This finding was consistent with previous studies 

which have reported no significant differences in serum and plasma concentrations of Ang-

1 between subjects with Type 2 diabetes and healthy controls (Lim et al., 2004, Lim et al., 

2005, Gui et al., 2013, Zeng et al., 2013, Chen et al., 2015).  Interestingly in the present study, 

once an extreme outlier was removed from the dataset, serum Ang-1 concentrations were 

found to be significantly lower in the diabetes group compared with the healthy controls.  

Diabetes is associated with raised systemic levels of other angiogenic factors, such as VEGF 

and Ang-2 (Lim et al., 2005, Chen et al., 2015), suggesting that diabetes is associated with 

changes to the balance of angiogenic factors leading to dysfunctional angiogenesis and 

immature vascular development. Therefore, the finding of significantly reduced serum      

Ang-1 concentrations in the diabetes group would further exacerbate the difference in the 

Ang-1 levels compared with Ang-2 and VEGF. 

 

Ang-2 is thought to act as a competitive inhibitor for Ang-1, through binding to the Tie2 

receptor, and is important in vessel disruption required early in angiogenesis (Chapter 

1.5.3.2) (Maisonpierre et al., 1997, Gale et al., 2002, Bogdanovic et al., 2006).  Several 
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studies have reported increased ratios of Ang-1 to Ang-2 in diabetes compared with healthy 

controls both in plasma (Lim et al., 2004, Lim et al., 2005, Yeboah et al., 2016) and in serum 

(Chen et al., 2015, Li et al., 2015).  Furthermore, studies in diabetic mouse wound healing 

models have shown at tissue level prolonged increased Ang-1/Ang-2 ratios, suppressed levels 

of VEGF and reduced endothelial cell counts following cutaneous injury in comparison with 

non-diabetic controls (Kampfer et al., 2001).  Similar studies have also shown that 

therapeutic use of Ang-1 results in enhanced wound healing associated with faster re-

epithelialisation, increased levels of angiogenesis and blood flow (Cho et al., 2006, Balaji et 

al., 2015).  This raises the possibility of using Ang-1 to promote wound healing is patients 

with diabetes, although there are currently concerns regarding side effects and the potential 

to promote tumour progression (Koh, 2013).  

 

Potential limitations in the present study include the narrow range of glycaemic control, with 

the majority of the subjects with diabetes being relatively well controlled with glycated 

haemoglobin scores around the target of 7%.  Therefore, this study really assessed the effects 

of relatively well controlled diabetes, rather than poorly controlled diabetes, which may have 

had different outcomes.  Furthermore, by the nature of Type 2 diabetes, the age range of this 

group tended to be older (i.e. middle aged and above) than the other study groups.  Further 

research is required to clarify the relationship between Ang-1 levels in serum and saliva with 

a broader range of glycaemic control. 

 

Currently, there have been surprisingly few publications which have examined the 

significance of Ang-1 in oral health and pathology, especially its potential role in periodontal 

healthy and disease.  Further studies could examine Ang-1 levels, in comparison with Ang-

2 and VEGF, in GCF and saliva in periodontal health and disease.  These studies could also 

examine the potential effect of smoking and diabetes to the levels and ratios between these 

factors.  Immunohistochemistry and in-situ hybridisation studies could determine whether 

the salivary glands are the primary source of Ang-1 in saliva.   
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3.4 Migration Stimulating Factor (MSF) 

 

3.4.1 Background 

3.4.1.1 MSF levels in serum and plasma 

As discussed in Chapter 1.5.3.5 and Chapter 3.4.1, MSF is a 70kDa soluble protein encoded 

by the Fn1 gene on chromosome 2 (Grey et al., 1989, Schor et al., 1993).  This protein is a 

truncated isoform of fibronectin (MSF; accession number AJ535086) corresponding to the 

amino-terminus of fibronectin with a unique 10 amino acid carboxyl-terminus.  MSF has a 

range of biological activities including the induction of cell migration and angiogenesis, and 

is thought to play important roles in foetal development, wound healing and carcinogenesis 

(Schor et al., 1988a, Picardo et al., 1991, Schor and Schor, 2001, Schor et al., 2003, Houard 

et al., 2005, Aljorani et al., 2011, Perrier et al., 2012). 

 

Currently, there have been no studies which have directly examined MSF concentrations in 

either human serum or plasma, however, tissue culture studies have reported detectable levels 

of MSF activity in human serum.  Picardo et al. (1991) reported a high proportion of serum 

samples from patients with breast cancer, pre- and post-surgery, had MSF activity compared 

with a small proportion of systemically healthy gender and age-matched controls (Picardo et 

al., 1991).  Interestingly, this study reported the minimum level of MSF activity corresponded 

to a serum MSF concentration of 0.5ng ml-1.  A similar study in patients undergoing surgery 

for non-malignant conditions reported MSF activity in a high proportion of wound fluid 

samples (17 out of 18) (Picardo et al., 1992).  Pre- and post-operative serum samples were 

collected from five subjects with MSF positive activity in their wound fluids, with only 1 out 

of 5 serum samples showing MSF activity pre-operatively and none post-operatively.  

Furthermore, high levels of MSF activity were found in wound fluid and in pre- and post-

operative serum samples taken from a sample number of patients undergoing surgery for a 

range of different malignant tumours.  The implication taken from these findings was that 

MSF found in wound fluid was derived locally from fibroblasts involved in wound healing 

rather than systemically, and high serum MSF levels were associated with neoplasia.    
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To date there have been no publications which have examined the effect of smoking and 

diabetes, which are major risk factors for periodontitis and poor wound healing (Chapter 1.7 

and 1.8 respectively), on the MSF levels in serum and oral fluids. However, there has been 

one study which reported increased MSF gene expression in a bronchioloalveolar carcinoma 

cell line following exposure to benzopyrene, a constituent of cigarette smoke (Yoshino et al., 

2007).    

 

3.4.1.2 MSF levels in saliva and GCF 

Currently, there have been no publications which have reported MSF concentrations in 

human saliva or gingival crevicular fluid in periodontal health and periodontitis.  

Furthermore, there have been few publications relating to MSF and oral tissues. As discussed 

in Chapter 1.4.2.4, Irwin et al. (1994) reported that there were different sub-populations of 

gingival fibroblasts, with those derived from the gingival papillary tips displaying more 

foetal-like characteristics, including the secretion of high levels of MSF.  Whilst, the sub-

population of gingival fibroblasts derived from the deeper reticular layers were larger and 

displayed more adult cell characteristics, including no MSF production.  The authors of the 

study hypothesised that the foetal-like production of MSF by some populations of gingival 

fibroblasts may contribute to the enhanced and foetal-like nature of wound healing in the oral 

cavity.  Whether MSF derived from the gingival tissues has any influence on GCF and 

salivary levels of MSF will be investigated in this thesis. 

 

To date there has only been one publication which has examined MSF expression in oral 

disease. In this immunohistochemistry study, Aljorani et al. (2011) examined MSF 

expression in benign (n=7) and malignant salivary tumours (n=27) in relation to adjacent 

histologically normal salivary tissue (n=16), which was used as a control. MSF expression 

increased significantly from normal salivary tissue, benign and malignant tumours (p=0.04-

0.0001). MSF expression was found in both epithelial and connective tissue cells (fibroblasts, 

endothelial and inflammatory cells), especially in malignant tumours. Low level MSF 

expression was found in some of the control samples, however, as these samples were 

adjacent to the tumours (i.e. not true healthy control tissue) it is possible that field 

change/cancerisation had occurred.  Furthermore, unpublished data has indicated MSF 
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expression is also upregulated in oral squamous cell carcinomas and is associated with 

reduced survival rates (Dr G Ohe: personal communication and quoted in (Schor and Schor, 

2010)). 

 

3.4.2 MSF ELISA optimisation 

The MSF ELISA was developed and partially optimised for use with serum by Dr Katerina 

Kankova. As this was a non-commercial ELISA kit more extensive optimisation was required 

prior to assaying the clinical samples.  Details of the ELISA reagents are outlined in Chapter 

2.2 and the optimised MSF ELISA protocol is described in Chapter 2.2.2. 

 

3.4.2.1 MSF ELISA optimisation: serum and stimulated saliva 

A number of optimisation assays were carried out to ascertain which diluent (i.e. PBS, PBS-

Protease inhibitor, PBS-Tween (v/v 0.05%) or PBS-Tween-Protease inhibitor) resulted in 

optimal performance with the serum and stimulated saliva samples.  Pooled serum and 

stimulated saliva samples were used in all the optimisation assays, however, there was 

insufficient unstimulated saliva available to produce a pooled sample. The pooled serum 

sample was diluted initially to either 1:50, 1:100 or 1:200 in the various diluents and plated 

in duplicate.  The stimulated saliva sample was diluted to 1:10, 1:25, 1:50 and 1:100 dilutions 

in the different diluents. Each diluent was also plated in duplicate (blank wells) to assess the 

background noise of the assay. At this stage the ELISA protocol used 1% w/v dried milk-

PBS-T as the blocking agent.  Although the MSF standard curves for the initial assays 

produced trendlines with a high degree of fit (R2 ranging from 0.94 to 0.99), the corrected 

optical densities ranges were small due to the high background noise of the assays. This issue 

resulted in the optical density scores for all the serum samples and the majority of the 

stimulated saliva samples being above those of the MSF standards, preventing calculation of 

the MSF content.  In order to reduce the background noise of the assay further optimisation 

of the blocking stage was carried out.   

 

In the subsequent assay the duplicate wells were blocked for one hour with either 1% w/v 

dried milk-PBS-T or 1% w/v BSA (200μl per well).  Data from previous work carried out by 

Dr Katerina Kankova indicated that PBS-T-PI was likely to be the best diluent for the serum 
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samples (personal communication Dr Sarah Jones).  Therefore, the pooled serum sample was 

diluted in PBS-T-PI to 1:50, 1:100, 1:200, 1:400 and 1:800 to ascertain which resulted in 

corrected optical densities within the linear range of the MSF standard curve.  Likewise, the 

pooled stimulated saliva sample was diluted in PBS-T-PI to 1:10, 1:50, 1:100.  Blocking 

using 1% w/v BSA resulted in a good range of corrected optical densities between the lowest 

and the highest MSF standards, and a high degree of fit for the MSF standard curve 

(R2=0.9927) (Figure 3.12a).  The 1% dried milk-PBS-T block resulted in a MSF standard 

curve with a poor range of corrected optical density readings between the low and high MSF 

standards, and a poor level of fit to the standard curve (R2=0.7123) (Figure 3.12b).  Serial 

dilution of the pooled serum sample in PBS-T-PI (1:50 to 1:800) resulted in a linear dilution 

effect (trendline R2=0.967).  The serum dilution of 1:100 in PBS-T-PI resulted in a corrected 

optical density score at the mid-point of the linear range of the 1% w/v BSA blocked MSF 

standard curve, where the accuracy of the ELISA is most likely to be at its greatest.  Likewise, 

serial dilution of the pooled stimulated saliva sample in PBS-T-PI (1:10 to 1:100) resulted in 

linear dilution effect (trendline R2=0.9913).  The stimulated saliva dilution of 1:10 in PBS-

T-PI resulted in the best corrected optical density scores, albeit at the lower end of the BSA 

blocked MSF standard curve.  It was not possible to use dilutions less than 1:10 due to saliva 

being too viscous to pipette accurately and difficulties in homogenising the samples (Chapter 

2.2.3).  Therefore, the final MSF ELISA protocol used a 1% w/v BSA block with the clinical 

samples diluted in PBS-T-PI to 1:100 and 1:10 for serum and saliva respectively (Chapter 

2.2.2). 
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Figure 3.12 The effect of using (a) 1% w/v BSA and (b) 1% w/v dried milk-PBS-T for the blocking stage of 

the MSF ELISA. Results are shown as the corrected OD (450-630nm) scores versus log MSF standard 

concentration (ng ml1). 

(a)                  

 
 

             (b) 

 
  

3.4.2.2 MSF ELISA optimisation: GCF 

The GCF collection, processing and storage protocol is outlined in Chapter 2.1.8.  Prior to 

the development of the MSF ELISA used in the present study, a migration assay study was 

carried out to estimate the percentage MSF recovery from the GCF elution protocol.  In 

summary, there were three parts to this study.  In the first part, equal quantities of 

recombinant MSF (rhMSF) (50ng ml-1) were either pipetted (spiked) onto two PerioPapers 

(elution sample), to simulate the clinical collection of GCF samples, or kept as a solution 

(reference sample).  To simulate the conditions of the clinical study both samples were kept 

at room temperature for 1 hour and then at 4oC for one hour prior to the PerioPapers (elution 

sample) undergoing the standard GCF elution protocol stated Chapter 2.1.8.  The resultant 
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samples both contained 10ng rhMSF in 90ul of PBS.  Both samples and were then stored at 

-80oC for 4 months.  Prior to the migration assay, four sets of media were prepared using 

sterilised Eagle’s Minimum Essential Medium (MEM): reference and elution samples (final 

serial dilution from 10pg ml-1 to 0.1pg ml-1); GCF and stimulated saliva samples from subject 

KJD007 (Group 2b) (final serial dilution from 1:80 to 1:4000).  It was important to sterilise 

the clinical samples using a 2µm Millipore filter to prevent contamination of the migration 

assay.   

 

The results of the fibroblast migration assay (details of the protocol outlined in Schor et al. 

(2001)), carried out by Dr Ian Ellis, are shown in Table 3.10.  The results suggested that at 

concentrations of rhMSF at 1pg ml-1 and above, the percentage recovery for the elution 

protocol was greater than 90%, assuming there was a linear relationship between migration 

activity and rhMSF concentration.  This finding was consistent with Gustafsson (1996) who 

reported recovery rates of 90% for elastase using PerioPapers and a similar GCF elution 

protocol to that used in this thesis.  However, the fibroblast migration activity generated by 

the reference samples was between 44%-86% of the equivalent control rhMSF samples used 

in the migration assay. This may indicate some degradation of rhMSF during the four month 

storage at -80oC or binding of rhMSF to the non-siliconised Eppendorfs.  Therefore, all 

clinical samples were stored in siliconised Eppendorfs.  Interestingly, both the GCF and 

stimulated saliva samples for subject KJD007, a long-term smoker with severe periodontitis, 

showed migration activity in the assay.  This was especially the case for the stimulated saliva 

sample, although it was not possible to ascertain whether this activity was due specifically to 

MSF.  The addition of a MSF inhibitor would have given an indication of the extent, if any, 

of the migration activity in these clinical samples was due to MSF. 

 

 

 

 

 

 

 



167 
 

Table 3.10  Mean number of cells migrated (+SD) per 10 fields (Leica microscope high magnification) per 

migration assay for serial dilutions of rhMSF, eluted sample, reference sample and for the GCF and stimulated 

saliva samples from subject 007 (data supplied by Dr Ian Ellis). 

 

Dilution. rhMSF 

Control 

Eluted rhMSF 

sample*1 

Reference 

rhMSF 

sample*1 

GCF  

KJD 007*2 

Stimulated 

saliva  

KJD 007*2 

SF-MEM 

 

2.0+0.1 - - - - 

0.001pg 

(0.01ml) 

2.7+0.1 1.7+0.1 

(0.1pg) 

1.2+0.4 

(0.1pg) 

1.8+0.2 

(1:4000) 

6.2+0.1 

(1:4000) 

0.01pg 

(0.05ml) 

4.6+0.2 1.8+0.2 

(0.5pg) 

5.6+0.6 

(0.5pg) 

2.6+0.3 

(1:800) 

5.2+0.2 

(1:800) 

0.1pg 

(0.1ml) 

6.5+0.2 5.0+0.1 

(1pg) 

5.6+0.5 

(1pg) 

6.4+0.8 

(1:400) 

4.8+0.1 

(1:400) 

1pg 

(0.5ml) 

7.3+0.2 5.9+0.0 

(10pg) 

6.0+0.3 

(10pg) 

4.6+0.3 

(1:80) 

1.4+0.3 

(1:80) 

 

*1 Figures in brackets give the expected rhMSF concentration of the samples. 

*2 Figures in brackets give the dilution factor of the elutant/GCF samples. 

 

When the MSF ELISA was available, a number of optimisation assays were carried out using 

the GCF samples.  In the first assay, ten GCF samples were harvested from a systemically 

and periodontally healthy subject (KJD002 Group 1a), eluted using the standard protocol 

(Chapter 2.1.8) and pooled prior to storage at -80oC. As a control, 1µl of rhMSF (30µg ml-1) 

was pipetted onto PerioPapers (spiked sample) and eluted using the standard protocol, pooled 

and stored at -80oC.  Both samples were assayed using the MSF ELISA with serial dilutions 

from undiluted to 1:64 in PBS-T-PI.  Only the undiluted pooled GCF sample was found to 

have an optical density reading within the range of the MSF standard curve for the assay, 

however, this was at the lower end of the sensitivity of the assay (12.5ng ml-1). As the pooled 

GCF sample was from a single systemically and periodontally healthy subject, GCF samples 

were subsequently assayed from all the clinical sub-groups, including a range of storage 

times.  MSF was not detected in any of these samples.  Subsequently, pooled samples from 

sub-groups 1a, 2a and 3a were assayed to ascertain whether data could be gained from 

pooling samples, however, no MSF was detected.  As this point, a decision was made not to 

carry out any further MSF ELISAs with the GCF samples.  Unfortunately, the ELISA kits 

for the other factors examined in this thesis were now out of date and there were insufficient 

GCF samples remaining to assay all the clinical cases. 
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3.4.3 Results 

3.4.3.1 MSF concentration in serum 

MSF was detected in the majority of serum samples and the results are summarised in Table 

3.11 and are shown in Figure 3.13. MSF was quantified in 86 serum samples with mean 

levels for the study sub-groups ranging from 6937 to 17627ng ml-1, although there were large 

variations in the levels detected. There was no evidence of serum MSF levels degrading 

during storage, with the MSF concentrations for samples stored the longest time prior to 

assaying (i.e. low KJD numbers) having similar ranges to those samples stored for the 

shortest time (i.e. highest KJD numbers).  No significant differences were found between 

either the study groups (Two-way ANOVA test F(2,80)=1.585, p=0.211) or between 

periodontally healthy and severe periodontitis sub-groups (Two-way ANOVA test 

F(1,80)=2.285, p=0.135), and there was no significant interaction found between periodontal 

health status and the study groups (Table 3.12).  A non-significant reduction was found in 

the smoking group (Group 2) in both periodontal health and severe periodontitis compared 

with the healthy control (Group 1) and the diabetes (Group 3) groups (Figure 3.14).  

Bonferroni post hoc tests (Table 3.13) confirmed that there were no significant differences 

between the study sub-groups.  Diagnostic statistical analysis revealed that there were outliers 

in the data which had a significant influence on the overall statistical outcome (Studentized 

residual highest=3.67, lowest= -1.67; highest Cook’s distance=0.22; samples KJD58 and 

KJD69 were deemed to be outliers).  Bootstrapping analysis confirmed that the outcome of 

the Two-way ANOVA was not significantly influenced by the outliers.  Sensitivity analysis, 

where data from the two outliers were removed from the dataset, confirmed there were no 

significant differences in the serum MSF levels between the study groups (Two-way 

ANOVA test F(2,78)=0.521, p=0.596; Table 3.12 and Figure 3.15).   
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Table 3.11 Descriptive statistics for MSF serum concentrations (ng ml-1) for the study groups and sub-groups. 

Statistical data in brackets are the results following removal of extreme outliers (>3xSD) from the data set. 
 

Group Number 

Valid Cases* 

Mean + SD 

(ng ml-1) 

Median 

(ng ml-1) 

Interquartile 

Range 

Range 

 

1a 

 

35 
 

11723+9566 
 

8352 
 

17556 
 

43958 
 

1b 

 

12 8338+9089 5080 12080 25829 

Study 

Group 1 

47 10859+9467 7802 14223 34958 

2a 

 

8 7630+9789 2950 15674 24210 

2b 

 

8 

 

6937+5367 

 

4922 

 

10463 

 

13145 

 

Study 

Group 2 

16 7284+7635 3692 10776 24210 

3a 

 

11 

(9) 

17627+20096 

(9237+8311) 

10784 

(8367) 

20240 

(14043) 

56205 

(23680) 

3b 

 

12 9475+8710 6589 16748 23626 

Study 

Group 3 

23 

(21) 

13374+15454 

(9373+8329) 

8039 

(6806) 

17895 

(14843) 

56205 

(24510) 

 

*Excluding either no sample available or factor not detected. 

 

 

 

Table 3.12 Statistical comparison of the serum MSF concentrations of the study groups and periodontal health-

severe periodontitis using Two-way ANOVA test. Data in brackets are the results following removal of outliers 

KJD058 and KJD069 from the data set. 

 

Group Degrees of  

Freedom (df) 

F Significance 

(p-value) 

Periodontal Health – Severe Periodontitis 

 

1 2.285 

(0.329) 

0.135 

(0.568) 

Study Groups (1, 2 and 3) 

 

2 1.585 

(0.521) 

0.211 

(0.596) 

Periodontal Health – Severe Periodontitis 

Versus Study Groups (interaction) 

2 0.593 

(0.302) 

0.555 

(0.740) 
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Figure 3.13 Serum MSF concentrations (ng ml-1) for (a) study sub-groups and (b) study groups. The box 

represents the interquartile range, the horizontal line the median and the whiskers the range. 

 

   (a)               

 
 

             (b) 
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Table 3.13 Statistical comparison between study sub-groups for the serum MSF (Bonferroni test p-values). 

Data in brackets are the results following removal of outliers KJD058 and KJD069 from the data set. 

 

Study Groups  Mean Difference 

 

Significance 

(p-value) 

95% Confidence Interval 

Lower Bound Upper Bound 

Group 1     Group 2 

 

                   

                  Group 3 

 

3575.12 

(3575.12) 

 

-2515.06 

(1485.68) 

0.801 
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Figure 3.14 Profile plot of periodontal health and severe periodontitis against estimated marginal mean serum 

MSF concentrations (ng ml-1) for the three study groups.  
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Figure 3.15 Serum MSF concentrations (ng ml-1) with extreme outliers (>3xSD) removed for (a) study sub-

groups and (b) study groups. The box represents the interquartile range, the horizontal line the median and the 

whiskers the range. 

 

  (a)               

 
 

(b) 
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There were no significant correlations between the serum MSF concentration with smoking 

dose (pack years) (Spearman rho=-0.076, p=0.487), glycaemic control (Spearman rho 0.098 

p=0.655) or age (Spearman rho=0.142, p=0.193).  No significant difference was found 

regarding gender and serum MSF concentration across the whole sample (Mann Whitney 

p=0.650). 

 

 

3.4.3.2 MSF concentration in saliva 

3.4.3.2.1 MSF concentration in stimulated saliva 

Eighty five stimulated saliva samples were assayed to quantify the MSF concentration.  MSF 

was detected in a minority of stimulated saliva samples (1a=1/26, 1b=1/13 and 3b=2/15), 

ranging from 58 to 2576ng ml-1, and was not detected in any of the smoking sub-groups (2a 

and 2b) or the periodontally healthy diabetes group (3a).  However, there were insufficient 

numbers of positive samples to allow statistical comparison of the MSF concentrations 

between each study sub-group.  

 

3.4.3.2.2 MSF concentration in unstimulated saliva 

Eighty eight unstimulated saliva samples were assayed to quantify the MSF concentration 

and the results are summarised in Table 3.11.  MSF was detected in a minority of 

unstimulated saliva samples (1a=3/27, 1b=2/14, 2b=1/9 and 3a=1/13 and 3b=4/15), ranging 

from 75 to 1677ng ml-1 and was not detected in the healthy smoking sub-group (2a).  

However, there were insufficient numbers of positive samples to allow statistical comparison 

of the MSF concentrations between each study sub-group.  

 

3.4.3.3 Efficiency of the MSF ELISA: rhMSF spiking analysis 

During the optimisation of the MSF ELISA for use with saliva samples, it was noted that the 

optical density scores for the pooled stimulated saliva sample was close to the maximum 

sensitivity range for the assay.  In all assays, the MSF standard dilutions resulted in a good 

range of optical density scores and very good standard curves (R2>0.99), suggesting that the 

ELISA was functioning appropriately.  Further attempts were made to use a 1:5 dilution of 

the saliva samples in PBS-T-PI, however, most of these had to be abandoned due to the saliva 

being too viscous to pipette, particularly the unstimulated saliva samples.  It was possible to 
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assay one unstimulated saliva sample at 1:5 and 1:10 dilutions (KJD036), which resulted in 

a 38% difference in the final calculated MSF concentration. This difference was most likely 

due to pipetting inaccuracies and difficulties in homogenising the 1:5 dilution of the saliva 

sample. 

 

In order to assess the efficiency of the MSF ELISA with regards to the clinical samples, a 

MSF negative serum sample (KJD098) was spiked with known quanitities of recombinant 

MSF (rhMSF) (serial dilution from 1000-6.25ng ml-1). The resultant corrected optical density 

readings for each dilution was converted to a MSF concentration using the MSF standard 

curve to give a measure of the percentage recovery of the ELISA (Figure 3.16).  The unspiked 

serum sample (KJD098) was found again to be negative for MSF.  Apart from the highest 

rhMSF dilutions, there was a linear dilution effect with the significant correlation between 

rhMSF and the calculated (recovered) MSF concentration for the linear aspect of the dilution 

graph (Spearman rho 1.0 p=0.01 rhMSF 62.5-1000ng ml-1; overall Spearman rho 0.619 

p=0.102 for all rhMSF dilutions).  The mean MSF recovery from the spiked serum sample 

was 51%. Possible explanations for the low percentage rhMSF recovery from the serum 

samples could be due to the presence of a MSF inhibitor and/or non-specific binding to other 

proteins in the serum sample, both of which would reduce the availability of the rhMSF to 

bind to the assay antibodies.  It was noted that the background noise was increasing in the 

final assays, possibly indicating that the MSF ELISA antibodies were starting to degrade. 
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Figure 3.16 The effect of the serial dilution of a MSF negative serum sample (KJD098) spiked with known 

concentrations of rhMSF (ng ml-1) against the MSF concentrations (ng ml-1) calculated from the MSF ELISA. 

 

 
 

 

 

3.4.4 Discussion 

In this study, the pro-angiogenic factor MSF was measured directly for the first time in serum, 

unstimulated and stimulated saliva samples from three groups of subjects: (i) systemically 

healthy non-smokers, (ii) systemically healthy smokers and in (iii) subjects with diabetes.  

Each clinical group was divided into two sub-groups: (a) periodontally healthy and (b) 

subjects with severe periodontitis.  Confidence in the assay methodology was demonstrated 

by the good assay standard curves, however, some issues were encountered with the final 

few MSF ELISA with regards to high background noise. MSF was detected in the majority 

of the serum samples assayed, at significantly higher levels than other factors studied in this 

thesis, however, it was undetectable in the majority of saliva samples and in all GCF samples 

assayed.  With regards to MSF concentrations in serum, there were no significant differences 

or correlations were found.   

 

MSF is produced by various cell types during foetal development and neoplasia, including 

fibroblasts, endothelial and epithelial cells, but is a generally not produced by adult cells in 

health  (Schor et al., 1988a, Schor et al., 1988b, Schor et al., 2003) (Chapter 1.5.3.5).  One 
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exception is in wound healing, where MSF is thought to have an important role through the 

induction of angiogenesis and its motogenic effect on various cell types, including 

fibroblasts, endothelial cells and pericytes (Ellis et al., 2010, Schor and Schor, 2010).  In vivo 

evidence for the possible role of MSF in physiological wound healing was shown by Picardo 

et al. (1992) who reported that MSF activity was detected in wound fluid in 94% (n=18) of 

cases undergoing surgery for non-malignant conditions.  However, MSF activity in serum 

was detected in 20% (n=5) of cases pre-operatively, and in no cases post-operatively, 

implying MSF was produced locally at the wound site, rather than systemically.  

 

Like other angiogenic factors, MSF expression and production is dependent on context i.e. 

in relation to the presence of other growth factors and the nature of the underlying 

extracellular matrix (ECM).  Schor et al. (2012) reported that human adult fibroblasts 

persistently expressed MSF when exposed to TGF-β1 on a wound-like matrix, such as 

denatured collagen or fibrin.  A subsequent exposure of the adult fibroblasts to TGF-β1 

resulted in the MSF expression being turned off, but only if the underlying matrix was type 

1 collagen.  This implies that the cytokine/growth factor milieu and nature of the ECM during 

wound healing, switches on the dermal fibroblasts to produce MSF, which is in turn switched 

off once the wound healing process is complete.  Interestingly, TGF-β1 has been shown to be 

significantly raised in serum, unstimulated whole saliva and in GCF in patients with 

periodontitis compared with age and gender matched periodontally  healthy controls (Khalaf 

et al., 2014).  To date, little is known regarding the role of MSF in oral healing.  Irwin et al. 

(1994) reported that there are sub-populations of gingival fibroblasts, some of which display 

foetal fibroblast characteristics, which are permanently able to express and secrete MSF, in 

particular the papillary fibroblasts. This may indicate that gingival fibroblasts may effectively 

be permanently “switched on” with regards to MSF.  

 

Other sources of MSF may also be important in oral wound healing, as discussed in Chapter 

1.5, saliva has been shown to be a reservoir for a number of growth /angiogenic factors.  

Therefore, it was of interest to study MSF in both saliva and GCF, the latter being a minor 

constituent of saliva. Interestingly, a more recent study in the laboratory used 

immunohistochemistry to examine MSF expression in a variety of small benign and 
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malignant salivary gland tumours (Aljorani et al., 2011).  This study also examined MSF 

expression in histologically normal peri-tumour salivary tissue as a control, similar to the 

methodology used in Chapter 4. Whilst MSF expression was found to be significantly higher 

in both benign and malignant tumours, low level MSF expression was reported in the peri-

tumour normal tissue, particularly in the ductal and myoepithelial cells.  There was very little 

MSF staining of the serous and mucous acinar cells, which would be the most likely source 

of MSF production if it was produced in salivary tissue, although one case did show MSF 

expression in the serous acini.  There are several possible interpretations of these findings: 

(i) MSF is not produced in human salivary glands and the MSF staining found in the Aljorani 

et al. (2011) study was the result of the field cancerisation effect from the adjacent tumour; 

(ii) in health, MSF is only produced at very low concentrations; (iii) MSF is produced 

systemically and enters saliva in a similar way to steroid hormones.   

 

In the present study, MSF was detected in a small number of stimulated and unstimulated 

saliva samples, suggesting it may be present in saliva, albeit it at lower concentrations than 

the limit of detection of the MSF ELISA.  If this was the case, salivary MSF concentrations 

would potentially be in the range of motogenic activity for human fibroblasts (0.1pg ml-1 to 

10ng ml-1) (Ellis et al., 2010, Schor and Schor, 2010).  Evidence from the migration assay 

study, carried out by Dr Ian Ellis as part of the initial GCF elution study, suggested that both 

stimulated saliva and GCF samples induced motogenic activity in a human fibroblast cell 

line.  However, how much of this activity, if any, was due to the presence of MSF is unknown.  

 

Regarding the analysis of the GCF samples, only a few samples resulted in optical densities 

within the MSF standard curves, however, these were at the extreme margin of the sensitivity 

for the assays.  This may imply the presence of MSF in GCF, although this should be 

interpreted with caution and further research is required. A limiting factor was the high 

degree of dilution required to elute the small quantities of GCF from the PerioPapers, which 

was further limited by the low sensitivity of the MSF ELISA.  Other potential limiting factors 

included degradation during storage and the protein recovery rate following the elution stage.  

Data from the migration assay, in the present study, suggested that between 44%-86% of 

rhMSF was retained following a four month storage at -80oC in non-siliconised Eppendorfs.  
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This effect may have been due to the rhMSF binding to the Eppendorfs, so siliconised 

Eppendorfs were used subsequently, although further studies should have been undertaken 

to assess the effect of this change.  The soak and centrifuge elution protocol, used in the 

present study (Chapter 2.1.8), has been widely reported in the literature and shown to result 

in protein recovery rates typically between 50%-100% (Gustafsson, 1996, Booth et al., 1998, 

Johnson et al., 1999b, Fentoglu et al., 2012, de Lima Oliveira et al., 2012, Wassall and 

Preshaw, 2016).  In the present study, spiking PerioPapers with rhMSF resulted in an 

estimated recovery, measured indirectly using a migration assay, of up to 90%. However, 

there is wide variation in the elution techniques in the literature, even for the soak and 

centrifuge protocols, where different buffers, use of protease inhibitors, soaking times and 

centrifugation could all affect protein recovery.  Furthermore, higher protein concentrations 

on PerioPapers have been shown to result in higher protein recovery following elution 

(Johnson et al., 1999b).  

 

In a review of GCF sampling techniques, Barros et al. (2016) recommended PerioPapers 

should be snap frozen at the chairside using liquid nitrogen and then stored long-term in 

liquid nitrogen without buffer, as this significantly reduces oxidation of proteins increasing 

storage times. Unfortunately, due to health and safety reasons liquid nitrogen could not be 

used on the clinics in this institution, but it could be used in future studies for storing GCF.  

In retrospect, more detailed elution studies should have been carried out prior to the GCF 

collection from the study subjects to establish which protocol resulted in the best rhMSF 

recovery. Unfortunately, the MSF ELISA was not available until after the study clinical 

sampling had been completed.  

 

MSF was detected in very high levels in serum (6937 to 17627ng ml-1), significantly higher 

than the concentration range found to result in optimal migration of human foreskin 

fibroblasts in collagen gel assays (1pg ml-1 to 10ng ml-1) (Ellis et al., 2010).  Unexpectedly, 

no significant differences were found in the present study in the serum MSF concentrations 

between the study groups.  It had been anticipated that the serum MSF concentrations would 

be increased in severe periodontitis, associated with increased inflammatory levels of MSF 

in the periodontium spilling over into the systemic circulation, whilst being reduced in 
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smoking and diabetes as these conditions are associated with reduced wound healing 

potential (Chapter 1.7 and 1.8 respectively).  Interestingly in the present study, a non-

significant reduction in serum MSF concentrations were found in smokers in both periodontal 

health and severe periodontitis.  This may indicate that systemic levels of MSF may be 

reduced in smokers, however, further studies are required to ascertain whether this is 

significant and to determine the pathway for such an inhibitory effect. 

 

Another possibility is that the high serum concentrations of MSF do not reflect the functional 

level of MSF activity due to the potential presence of a MSF inhibitor (MSFI).  The presence 

of a MSF inhibitor may account for the unexpected low rhMSF recovery following the 

spiking of the known MSF negative serum sample, although it may indicate issues with the 

MSF ELISA, such as non-specific binding, low affinity of the antibodies or excessive 

blocking.  The existence of MSFI was found when conditioned medium from keratinocytes 

inhibited rhMSF-induced migration in tissue culture studies, and was identified to be 

neutrophil gelatinase associated lipocalin (NGAL or lipocalin-2) (Jones et al., 2007).  Levels 

of NGAL have been found to be raised in several inflammatory conditions, such as kidney 

diseases and in smokers with chronic obstructive pulmonary disease (Mori and Nakao, 2007, 

Bchir et al., 2017).  Raised levels of NGAL have also been reported in periodontitis, 

compared with healthy controls, in whole unstimulated saliva, GCF and in urine (Westerlund 

et al., 1996, Tsuchida et al., 2013, Morelli et al., 2014, Pradeep et al., 2016, Nakajima et al., 

2019). There has been interest in the study of NGAL in periodontitis as it is associated with 

matrix metalloproteinase-9 (MMP-9) released from neutrophils, high levels of which are 

released in periodontal inflammation (Soder et al., 2006).  Furthermore, Bondy-Carey et al. 

(2013) reported that the presence of Porphyromonas gingivalis was associated with high 

levels of neutrophil induced MMP-9 and NGAL. NGAL has also been found to be 

significantly raised in GCF in obese patients with periodontitis, another area of interest 

currently in periodontal research, compared with both periodontally healthy and non-obese 

subjects with periodontitis (Pradeep et al., 2016).  

 

The key limitation in the assessment of MSF in the study samples was the sensitivity of the 

MSF ELISA, which was in the range of ng ml-1, whilst the commercial ELISA kits used for 
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Ang-1, Endostatin and VEGF were in pg ml-1 range.  The sensitivity of the MSF ELISA was 

sufficient for measuring MSF concentrations in serum, but was insufficient to measure the 

MSF concentrations in saliva and GCF, if present.  Further studies could investigate ways to 

increase the sensitivity of the MSF ELISA, for example, converting it from a colourimetric 

to a chemiluminescent assay.  Furthermore, studies could examine the relationship between 

MSF and MSFI by examining MSF-NGAL ratios in serum, saliva and GCF, especially as 

commercial NGAL ELISA kits are available.  This would establish to functional MSF level 

in serum and the oral fluids, which would be of particular interest with regards to levels in 

periodontal health and disease, and in smoking and poorly controlled diabetes. 

 

 

3.5 Vascular Endothelial Growth Factor (VEGF) 

 

3.5.1 Background 

3.5.1.1 VEGF levels in serum and plasma 

Serum and plasma concentrations of the pro-angiogenic factor VEGF (VEGF-A) have been 

reported in a wide variety of human pathological conditions, in comparison to healthy control 

subjects.  Significantly raised serum VEGF concentrations have been reported in conditions 

such as polyarteritis nodosa (Kikuchi et al., 2005), oral/oropharyngeal squamous cell 

carcinoma (Shang et al., 2007, Polz-Dacewicz et al., 2016) and asthma (Gomulka et al., 2019) 

(Chapter 1.5.3.10 and Table 3.14). Likewise, significantly raised plasma VEGF 

concentrations have been reported in breast and prostate cancer (Caine et al., 2003), sickle 

cell disease (Mohan et al., 2005), pregnancy induced hypertension (Nadar et al., 2005), 

peripheral arterial disease and Type 2 diabetes (Atta et al., 2008).   

 

Table 3.14 shows a representative selection of publications describing serum VEGF 

concentrations in healthy control subjects, which range from 8-1392pg ml-1, and provides a 

baseline level to compare with the subjects examined in this thesis.  Several studies have 

reported contradictory findings regarding serum VEGF concentrations in subjects with 

periodontitis in comparison with periodontally healthy controls (Chapter 1.5.3.10). Some 

studies reported significantly increased serum VEGF concentrations in periodontitis 

(Pradeep et al., 2011, Turer et al., 2017), while others have either reported no difference 
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Table 3.14 A representative selection of publications for VEGF concentrations in human serum and plasma. 
 

SERUM PLASMA 

Hanatani et al. (1995) 

Healthy blood donors (n=30) 

• Mean=19 pg ml-1 (range 8-36pm ml-1) 

Mohan et al. (2005) 

Systemically healthy adults (n=20) 

• Mean=11pg ml-1 (range 10-110) 

Sickle cell disease (n=56) 

• Mean=120pg ml-1 (range 72-780) 

Significantly increased VEGF concentration in Sickle cell 

disease compared with the controls (p<0.001) 

Taichman et al.(1998) 

Systemically and periodontally healthy adults (n=17)  

• Mean=168+58(SD) pg ml-1 

 

Nadar et al. (2005) 

Systemically healthy females (n=30) 

• Mean=22pg ml-1 (range 10-162) 

Pregnancy induced hypertension (PIH) (n=64) 

• Mean=150pg ml-1 (range 14-175) 

Significantly raised VEGF concentration in PIH than healthy 

non-pregnant controls (p<0.05) 

Kikuchi et al. (2005) 

Systemically healthy adults (n=20) 

• Mean=178+ (SD) 41pg ml-1 

Systemic Polyarteritis nodosa (PAN) (n=5) 

• Mean=484+ (SD) 44pg ml-1 

Cutaneous PAN (n=15) 

• Mean=228+ (SD) 97pg ml-1 

VEGF levels were significantly higher in both systemic 
(p<0.005) and cutaneous (p<0.05) PAN compared with the 

healthy controls 

Caine et al. (2003) 

Breast cancer:  
Healthy female controls (n=12)  

• Mean= 30pg ml-1 (range 25-60pg ml-1) 

Breast cancer (n=30)  

• Mean= 310g ml-1 (range 220-488pg ml-1) 

Prostate cancer:  

Healthy male controls (n=12)  

• Mean= 26.5pg ml-1 (range 25-30pg ml-1) 

Prostate cancer (n=30)  

• Mean= 210pg ml-1(range 166-360pg ml-1) 

Significantly higher VEGF concentration in breast and prostate 

cancers > controls (p=0.0001) 

Shang et al. (2007)  
Systemically healthy adults (n=10) 

• Mean=149+ (SD) 64pg ml-1 

Oral squamous cell carcinoma (OSCC) (n=31) 

• Mean=568+ (SD) 338pg ml-1 

Significantly raised VEGF concentration in OSCC than healthy 
controls (p<0.001) 

Atta et al. (2008)  
Systemically healthy adults (n=12) 

• Mean=30.5+(SD)3.1pg ml-1 

Peripheral arterial disease (n=10) 

• Mean=51.6+(SD)5.2pg ml-1 

Diabetes (n=15) 

• Mean=52.8+(SD)4.5pg ml-1 

VEGF plasma concentration significantly higher in peripheral 
arterial disease and diabetes compared with control subjects. 

Upile et al. (2009) 

Healthy controls (n=14) 

• Mean=1391.97(SE)199.36pg ml-1 

Oral squamous cell carcinoma (OSCC) (n=7) 

• Mean=4451.01(SE)305.48pg ml-1 

 

Significantly higher serum VEGF concentrations in OSCC group 
than healthy controls (p<0.001). 

X 

Turer et al. (2017) 

Periodontally healthy controls (n=20) 

• Mean 149.76+(SD)79.94pg ml-1 (median 158.88) 

Periodontitis group (n=20) 

• Pre-treatment - Mean 735.65+(SD)532.67pg ml-1 (median 

599.00) 

• Post-treatment - Mean 253.12+(SD)306.18pg ml-1 (median 

76.12) 

Significantly higher serum VEGF concentrations in periodontitis 

group compared with healthy controls. Non-surgical periodontal 
therapy significantly reduces serum VEGF concentration. 

X 

Gomulka et al. (2019) 

Systemically healthy adults (n=40) 

• Mean=246.6pg ml-1 

Asthma with irreversible bronchoconstriction (n=42) 

• Mean=340.6pg ml-1 

Asthma with reversible bronchoconstriction (n=40) 

• Mean=288.6pg ml-1 

VEGF serum concentrations significantly raised in asthma 

compared with healthy controls, but no significant difference in 
asthma patients with or without irreversible bronchoconstriction. 

X 
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Tayman et al. (2019) 
Periodontally healthy controls (n=20) 

• 7.87+(SD)7.10pg ml-1 

Generalised Periodontitis (n=20) 

• 5.88+(SD)6.17pg ml-1 

Generalised Aggressive Periodontitis (n=21) 

• 8.81+(SD)14.61pg ml-1 

No significant differences between serum concentrations 
between the three groups. 

X 

Manufacturer (R&D Systems) 

Healthy adults (n=35) 

• Mean=239+ (SD) 155 pg ml-1 

Manufacturer (R&D Systems) 

Healthy adults (n=35) 

• Mean=61+ (SD) 45 pg ml-1 

 

 (Widen et al., 2016, Tayman et al., 2019) or reduced levels (Zhu et al., 2015) in comparison 

with periodontally healthy controls. Although not directly relevant to the current study, serum 

VEGF concentrations have been reported to have significantly reduced following non-

surgical periodontal treatment (Pradeep et al., 2011, Turer et al., 2017), suggesting that 

periodontal inflammation may influence systemic levels of pro-angiogenic factors such as 

VEGF.   

 

 

3.5.1.2 VEGF levels in saliva 

Salivary concentrations of VEGF have been reported in a number of oral human pathological 

conditions in relation to healthy controls.  Raised salivary levels have been reported in oral 

and head-neck squamous cell carcinoma (Upile et al., 2009, Korostoff et al., 2011, Polz-

Dacewicz et al., 2016) as well as in benign and malignant tumours of the parotid gland 

(Blochowiak et al., 2019).  However, not all studies reported significant differences, for 

example, Andisheh-Tadbir et al. (2014) reported no significant difference in unstimulated 

salivary VEGF concentrations in head-neck squamous cell carcinoma, while Blochowiak et 

al. (2018) reported no significant difference in stimulated salivary VEGF concentration in 

both primary and secondary Sjögren’s syndrome. Furthermore, reduced salivary levels of 

VEGF were reported in acute stages of recurrent major aphthous ulceration (Brozovic et al., 

2002).  

 

Table 3.15 shows a representative sample of publications which have reported VEGF 

concentrations in unstimulated, stimulated and fractionated saliva.  Large ranges in the VEGF 

concentrations were reported in each study, although potential confounding factors were not 

taken into account in the selection criteria in some studies, such as smoking or previous  
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Table 3.15 A representative selection of publications for VEGF in unstimulated and stimulated saliva. 
 

Unstimulated Saliva (US) Stimulated Saliva (SS) 

Booth et al.(1998) 

• Systemically and periodontally healthy adults (N=12)  

• Systemically healthy adults with periodontitis (N=20) 

Mean levels not stated in paper but VEGF was detected in all 
saliva samples and was significantly higher in periodontitis than 

healthy controls (p<0.05). 

Pammer et al.(1998) 

Whole saliva from healthy adults (n=24) 

• Mean=1.4+0.77 (SD) ng ml-1 

Parotid saliva from healthy adults (n=4) 

• Mean= 1.95ng ml-1 (range 1.26-2.58 ng ml-1) 

Brozovic et al.(2002) 
Systemically healthy adults (n=27)  

• Mean=1652+(SD)567pg ml-1 

Subjects with minor recurrent aphthous ulceration (n=20) 

• Acute stage mean=1417+(SD) 848pg ml-1 

• Remission stage mean=1472+ (SD) 867pg ml-1 

Subjects with major recurrent aphthous ulceration (n=10) 

• Acute stage mean=341+(SD) 109pg ml-1 

• Remission stage mean=1524+ (SD) 784pg ml-1 

Acute stages of major recurrent aphthous ulceration associated 
with significantly reduced salivary VEGF concentrations 

compared with the healthy controls (p<0.01) and the remission 

stage (p<0.005) 

Taichman et al.(1998) 
Systemically and periodontally healthy adults (n=17)  

• Whole saliva mean =693+543(SD) pg ml-1 

• Parotid saliva mean =424+470(SD) pg ml-1 

• Submandibular + Sublingual saliva mean=131+(SD)100pg 

ml-1 

Upile et al. (2009) 
Healthy controls (n=14) 

• Mean=231.61(SE)113.97pg ml-1 

Oral squamous cell carcinoma (OSCC) (n=7) 

• Mean=1148.88(SE)174.64pg ml-1 

 

Significantly higher salivary VEGF concentrations in OSCC 

group than healthy controls (p=0.001). 

Ribeiro et al. (2018)  
Control mothers with children without early childhood caries 

(n=19) 

• Median = 139.11pg ml-1 

Mothers with children with early childhood caries (n=18) 

• Median = 187.97pg ml-1 

Control children without early childhood caries (n=19) 

• Median = 153.83pg ml-1 

Children with early childhood caries n=18) 

• Median = 245.44pg ml-1 

• p=0.06 between groups. 

Korostoff et al. (2011) 

Healthy controls (n=14) 

• Mean=32+(SD)8pg ml-1 

Control smokers (n=14) 

• Mean=39+(SD)10pg ml-1 

Control alcohol drinkers (n=14) 

• Mean=55+(SD)14pg ml-1 

Control alcohol drinkers and smokers (n=14) 

• Mean=55+(SD)14pg ml-1 

Exophytic squamous cell carcinoma of the tongue (n=8) 

• Mean=110+(SD)21pg ml-1 

Endophytic squamous cell carcinoma of the tongue (n=10) 

• Mean=156+(SD)31pg ml-1 

Significantly raised salivary VEGF concentrations in the both 

types of squamous cell carcinoma of the tongue compared with 
all the control groups (p<0.0001). 

Blochowiak et al. (2019) 

Healthy controls (n=15) 

• Median 1001.69pg ml-1 [IQR 719.99] 

Malignant parotid tumours (n=7) 

• Median 2673.04pg ml-1 [IQR 2001.57] 

Pleomorphic adenoma (benign) (n=20) 

• Median 2447.23pg ml-1 [IQR 1334.76] 

Warthin’s tumour (benign) (n=21) 

• Median 2176.17pg ml-1 [IQR 1964.30] 

VEGF salivary concentrations significantly higher in 

pleomorphic adenomas (p=0.007) and Warthin’s tumours 
(p=0.016) compared with healthy controls. 

Andisheh-Tadbir et al. (2014) 

Healthy controls (n=24) 

• Mean=149.58+(SD)101.88pg ml-1 

Head and neck squamous cell carcinoma patients (n=30) 

• Mean=174.41+(SD)115.07pg ml-1 

No significant difference between carcinoma and healthy control 

groups. 

X 

Wu et al. (2018) 
Non-periodontitis group (n=27) 

• Median 721.6pg ml-1 [IQR 373.4-1199.6] 

Periodontitis group (n=30) 

• Median 823.8pg ml-1 [IQR 562.4-1226.6] 

No significant difference in VEGF salivary concentrations 
between periodontitis and non-periodontitis groups (p=0.14). 

X 

Manufacturer (R&D Systems) 

Healthy adults (n=10) 

• Mean=1218+775 (SD) pg ml-1 

X 
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smoking (Pammer et al., 1998, Taichman et al., 1998) or time of day of saliva collection 

(Booth et al., 1998, Taichman et al., 1998).  These factors were taken into account in the 

control group for the Brozovic et al. (2002) study, suggesting the mean unstimulated saliva 

VEGF concentration of 1652pg ml-1 (SD+567pg ml-1) may be a more reliable indicator of the 

levels expected. Currently, no studies which have reported VEGF concentrations in both 

stimulated and unstimulated saliva from the same individuals, which will be addressed in the 

present study.   

 

Although the majority of studies have examined mean VEGF concentrations in mixed whole 

saliva, evidence suggests that there are significant differences in VEGF concentrations in 

saliva derived from different salivary glands. Taichman et al. (1998) examined VEGF 

concentrations in both stimulated whole saliva and from individual major salivary glands 

(Table 3.15).  Mean VEGF concentrations were highest in stimulated whole saliva (693pg  

ml-1) compared with parotid saliva (424 pg ml-1), and lowest in submandibular-sublingual 

saliva (131pg ml-1). Conversely, Pammer et al. (1998) reported higher mean salivary VEGF 

concentrations in parotid saliva (1950pg ml-1) compared with whole saliva (1400pg ml-1), 

although parotid saliva was only examined in four cases.  Few studies have compared VEGF 

concentrations in saliva with serum levels in the same subjects.  Taichman et al. (1998) 

reported higher VEGF concentrations in whole saliva compared with serum, whilst Upile et 

al. (2009) reported the opposite finding.  In the present study VEGF concentrations were 

compared in both unstimulated and stimulated saliva in comparison with serum.  

 

Few studies have reported on the effect of smoking on salivary VEGF concentrations and 

those which have had significant issues related to the protocol.  Although Booth et al. (1998) 

did not specifically examine the effect of smoking on salivary VEGF concentrations, they 

reported lower VEGF concentrations in unstimulated saliva in smokers with periodontitis 

compared with non-smokers with periodontitis, although this was not significant.  A more 

recent study by Korostoff et al. (2011) reported raised levels of VEGF, although not 

significantly, in unstimulated saliva in control subjects who smoked compared with non-

smoking controls.  Furthermore, periodontal health was not accounted for in the study 
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criteria, which may have influenced the outcome.  The present study will examine whether 

smoking influences salivary VEGF concentrations, both in periodontal health and disease.   

 

Several recent studies have examined salivary VEGF concentrations in diabetes, although 

not in relation to periodontal health or disease. Significantly raised VEGF concentrations in 

unstimulated saliva have been reported in subjects with Type 2 diabetes in older subjects 

with denture stomatitis (Radovic et al., 2014) and in young pregnant subjects, in comparison 

with healthy controls (Surdacka et al., 2011). Salivary VEGF concentrations have also been 

positively correlated with elevated salivary glucose levels in obese adolescents (Hartman et 

al., 2016) and with maternal caries risk, adiposity and sugar intake in mothers of children 

with early childhood caries (Ribeiro et al., 2018).   

 

Regarding periodontal health, Booth et al. (1998) first reported significantly raised VEGF 

levels in unstimulated saliva in small number of subjects with periodontitis compared with 

periodontally healthy controls.  At the time of conducting the present study, Booth et al. 

(1998) was the only study which had reported salivary VEGF levels in periodontal healthy 

in comparison with periodontitis, and no studies at that time had aimed to investigate the 

effects of smoking and diabetes.  More recently, there have been several studies which have 

examined these factors.  Wu et al. (2018) reported elevated, but not significantly, salivary 

VEGF in unstimulated saliva in subjects with periodontitis compared with periodontally 

healthy controls.  Interestingly, two recent studies have reported diametrically opposing 

findings in salivary VEGF concentrations in gingivitis.  Afacan et al. (2019) found 

significantly raised VEGF concentrations in unstimulated saliva in gingivitis compared to 

both periodontal health and periodontitis (no significant difference between periodontal 

health and periodontitis groups). While Belstrom et al. (2017) replicated the classical 

experimental gingivitis studies where 29 dental students (mean age 24.7 years) ceased oral 

hygiene for 14 days, after which oral hygiene was reinstated.  Significantly reduced 

stimulated saliva VEGF concentrations were found in the gingivitis group after 10 days, 

levels of which returned to normal 14 days after the oral hygiene was reinstated.  There was 

no gingivitis group in the present study. 
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3.5.1.3 VEGF levels in GCF 

Many studies have examined VEGF levels, expressed as either total amounts and/or as 

concentrations, in periodontal health compared with periodontal disease.  VEGF levels in 

GCF have been widely reported to be significantly raised in subjects with periodontitis 

compared with healthy controls (Booth et al., 1998, Lee et al., 2003, Guneri et al., 2004, 

Prapulla et al., 2007, Pradeep et al., 2011, Padma et al., 2014, Sakallioglu et al., 2015, Zhu 

et al., 2015, Pannicker and Mehta, 2016, Turer et al., 2017, Romano et al., 2018, Afacan et 

al., 2019, Tayman et al., 2019), levels of which were found to be significantly reduced 

following periodontal therapy (Prapulla et al., 2007, Pradeep et al., 2011, Padma et al., 2014, 

Pannicker and Mehta, 2016, Turer et al., 2017, Romano et al., 2018).  Several studies have 

also reported significant, albeit low to moderate, correlations between VEGF levels and 

periodontal parameters such as gingival index/bleeding on probing, pocket depths and loss 

of attachment (Lee et al., 2003, Turer et al., 2017, Tayman et al., 2019).  Although most 

studies reported GCF level using VEGF concentrations, some studies only found 

significantly raised VEGF levels in periodontitis, compared with periodontally healthy 

controls, when the results were reported in total amounts of VEGF (30 second collection 

period) (Booth et al., 1998, Turer et al., 2017, Afacan et al., 2019, Tayman et al., 2019).  In 

fact, two studies found significant higher VEGF GCF concentrations in the periodontally 

healthy subjects (Booth et al., 1998, Afacan et al., 2019).  This latter finding may be due to 

significantly reduced GCF flow rates associated with periodontally healthy sites resulting in 

high VEGF concentrations (Turer et al., 2017) or errors in accurately measuring very small 

quantities of GCF in healthy sites resulting in falsely high concentration calculations 

(Wassall and Preshaw, 2016).  Furthermore, several studies have reported significantly 

higher VEGF in GCF between subjects in sites with gingivitis compared with periodontally 

healthy sites (Lee et al., 2003, Pradeep et al., 2011, Padma et al., 2014), although this finding 

was not universal (Prapulla et al., 2007).  

  

Currently few studies have examined the effect of smoking on VEGF levels in GCF.  

Sakallioglu et al. (2015) carried a split mouth study in smokers and non-smokers, who had 

both periodontally healthy and diseased sites.  No significant differences were found between 

the smoking and non-smoking groups in terms of VEGF levels (concentration and total 
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amounts) in either the periodontally healthy sites or periodontitis sites. Similar findings were 

reported by Eren et al. (2015) between periodontally healthy smokers and non-smokers. 

Although these were two small studies, they infer smoking does not significantly affect 

VEGF levels in GCF.  

 

Similar to smoking, there have only been a small number of studies which have examined 

the relationship between Type 2 diabetes and the levels of VEGF in GCF.  Several studies 

have found no significant differences in GCF VEGF levels between subjects with Type 2 

diabetes and systemically healthy subjects, either at periodontally healthy sites or at 

periodontitis sites (Guneri et al., 2004, Sakallioglu et al., 2007, Pannicker and Mehta, 2016). 

Pannicker and Mehta (2016) also found similar significant reductions in VEGF GCF levels 

following non-surgical periodontal treatment in both subjects with and without diabetes. One 

recent study reported significantly higher total VEGF in GCF in periodontitis subjects with 

diabetes compared with patients without diabetes once statistical adjustments were made for 

confounding factors, such as smoking, age, bleeding and plaque scores (Mohamed et al., 

2015).   

 

3.5.2 Results 

3.5.2.1 VEGF concentration in serum  

VEGF was detected in the majority of serum samples and the results are summarised in Table 

3.16 and are shown in Figure 3.17. VEGF was quantified in 67 serum samples with mean 

levels for the study sub-groups ranging from 274 to 1602pg ml-1, although there were large 

variations in the levels detected.  No significant differences were found between either the 

study groups (Two-way ANOVA test F(2,61)=0.387, p=0.681) or between periodontally 

healthy and severe periodontitis sub-groups (Two-way ANOVA test F(1,61)=0.691, 

p=0.409), and there was no significant interaction found between periodontal health status 

and the study groups (Table 3.17). A non-significant reduction was found in the smoking 

group (Group 2) in periodontal health and increased levels in severe periodontitis compared 

with the healthy control (Group 1) and the diabetes (Group 3) groups (Figure 3.18).  

Bonferroni post hoc tests (Table 3.18) confirmed that there were no significant differences 

between the study sub-groups (p=1.0).  Diagnostic statistical analysis revealed that there were 

outliers in the data which had a significant influence on the overall statistical outcome 
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(Studentized residual highest=5.74, lowest= -1.24; highest Cook’s distance=1.10; samples 

KJD58, KJD89 and KJD41 were deemed to be outliers).  Bootstrapping analysis confirmed 

that the outcome of the Two-way ANOVA was not significantly influenced by the outliers.  

Sensitivity analysis, where data from the three outliers were removed from the dataset, 

confirmed there were no significant differences in the serum VEGF levels between the study 

groups (Two-way ANOVA test F(2,61)=1.278, p=0.286; Table 3.17 and Figure 3.19). 

Bonferroni post hoc tests confirmed that there were no significantly differences in serum 

VEGF concentrations between the study groups (Table 3.18).   

 

Table 3.16 Descriptive statistics for VEGF serum concentration (pg ml-1) for the study groups and sub-groups. 

Statistical data in brackets are the results following removal of extreme outliers (>3xSD) from the data set. 
 

Group Number 

Valid Cases* 

Mean + SD 

(pg ml-1) 

Median 

(pg ml-1) 

Interquartile 

Range 

Range 

 

1a 

 

30 

(29) 

543+942 

(412+624) 

251 

(239) 

273 

(248) 

4206 

(3379) 

1b 

 

8 635+676 360 863 1920 

Study 

Group 1 

38 

(37) 

562+885 

(460+632) 

267 

(263) 

301 

(269) 

4207 

(3380) 

2a 

 

6 274+176 218 158 482 

2b 

 

6 

(5) 

1602+3266 

(269+125) 

253 

(243) 

2240 

(193) 

8100 

(318) 

Study 

Group 2 

12 
(11) 

938+2311 
(272+148) 

233 
(223) 

234 
(69) 

8119 
(482) 

3a 

 

9 

(8) 

812+1406 

(349+231) 

400 

(292) 

477 

(297) 

4378 

(672) 

3b 

 

8 293+212 193 280 604 

Study 

Group 3 

17 

(16) 

567+1039 

(321+216) 

221 

(203) 

299 

(263) 

4393 

(687) 

 
*Excluding either no sample available or factor not detected. 
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Figure 3.17 Serum VEGF concentrations (pg ml-1) for (a) study sub-groups and (b) study groups. The box 

represents the interquartile range, the horizontal line the median and the whiskers the range. 

(a)               

 
 

(b) 
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Table 3.17 Statistical comparison of serum VEGF concentrations of the study groups and periodontal health-

severe periodontitis using Two-way ANOVA test. Data in brackets are the results following removal of outliers 

KJD41, KJD58 and KJD 89 from the data set. 

 

Group Degrees of  

Freedom (df) 

F Significance 

(p-value) 

Periodontal Health – Severe Periodontitis 

 

1 0.691 

(0.132) 

0.409 

(0.717) 

Study Groups (1, 2 and 3) 

 

2 0.387 

(1.278) 

0.681 

(0.286) 

Periodontal Health – Severe Periodontitis 

Versus Study Groups (interaction) 

2 1.878 

(0.428) 

0.162 

(0.654) 
 

 

 
Table 3.18 Statistical comparison between study sub-groups for serum VEGF (Bonferroni test p-values). Data 

in brackets are the results following removal of outliers KJD41, KJD58 and KJD 89 from the data set. 

 

Study Groups      

 

Mean Difference 

 

Significance 

(p-value) 

95% Confidence Interval 

Lower Bound Upper Bound 

Group 1     Group 2 

                   

                   

                  Group 3 

 

-375.78 

(188.34) 

 

-5.42 

(139.60) 

1.000 

(0.855) 

 

1.000 

(1.000) 

-1411.98 

(-242.06) 

 

-918.49 

(-235.40) 

660.41 

(618.74) 

 

907.65 

(514.60) 

Group 2      Group 1 

 

                   

                   Group 3 

 

375.78 

(-188.34) 

 

370.36 

(-48.74) 

1.000 

(0.855) 

 

1.000 

(1.000) 

-660.41 

(-618.74) 

 

-809.48 

(-539.62) 

1411.98 

(242.06) 

 

1550.20 

(442.14) 

Group 3     Group 1 

 

                   

                   Group 2 

 

5.42 

(-139.60) 

 

-370.36 

(48.74) 

1.000 

 

 

1.000 

(1.000) 

-907.65 

(-514.60) 

 

-1550.20 

(-442.14) 

918.49 

(235.40) 

 

809.48 

(539.62) 
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Figure 3.18 Profile plot of periodontal health and severe periodontitis against estimated marginal mean serum 

VEGF concentrations (pg ml-1) for the three study groups. 

 

 
 

 

Figure 3.19 Serum VEGF concentrations (pg ml-1) with extreme outliers (>3xSD) removed for (a) study sub-

groups and (b) study groups. The box represents the interquartile range, the horizontal line the median and the 

whiskers the range. 

(a)               
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(b) 

 

 

There were no significant correlations between the serum VEGF concentration with smoking 

dose (pack years) (Spearman rho=-0.090, p=0.481), glycaemic control (Spearman rho -0.119 

p=0.649) or age (Spearman rho=0.146, p=0.246).  No significant difference was found 

regarding gender and serum VEGF concentration across the whole sample (Mann Whitney 

p=0.712). 

 

3.5.2.2 VEGF concentration in saliva 

3.5.2.2.1 VEGF concentration in stimulated saliva 

VEGF was detected in the majority of stimulated saliva samples and the results are 

summarised in Table 3.19 and shown in Figure 3.20.  VEGF was quantified in 81 stimulated 

saliva samples with mean levels for the study sub-groups ranging from 465 to 961pg ml-1, 

although there were large variations in the levels found. No significant differences were 

found between either the study groups (Two-way ANOVA test F(2,75)=0.791, p=0.457) or 

between periodontally healthy and severe periodontitis sub-groups (Two-way ANOVA test 

F(1,75)=0.241, p=0.626), and there was no significant interaction found between periodontal 

health status and the study groups (Table 3.20).  A non-significant increase was found in the 

smoking group (Group 2) in periodontal health and reduced levels in severe periodontitis 
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compared with the healthy control (Group 1) and the diabetes (Group 3) groups (Figure 3.21).  

Bonferroni post hoc tests confirmed that there were no significant differences between the 

study sub-groups (Table 3.21).  Diagnostic statistical analysis revealed that there was an 

outlier in the data which had a significant influence on the overall statistical outcome 

(Studentized residual highest=7.34, lowest=-1.93; highest Cook’s distance=1.28; sample 

KJD54 was deemed to be an outlier; Figure 3.22).  Bootstrapping analysis suggested the 

outcome of the Two-way ANOVA was not significantly influenced by the outlier.  However, 

sensitivity analysis, where the outlier (KJD54) was removed from the dataset, revealed highly 

significant differences between the study groups (Two-way ANOVA test F(2,75)=5.629, 

p=0.005) but no significant difference between periodontally healthy and severe periodontitis 

sub-groups (Two-way ANOVA test F(1,75)=2.575, p=0.113). There was no significant 

interaction found between periodontal health status and the study groups (Table 3.20).  

Bonferroni post hoc tests (Table 3.21) revealed significantly higher stimulated saliva VEGF 

concentrations in the diabetes group (Group 3) compared with systemically healthy non-

smokers (study group 1; 3>1 p=0.012) and smokers (Group 2; 3>2 p=0.004).  No significant 

difference was found between the systemically healthy and smoking groups. These findings 

strongly suggested that stimulated saliva VEGF concentration was significantly raised in the 

diabetes study group. 
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Table 3.19 Descriptive statistics for VEGF stimulated (SS) and unstimulated saliva (US) concentrations (pg  

ml-1) for the study groups and sub-groups. Statistical data in brackets are the results following removal of 

extreme outliers (>3xSD) from the data set. 

 
 

 Group Number 

Valid cases* 

Mean + SD 

(pg ml-1) 

Median 

(pg ml-1) 

Interquartile 

Range 

Range 

 

SS 1a 

 

26 465+223 473 328 819 

1b 

 

13 727+208 773 387 571 

Study 

Group 1 

39 552+249 500 415 853 

2a 

 

8 
(7) 

961+1482 
(449+347) 

429 
(393) 

755 
(488) 

4521 
(1059) 

2b 

 

9 

 

481+226 478 228 788 

Study 

Group 2 

17 
(16) 

707+1023 
(467+275) 

465 
(456) 

343 
(279) 

4521 
(1059) 

3a 

 

10 744+353 758 624 1053 

3b 

 

15 
 

778+352 765 410 1442 

Study 

Group 3 

25 765+345 765 460 1449 

US 1a 

 

27 403+294 313 282 1413 

1b 

 

14 

(13) 

838+577 

(745+476) 

625 

(549) 

845 

(806) 

2047 

(1489) 

Study 

Group 1 

41 
(40) 

552+456 
(514+392) 

450 
(449) 

449 
(437) 

2047 
(1489) 

2a 

 

9 311+197 224 290 492 

2b 

 

9 481+259 599 504 648 

Study 

Group 2 

18 396+240 275 442 648 

3a 

 

13 
 

721+386 623 451 1440 

3b 

 

15 

(14) 

766+475 

(678+343) 

728 

(701) 

496 

(475) 

1772 

(1270) 

Study 

Group 3 

28 
(27) 

745+428 
(699+358) 

681 
(673) 

466 
(467) 

1772 
(1496) 

 

*Excluding either no sample available or factor not detected. 
 

 

 

Table 3.20 Statistical comparison of the stimulated saliva VEGF concentrations of the study groups and 

periodontal health-severe periodontitis using Two-way ANOVA test. Data in brackets are the results following 

removal of outlier KJD54 from the data set.  

 

Group Degrees of  

Freedom (df) 

F Significance 

(p-value) 

Periodontal Health – Severe Periodontitis 

 

1 0.240 

(2.575) 

0.626 

(0.113) 

Study Groups (1, 2 and 3) 

 

2 0.791 

(5.629) 

0.457 

(0.005**) 

Periodontal Health – Severe Periodontitis 

Versus Study Groups (interaction) 

2 2.877 

(1.557) 

0.063 

(0.218) 
 

* - Significant difference <0.05 

** - Significant difference <0.01 
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Figure 3.20 Stimulated Saliva VEGF concentrations (pg ml-1) for (a) study sub-groups and (b) study groups. 

The box represents the interquartile range, the horizontal line the median and the whiskers the range. 

(a)               

 
 

  
(b) 
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Table 3.21 Statistical comparison between study sub-groups for stimulated saliva VEGF (Bonferroni test  

p-values).  Data in brackets are the results following removal of outlier KJD54 from the data set. 

 

Study Groups 

 

Mean Difference 

 

Significance 

(p-value) 

95% Confidence Interval 

Lower Bound Upper Bound 

Group 1     Group 2 

                   

                                 

                   Group 3 

 

-154.45 

(85.12) 

 

-212.16 

(-212.16) 

0.934 

(0.921) 

 

0.349 

(0.012*) 

-525.56 

(-117.62) 

 

-539.32 

(-387.12) 

216.66 

(287.86) 

 

114.99 

(-37.20) 

Group 2      Group 1 

                   

 

                    Group 3 

 

154.45 

(-85.12) 

 

-57.72 

(-297.29) 

0.934 

(0.921) 

 

1.000 

(0.004**) 

-216.66 

(-287.86) 

 

-459.13 

(-515.92) 

525.56 

(117.62) 

 

343.70 

(-78.66) 

Group 3     Group 1 

 

                   

                   Group 2 

 

212.16 

(212.16) 

 

57.72 

(297.29) 

0.349 

(0.012*) 

 

1.000 

(0.004**) 

-114.99 

(37.20) 

 

-343.70 

(78.66) 

539.32 

(387.12) 

 

459.13 

(515.92) 

 
* - Significant difference <0.05 

** - Significant difference <0.01 

 
 

 

Figure 3.21 Profile plot of periodontal health and severe periodontitis against estimated marginal mean 

stimulated saliva (SS) VEGF concentrations (pg ml-1) for the three study groups. 
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Figure 3.22 Stimulated saliva VEGF concentrations (pg ml-1) with extreme outliers (>3xSD) removed for (a) 

study sub-groups and (b) study groups. The box represents the interquartile range, the horizontal line the median 

and the whiskers the range. 

  (a) 

 
  (b) 
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No significant correlations were found between the VEGF concentration in stimulated saliva 

with smoking dose (Spearman rho=-0.083, p=0.462) or glycaemic control (Spearman rho=-

0.047, p=0.824).   A highly significant moderate positive correlation was observed between 

age and VEGF concentration in stimulated saliva (Spearman rho=0.491, p<0.001; without 

outliers Spearman rho=0.486, p<0.001) (Figure 3.23).  No significant difference was found 

regarding gender and stimulated saliva VEGF concentration across the whole sample (Mann 

Whitney p=0.916). 

 

 

Figure 3.23 Scatterplot of the correlation between stimulated saliva VEGF concentration (pg ml-1) with age 

(Years). Line of best fit shown*. 

 

 

*Line of best fit R2=0.223 (Spearman rho=0.491, p<0.001; without outliers Spearman rho=0.486, p<0.001) 

  

 

3.5.2.2.2 VEGF concentration in unstimulated saliva 

VEGF was detected in the majority of unstimulated saliva samples and the results are 

summarised in Table 3.19 and shown in Figure 3.24.  VEGF was quantified in 87 

unstimulated saliva samples with mean levels for the study sub-groups ranging from 311 to 

838pg ml-1, although there were large variations in the levels found. Significant differences 

were found both between the study groups (Two-way ANOVA test F(2,81)=4.345, p=0.016) 
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and between periodontally healthy and severe periodontitis sub-groups (Two-way ANOVA 

test F(1,81)=5.830, p=0.018), and there was no significant interaction found between 

periodontal health status and the study groups (Table 3.22).  A non-significant reduction was 

found in the smoking group (Group 2) in both periodontal health and severe periodontitis 

compared with the healthy control (Group 1) and the diabetes (Group 3)  groups (Figure 

3.25).  Bonferroni post hoc tests revealed significantly higher VEGF concentrations in 

unstimulated saliva in the diabetes group (Group 3) compared with smokers (Group 2, 3>2 

p=0.012) (Table 3.23).  Diagnostic statistical analysis revealed that there were outliers in the 

data, however, their influence on the overall statistical outcome was low (Studentized 

residual highest=3.27, lowest= -2.19; highest Cook’s distance=0.13; samples KJD34 and 

KJD85 were deemed to be outliers; Figure 3.26).  Bootstrapping analysis confirmed that the 

outcome of the Two-way ANOVA was not significantly influenced by the presence of the 

two outliers.  Sensitivity analysis, where the outliers (KJD34 and KJD85) were removed from 

the dataset, confirmed significant differences between the study groups (Two-way ANOVA 

test F(2,81)=4.310, p=0.017), however, a marginally significant difference was found 

between periodontally healthy and severe periodontitis sub-groups (Two-way ANOVA test 

F(1,81)=3.906, p=0.052).  There was no significant interaction found between periodontal 

health status and the study groups (Table 3.22). Bonferroni post hoc tests confirmed 

significantly higher VEGF concentrations in the diabetes group (Group 3) compared with 

smokers (Group 2; 3>2 p=0.013) (Table 3.23). No significant difference was found between 

the systemically healthy and smoking groups. These findings suggested that unstimulated 

saliva VEGF concentration was significantly raised in the diabetes study group. 
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Figure 3.24 Unstimulated saliva VEGF concentrations (pg ml-1) for (a) study sub-groups and (b) study groups. 

The box represents the interquartile range, the horizontal line the median and the whiskers the range. 

(a)               

 

  (b) 

 

 



201 
 

Table 3.22 Statistical comparison of unstimulated saliva VEGF concentrations of the study groups and 

periodontal health-severe periodontitis using Two-way ANOVA test. Data in brackets are the results following 

removal of outliers KJD34 and KJD85 from the dataset. 

 

Group Degrees of  

Freedom (df) 

F Significance 

(p-value) 

Periodontal Health – Severe Periodontitis 

 

1 5.830 

(3.906) 

0.018* 

(0.052) 

Study Groups (1, 2 and 3) 

 

2 4.345 

(4.310) 

0.016* 

(0.017*) 

Periodontal Health – Severe Periodontitis 

Versus Study Groups (interaction) 

2 2.093 

(2.441) 

0.130 

(0.094) 
 

* - Significant difference <0.05 

 

 

 
Table 3.23 Statistical comparison between study sub-groups for unstimulated saliva VEGF (Bonferroni test p-

values). Data in brackets are the results following the removal of outliers KJD34 and KJD85 from the data set. 

 

Study Groups 

 

Mean Difference 

 

Significance 

(p-value) 

95% Confidence Interval 

Lower Bound Upper Bound 

Group 1     Group 2 

                   

                                  

                   Group 3 

 

155.75 

(118.06) 

 

-193.72 

(-184.98) 

0.487 

(0.675) 

 

0.139 

(0.096) 

-114.35 

(-118.01) 

 

-427.92 

(-392.14) 

425.85 

(354.13) 

 

40.47 

(22.19) 

Group 2     Group 1 

                   

                                  

                   Group 3 

 

-155.75 

(-118.06) 

 

-349.47 

(-303.04) 

0.487 

(0.675) 

 

0.012* 

(0.013*) 

-425.85 

(-354.13) 

 

-638.06 

(-556.13) 

114.35 

(118.01) 

 

-60.87 

(-49.94) 

Group 3     Group 1 

                   

                                 

                   Group 2 

 

193.72 

(184.98) 

 

349.47 

(303.04) 

0.139 

(0.096) 

 

0.012* 

(0.013*) 

-40.47 

(-22.19) 

 

60.87 

(49.94) 

427.92 

(392.14) 

 

638.06 

(556.13) 

 
* - Significant difference <0.05 
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Figure 3.25 Profile plot of periodontal health and severe periodontitis against estimated marginal mean 

unstimulated saliva (US) VEGF concentrations (pg ml-1) for the three study groups. 

 
 

Figure 3.26 Unstimulated saliva VEGF concentrations (pg ml-1) with extreme outliers (>3xSD) removed for 

(a) study sub-groups and (b) study groups. The box represents the interquartile range, the horizontal line the 

median and the whiskers the range. 

(a)               
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  (b) 

 

 

No significant correlations were found between the VEGF concentration in unstimulated 

saliva with smoking dose (Spearman rho=-0.097, p=0.374) or glycaemic control (Spearman 

rho=0.051, p=0.798).   A highly significant moderate positive correlation was observed 

between age and the concentration of VEGF in unstimulated saliva (Spearman rho=0.549, 

p<0.001; without outliers Spearman rho=0.546, p<0.001) (Figure 3.27). No significant 

difference was found regarding gender and unstimulated saliva VEGF concentration across 

the whole sample (Mann Whitney p=0.344). 
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Figure 3.27 Scatterplot of the correlation between unstimulated saliva VEGF concentration (pg  

ml-1) with age (Years). Line of best fit shown*. 

 

 
* Line of best fit R2=0.232 (Spearman rho=0.549, p<0.001; without outliers Spearman rho=0.546, p<0.001) 

 

 

3.5.2.3 Relationship between VEGF concentration in the serum and saliva 

No significant correlations were found between serum VEGF concentrations with either the 

levels found in the unstimulated (Spearman rho=0.067, p=0.558) or stimulated saliva 

(Spearman rho=0.109, p=0.358) (data not shown). A highly significant strong positive 

correlation was found between paired unstimulated and stimulated saliva VEGF 

concentrations (Spearman rho=0.765, p<0.001; without outliers Spearman rho=0.748, 

p<0.001) (Figure 3.28).   
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Figure 3.28 Scatterplot of the correlation between the VEGF concentration (pg ml-1) in unstimulated and 

stimulated saliva. Line of best fit shown*. 
 

 
                    VEGF concentration in Stimulated Saliva (pg/ml) 

 

* Line of best fit R2=0.473 (Spearman rho=0.765, p<0.001; without outliers Spearman rho=0.748, p<0.001) 

 

 

 

3.5.3 Discussion 

In this study, the concentration of the pro-angiogenic factor VEGF was measured in serum, 

unstimulated and stimulated saliva samples from three groups of subjects: (i) systemically 

healthy non-smokers, (ii) systemically healthy smokers and in (iii) subjects with diabetes.  

Each clinical group was divided into two sub-groups: (a) periodontally healthy and (b) 

subjects with severe periodontitis.  Confidence in the assay methodology was demonstrated 

by the good assay standard curves, low assay background noise, acceptable levels of intra- 

and inter-assay variation. VEGF was detected in the majority of samples assayed and the 

mean concentrations, standard deviations and ranges were found to be within levels 

previously reported in the literature, especially after the effects of outliers were accounted 

for (Tables 3.14, 3.15 and 3.16).  As far as can be ascertained, this is the first study to report 

VEGF concentrations in both stimulated and unstimulated saliva in relation to serum.  

Although no significant differences or correlations were found regarding serum VEGF 
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concentrations, VEGF concentrations in unstimulated and stimulated saliva were 

significantly raised in the diabetes group and there were highly significant positive 

correlations with age.  Furthermore, a highly significant strong positive correlation was found 

between paired VEGF concentrations in unstimulated and stimulated saliva.  Interestingly, 

VEGF was found to be marginally statistically higher in unstimulated saliva in subjects with 

severe periodontitis compared with periodontally healthy subjects (p=0.052).  No significant 

correlations were found regarding gender, smoking (pack years) or glycaemic control 

(HbA1c) with VEGF concentrations in serum or saliva (unstimulated or stimulated). 

 

There has been great interest in salivary VEGF as it has been postulated that it could have a 

significant contribution to enhanced oral healing as well as in the maintenance of oral soft 

tissues, salivary glands and the gastro-intestinal tract (Zelles et al., 1995, Booth et al., 1998, 

Pammer et al., 1998, Taichman et al., 1998, Parvadia et al., 2007, Keswani et al., 2013).  

Studies using animal wound healing models have provided good evidence to support this 

hypothesis.  Parvadia et al. (2007) showed that removal of the submandibular glands, the 

primary source of salivary VEGF in mice (Mandel, 1987), resulted in reduced healing 

response following small bowel resection. The healing response was partially corrected by 

the administration of VEGF and was fully restored by the administration of both VEGF and 

Epidermal Growth Factor (EGF), suggesting that salivary VEGF plays a significant role in 

the maintenance and healing response of the gastro-intestinal tract in mice.  The same 

research group later examined the effect of salivary VEGF on murine palatal wound healing 

through the removal of the submandibular glands and by using a specific VEGF inhibitor 

(VEGF-Trap protein) (Keswani et al., 2013).  Removal of the submandibular glands resulted 

in significantly reduced salivary VEGF concentrations, delayed wound closure and re-

epithelisation, reduced capillary density and VEGF receptor expression (VEGFR2/Flk-1) 

compared with the normal control animals. Similar results were found following the 

administration of the specific VEGF inhibitory protein in mice with intact submandibular 

glands when compared with controls. In animals where the submandibular glands had been 

removed addition of recombinant VEGF, at normal murine salivary concentration, restored 

wound closure, re-epithelisation, capillary density and VEGF receptor expression to normal 
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levels.  This study provided good evidence, albeit in mice, of the pivotal role VEGF has in 

oral healing.   

 

VEGF has been previously detected in unstimulated and stimulated whole saliva, as well as 

from individual major salivary glands, and mean VEGF concentrations found in the present 

study are within the range previously reported (Table 3.15). Evidence from 

immunohistochemistry and in-situ hybridisation studies suggests that VEGF is produced 

within human major and minor salivary glands (Pammer et al., 1998, Taichman et al., 1998, 

de Oliveira et al., 2002), in particular by serious acinar cells and accounts for the different 

concentrations of VEGF found in individuals in serum and saliva the present study. In the 

present study there was a highly significant correlation between VEGF concentrations in 

unstimulated and stimulated saliva concentrations in individuals. This implies that VEGF is 

likely to be produced by the submandibular gland, which produces approximately 70% of 

unstimulated saliva (de Almeida et al., 2008).   

 

There have been surprisingly few studies which have examined salivary VEGF concentration 

in diabetes.  At the time of carrying out the present study, there had been no studies in 

humans, although an immunohistochemistry study had reported increased VEGF expression 

in diabetic rat submandibular glands in comparison with healthy controls (Perrotti et al., 

2007).  Subsequently, several studies have reported significantly raised VEGF concentrations 

in unstimulated whole saliva in subjects with diabetes in pregnancy (Surdacka et al., 2011) 

and older subjects with denture stomatitis (Radovic et al., 2014), which correspond to the 

findings of the present study.  However, the present study is the first to report raised VEGF 

levels in both unstimulated and stimulated saliva in diabetes.  A possible explanation for the 

raised salivary VEGF concentrations in diabetes could be from VEGF derived from the 

periodontal tissues, especially in periodontitis, which has entered the saliva via the GCF.  

Although immunohistochemistry studies have reported increased tissue expression of VEGF 

in diabetics (Unlu et al., 2003, Guneri et al., 2004, Sakallioglu et al., 2007, Aspriello et al., 

2009, Lucarini et al., 2009, Ramya and Kumar, 2014), in comparison with healthy controls, 

this did not correspond to increased VEGF levels in GCF (Guneri et al., 2004, Sakallioglu et 

al., 2007).  Likewise, several studies have found no significant difference in VEGF GCF 
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concentrations in subjects with or without diabetes either in periodontal health and 

periodontitis (Guneri et al., 2004, Sakallioglu et al., 2007, Pannicker and Mehta, 2016).  This 

may be explained by a quantitative real time PCR study which reported no significant 

difference in VEGF mRNA levels in gingival biopsies from subjects with periodontal health, 

gingivitis or periodontitis either with or without Type 2 diabetes (Keles et al., 2010).  

Although contrary to this, Mohamed et al. (2015) reported elevated GCF VEGF levels in 

both periodontally healthy and periodontitis patients with diabetes compared with healthy 

subjects with periodontitis. 

 

Currently, there have been no publications which have examined VEGF concentrations in 

both saliva and serum in individuals with diabetes, although Ribeiro et al. (2018) speculated 

that VEGF would be raised in both in diabetes.  This assumption was based on studies which 

have reported raised serum VEGF levels in Type 2 diabetes in comparison with healthy 

controls (Ozturk et al., 2009, Mahdy and Nada, 2011, Shao et al., 2016, Nalini et al., 2017), 

although some studies have reported no significant differences in serum levels (Blann et al., 

2002, Gui et al., 2013).  Likewise, serum VEGF concentrations have been reported to be 

higher in subjects with evidence of long-term poor glycaemic control who have diabetes 

related microvascular diseases, such as diabetic retinopathy (Ozturk et al., 2009, Mahdy and 

Nada, 2011, Nalini et al., 2017) or atherosclerosis (Blann et al., 2002), compared with 

diabetic subjects without complications.  Some studies followed patients longitudinally and 

reported reduced serum (Mahdy and Nada, 2011) and plasma (Kakizawa et al., 2004) VEGF 

concentrations following improvement in glycaemic control.  Although salivary levels of 

VEGF were found to be increased in subjects with diabetes in the present study, no 

correlation was with serum levels of VEGF.  This may be due to the diabetes group in the 

present study having relatively good levels of glycaemic control (mean glycated 

haemoglobin Group 3a=6.8%+0.92(SD); Group 3b=7.69%+1.12(SD)), which would 

corresponds to studies which reported no significant difference in serum VEGF 

concentrations between diabetic subjects with good glycaemic control compared with healthy 

controls (Ruszkowska-Ciastek et al., 2014).  
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A further possible factor in the present study was the mean age of the diabetes study group 

(62+11 years) which was significantly higher (p<0.05) than the control (46+16 years) and 

smoking groups (42+14 years).  The increased salivary VEGF concentrations found in the 

diabetes group could be result of age-related increase in VEGF levels found in the present 

study, as described above.  Furthermore, Mata et al. (2004) found that unstimulated and 

stimulated salivary flow was significantly reduced in both well controlled Type 1 and Type 

2 diabetes compared with age-matched controls. They also reported subjects with diabetes 

had significantly higher salivary protein concentrations compared with the healthy control 

groups. This implies that taking into account of salivary flow rate, in addition to VEGF 

concentration would be of interest.  Therefore, further studies should take into account 

salivary flow rates and ensure all study groups are sufficiently age-matched to take into 

account of any potential age-related differences in VEGF salivary levels.   

 

An interesting finding in the present study was the significant increase in VEGF 

concentration with age in both unstimulated and stimulated whole saliva.  This finding 

corresponds to a small study which reported a significant correlation between VEGF 

concentration in unstimulated whole saliva with age in 14 healthy control and 7 cases of oral 

squamous cell carcinoma (Upile et al., 2009).  Furthermore, this study found age was also 

significantly correlated with serum VEGF concentration and unstimulated saliva VEGF 

concentration was significantly correlated with serum levels.  Neither of these findings were 

found in the present study.  A possible explanation for correlation between salivary levels of 

VEGF and age, found in the present study, could be related to the reduced whole saliva flow 

rates in older subjects, resulting in the higher VEGF concentrations. However, this 

hypothesis assumes that there is a constant movement of VEGF from the salivary tissue into 

saliva, otherwise there would be a dilution effect during stimulation.  Further work could 

investigate salivary VEGF concentration per unit flow. 

 

There are however, inconsistencies in the literature regarding age-related changes to salivary 

flow in healthy subjects with some studies reporting either unaffected (Ben-Aryeh et al., 

1986) or reduced unstimulated salivary flow (Heft and Baum, 1984, Navazesh et al., 1992, 

Percival et al., 1994), while stimulated parotid salivary flow is either unaffected (Heft and 
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Baum, 1984, Percival et al., 1994, Vissink et al., 1996) or increased with age (Navazesh et 

al., 1992).  Wu et al. (1995) reported no significance difference in continuous parotid gland 

salivary flow with age, while submandibular flow rates reduced with age. The findings of the 

latter study are consistent with a meta-analysis of the literature which reported that the flow 

rate of both unstimulated and stimulated whole saliva reduced with age, while, parotid and 

minor salivary gland flow rates were not significantly affected (Affoo et al., 2015).  However, 

older patients are more likely to be subject to the effects of polypharmacy with several 

common medications having negative effects on salivary flow rates.  Evidence from 

histological studies showed acinar volume decreased by 20 to 40% in the submandibular, 

parotid and minor salivary glands with increasing age (Sreebny, 2000), suggesting that the 

parotid gland in particular has “secretory reserve” which maintains parotid saliva flow with 

increasing age (Scott et al., 1987, Affoo et al., 2015).  Furthermore, evidence from a small 

immunohistochemistry study which examined VEGF expression in labial minor salivary 

glands in two age groups, under 20 and over 40 years old (n=15 in each group), reported no 

significant difference in VEGF expression with age (de Oliveira et al., 2002). Although this 

was a small study, albeit only in minor salivary glands, it does suggest salivary VEGF 

production probably does not increase with age and the results of the present study is due to 

reduced whole unstimulated and stimulated saliva flow leading to increased salivary VEGF 

concentration with age.  Further immunohistochemistry and in-situ hybridisation studies 

would be required to ascertain whether VEGF production in the major salivary glands is 

significantly affected by increasing age.  

 

No correlation was found in the present study regarding serum VEGF concentration and age, 

which corresponds with the findings of Meng et al. (2009) in healthy adults, although 

Okamoto et al. (2008) reported significantly higher serum VEGF in children compared with 

adults. With regards to the present study, which only involved adults, current evidence 

suggests serum VEGF concentrations do not significant change with age, although ideally 

measures should be taken to have age-matched control groups. 

 

Another interesting finding in the present study was the raised VEGF unstimulated saliva 

concentration found in severe periodontitis compared with periodontal health, although this 
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was a marginally significant finding (p=0.052) once outliers were accounted for.  This finding 

is consistent with three previous studies (Booth et al., 1998, Wu et al., 2018, Yilmaz Sastim 

et al., 2020), although Wu et al. (2018) reported a non-significant increase in the periodontitis 

group.  However, out of these studies only Yilmaz Sastim et al. (2020) took into account 

diurnal variation during sampling, which may have affected the outcome of the other two 

studies.  Booth et al. (1998) also reported significantly higher total VEGF in GCF in 

periodontitis compared with healthy controls and hypothesised that raised VEGF 

concentrations in unstimulated saliva from patients with periodontitis may be due to overspill 

of VEGF from the chronically inflamed periodontal tissue.  Evidence from 

immunohistochemistry studies carried out on gingival tissue samples has shown increased 

VEGF and VEGFR2 expression in periodontitis compared with periodontal health (Johnson 

et al., 1999a, Artese et al., 2010, Vladau et al., 2016).  Significantly raised GCF VEGF levels 

in periodontitis compared with periodontal healthy controls has been reported in the literature 

(Guneri et al., 2004, Sakai et al., 2006, Sakallioglu et al., 2015, Pannicker and Mehta, 2016, 

Turer et al., 2017).   

 

Contrary to the finds in the present study, Afacan et al. (2019) reported no significant 

difference VEGF concentrations in unstimulated saliva between the periodontitis groups 

compared with healthy controls.  This study took into account diurnal variation in the 

sampling protocol and there was good age and gender matching across the study groups.  

Interestingly, this group reported significantly raised salivary VEGF concentrations in 

gingivitis compared to both periodontal health and periodontitis.  While Belstrom et al. 

(2017) reported significantly reduced VEGF concentrations in stimulated saliva following a 

10 day period of cessation of oral hygiene in young adults.  It is difficult to draw conclusions 

from these studies as the Afacan et al. (2019) study examined subjects with long-term 

gingivitis while Belstrom et al. (2017) examined VEGF levels in early stages of gingivitis in 

stimulated saliva in young adults.  But these studies highlight further research is required to 

establish whether any changes occur in angiogenic factor levels in saliva, particularly VEGF, 

in the transition from periodontal health through gingivitis to periodontitis. 

 



212 
 

Currently there is great interest regarding the systemic overspill of various factors produced 

in periodontitis into the systemic circulation and their potential negative effects on systemic 

health (Beck et al., 2019, Falcao and Bullon, 2019).  There was no evidence in the present 

study that periodontitis results in significantly raised serum levels of VEGF. Currently, there 

are inconsistencies in the literature regarding serum levels of VEGF in periodontitis, 

compared with periodontally healthy controls, with some studies reporting increased levels 

in periodontitis (Pradeep et al., 2011, Turer et al., 2017), while others reported either no 

difference (Widen et al., 2016, Tayman et al., 2019) or reduced VEGF concentrations (Zhu 

et al., 2015). 

 

In the present study, no significant differences were found in VEGF concentrations in either 

serum or saliva in the smokers compared with the never smokers.  Furthermore, no significant 

correlations were found between VEGF concentrations and smoking dose (pack years) in 

serum or saliva.  These findings are consistent with several previous studies which reported 

no significant differences in VEGF levels between smokers and non-smokers in serum 

(Daloee et al., 2017, Alomari et al., 2018) or plasma (Belgore et al., 2000, Schmidt-Lucke et 

al., 2005).  However, other studies have reported higher systemic levels of VEGF in smokers 

compared with healthy controls (Kimura et al., 2007, Ugur et al., 2018).  Ugur et al. (2018) 

reported significantly raised serum concentrations of both VEGF and the pro-inflammatory 

cytokine IL-6 in smoker compared with non-smokers.  Furthermore, this group found 

significantly reduced serum levels of the anti-inflammatory cytokine IL-10 in smokers 

compared with smokers, suggesting that smoking may increase systemic inflammation.  

Possible explanations for variation in the outcomes of these studies may reflect possible 

differences in laboratory protocols, smoking habits, age and gender of the study groups.  For 

example, Kimura et al. (2007) reported significantly higher serum VEGF concentrations in 

males compared with female smokers.  No such finding was found in the present study. 

 

With regards to effect of smoking on periodontal health, no significant differences in VEGF 

concentrations in either serum or salivary levels were found between periodontal health and 

severe periodontitis in the present study.  Although, there was an indication from the profile 

plots smoking may reduce serum and salivary VEGF concentrations, especially in 
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periodontal health in smokers.  However, these were non-significant results and should be 

interpreted with caution.  In terms of the literature, Sakallioglu et al. (2015) found no 

significant differences in VEGF concentration in GCF between smokers and non-smokers in 

patients with periodontitis.  While Eren et al. (2015) reported no significant difference in 

both VEGF concentration and total VEGF in GCF between smokers and non-smokers in 

periodontally healthy subjects. One study has reported raised VEGF levels in unstimulated 

saliva in smokers, but this was only significant when combined with alcohol consumption 

(Korostoff et al., 2011).  Currently there have been few studies which have examined VEGF 

expression in periodontal tissue in smokers and non-smokers.  Jalayer Naderi et al. (2017) 

carried out such a study using periodontal surgical tissue and reported significantly less 

VEGF expression in smokers compared with non-smokers.  Just like the situation in diabetes, 

there appears to be a discrepancy in the literature between VEGF expression in the 

periodontal tissues, as shown by immunohistochemistry and PCR studies, and VEGF levels 

in GCF. The common assumption being that GCF studies directly relate to the factor 

expression in the underlying periodontal tissue, however, this does not appear to be the case 

with VEGF.  A potential issue with many studies related to smoking and periodontal research 

is that it is unclear whether previous smoking had been accounted for in the selection criteria.  

In the present study, the smoking group contained only never smokers to rule out the possible 

effects of previous smoking. 

 

Although there is a large body of research with regards to VEGF, including in oral disease 

generally, there is significant scope for further research into conditions known to negatively 

impact upon oral wound healing and periodontal disease, namely smoking and diabetes.  

Ideally further studies involving serum and saliva samples should ideally have larger group 

sizes, although the power calculations for the present study were sufficient, and more closely 

age and gender matched study groups to reduce potential confounding effects, although no 

gender differences were found in the present study. It should be noted that there were a 

relatively large number of serum samples where VEGF was not detected, which may have 

impacted on the statistical power of the results.  Since the acquisition of the ELISA kits used 

in this study, the sensitivity of kits available has increased due to the improved specificity of 
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the monoclonal capture antibody.  Therefore, the expectation would be the VEGF would now 

be detected in a much higher proportion of the serum samples, if not all.      

 

One of the issues encountered in the present study was the issue of measuring salivary VEGF 

concentrations in conditions associated with reduced salivary flow, namely diabetes and age, 

whilst comparing these results with healthy controls.  This is analogous to comparing factor 

concentrations in GCF between periodontal disease and periodontal health, the latter being 

associated with extremely low flow rates.  As a result it is now recommended that GCF 

studies report factor levels in total quantities per unit time (Wassall and Preshaw, 2016), 

usually 30 second sampling, although many recent studies also report factor concentration as 

well.  In the case of studying factor levels in saliva, salivary flow rates could be taken into 

account in further studies, so that both factor concentration and total factor levels per unit 

time could be reported. 

 

Currently, there is a gap in the literature regarding whether VEGF and its receptors levels in 

serum, GCF and saliva change in the transition between periodontal health, gingivitis and 

severe periodontitis.  There is also scope for further studies into the potential effects of risk 

factors known to be associated with reduced oral healing, such as smoking and poorly 

controlled diabetes, on VEGF levels in oral fluids. This could include studying the effect of 

obesity and pre-diabetes on salivary and GCF levels in relation to periodontal health and 

disease.  It would have been of great interest to examine VEGF GCF levels in the present 

study, however, due to the limited quantity of GCF it was decided to only assess these 

samples for MSF (Chapter 3.4).  

 

Another significant modifiable risk factor for both oral healing and periodontal disease, as 

well as oral cancer, is alcohol consumption.  Enberg et al. (2001) reported even a single high 

dose of alcohol significantly reduced stimulated saliva flow rate, but not unstimulated saliva 

flow, and significantly reduced various salivary electrolyte and total protein concentration. 

Furthermore, Korostoff et al. (2011) reported significantly raised VEGF concentration in 

unstimulated saliva in subjects who consumed at least one alcoholic drink per day during the 
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previous two years. Currently, there are no studies which have examined the acute and 

chronic effects on alcohol consumption on serum, salivary and GCF VEGF levels.  

 

If it was possible to attain human salivary gland samples, it would be of interest to study 

VEGF protein and gene expression, using immunohistochemistry and PCR techniques, in 

smokers and subjects with diabetes in comparison with healthy controls.  In reality it is likely 

that such studies would require the use of biopsies samples from subjects with various 

salivary pathologies, such as tumours, which runs the risk of field cancerisation effects. 

 

 

3.6 Endostatin 

 

3.6.1 Background 

3.6.1.1 Endostatin levels in serum and plasma 

Serum and plasma levels of the anti-angiogenic factor endostatin have been reported in a 

wide variety of human pathological conditions, in comparison to healthy control subjects.  

Significantly raised serum and plasma endostatin concentrations have been reported in 

coronary heart disease (Mitsuma et al., 2007), intracranial atherosclerosis (Arenillas et al., 

2005), Type II diabetes (Atta et al., 2008) and in various tumours such as soft tissue sarcoma 

(Feldman et al., 2001), breast cancer (Teh et al., 2004), hepatocellular (Uematsu et al., 2005) 

and gastric (Woo et al., 2006) carcinomas.  Interestingly, a recent study reported significantly 

reduced serum endostatin concentrations in oral squamous cell carcinoma, particularly when 

associated with metastasis, in comparison with healthy controls (Mardani et al., 2018). 

Currently, there have been no studies which have reported serum endostatin concentrations 

in periodontal health and disease. 

 

Table 3.24 shows a representative selection of publications describing endostatin 

concentrations in serum and plasma.  These studies also examined the serum endostatin 

concentrations in healthy control subjects, allowing comparison with the healthy control 

subjects examined in this thesis.  It is apparent from the literature that a large range of serum 

endostatin concentrations have been reported in the healthy control subjects (17-176ng  

ml-1).   
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3.6.1.2 Endostatin levels in saliva and GCF 

Currently, there have been no publications which have reported endostatin concentrations in 

human saliva or gingival crevicular fluid in either oral health or disease.  Furthermore, 

endostatin expression has not been reported in human periodontal tissues in either periodontal 

health or disease.   

 
 

Table 3.24 A representative selection of publications for endostatin concentrations in human serum and plasma. 
 

SERUM PLASMA 

Feldman et al. (2001) 

• Healthy controls (n=34) mean 25.8ng ml-1 

• Soft tissue sarcoma (n=25) mean 43.0ng ml-1 

• Significantly raised endostatin levels in Soft tissue sarcoma 

> controls (p=0.002) 

• Soft tissue sarcoma cases with endostatin levels >2 SD of the 

control mean were associated with aggressive tumour 

behaviour 

Teh et al. (2004) 

• Healthy controls (n=7) mean 34.97+3.76 (SD) ng ml-1 

• Breast cancer (n=17); mean pre-operative values 30.62+4.54ng 

ml-1; post-operative values 60.59+7.7ng ml-1.  

• Significantly raised endostatin levels in post-operative breast 

cancer both compared with healthy controls and pre-operative 

breast cancer (p=0.015) 

Miyashita et al. (2003) 

• Healthy controls (n=15) mean 17.1+1.5 (SD) ng ml-1 

• Liver tumours (n=12) mean 23.9+4.9ng ml-1 

• Metastatic liver tumours (n=25) mean 18.8+1.5ng ml-1 

• No significant differences between the groups 

Gu et al. (2004) 

• Healthy male controls (n=7) mean 20.3+3.2 (SD) pg ml-1 

• Plasma endostatin levels increased significantly 30 minutes 

after exercise to a mean 29.3+4.2pg ml-1 

Uematsu et al. (2005)   

• Healthy controls (n=13) mean 22.2+10.1(SD) ng ml-1 

• Hepatocellular carcinoma (n=24) mean 31.5+15.8ng ml-1 

• Significantly raised endostatin levels in Hepatocellular 

carcinoma > controls 

Atta et al. (2008)  

• Healthy controls (n=12) mean 135+4 (SE) ng ml-1 

• Type II diabetics (n=15) mean 189+2ng ml-1 

• Significantly raised endostatin in Type II diabetics > controls 

(p<0.01)  

Woo et al. (2006)  

• Healthy controls (n=23) mean 52.2+6.2 (SD) ng ml-1 

• Metastatic gastric carcinoma (n=107) mean 70.1+16.6ng ml-1 

• Significantly raised endostatin levels in metastatic gastric 

carcinoma > controls (p<0.001) 

• High endostatin levels were significantly associated with 

metastasis and poor prognosis (p<0.001) 

Unpublished data from manufacturer 

• Healthy controls (n=7) mean 120+26 (SD) ng ml-1 (range 69-

172 ng ml-1) 
 

 

Mitsuma et al. (2007) 

• Healthy controls (n=15) median 49.6ng ml-1 (interquartile 

range 29.1 to 84.5) 

• Coronary heart disease (n=57) median 79.7ng ml-1 

(interquartile range 46.2 to 130.3) 

• Endostatin levels significantly raised in coronary heart 

disease > control 

X 

Mardani et al. (2018) 

• Mean serum in oral squamous cell carcinoma (OSCC) 

(n=45) 68.8+85ng ml-1. 

• Healthy controls (n=45) 175.6+73ng ml-1. 

• Endostatin significantly lower in OSCC < healthy controls 

(p=0.001). 

 

X 

Unpublished data from manufacturer 

• Healthy controls (n=60) mean 122+30 (SD) ng ml-1 (range 

58-232ng ml-1) 

X 
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3.6.2 Results 

3.6.2.1 Endostatin concentration in serum 

Endostatin was detected in the majority of serum samples and the results are summarised in 

Table 3.25 and are shown in Figure 3.29. Endostatin was quantified in 97 serum samples 

with mean levels for the study sub-groups ranging from 32730 to 57256pg ml-1.  Highly 

significant differences were found between the study groups (Two-way ANOVA test F(2,91) 

=10.918, p<0.001; Table 3.26).  No significant difference was found between the 

periodontally healthy and severe periodontitis sub-groups, and there was no significant 

interaction found between periodontal health status and the study groups. A non-significant 

reduction was found in the smoking group (Group 2) in both periodontal health and severe 

periodontitis compared with the healthy control (Group 1) and the diabetes groups (Group 3) 

(Figure 3.30).  Bonferroni post hoc tests (Table 3.27) revealed significantly lower serum 

endostatin concentrations in smokers (Group 2) compared with systemically healthy non-

smokers (Group 1; 2<1 p<0.001) and subjects with diabetes (Group 3; 2<3 p=0.001).  These 

findings strongly suggested that serum endostatin concentration was significantly reduced in 

smokers.  Diagnostic statistical analysis revealed that there were no outliers in the data which 

had a significant influence on the overall statistical outcome (Studentized residual 

highest=1.90, lowest= -1.71; highest Cook’s distance=0.05).  Therefore, no further analysis 

regarding potential outliers was required. 

 

Table 3.25 Descriptive statistics for endostatin serum concentrations (pg ml-1) for the study groups and sub-

groups.  
 

Group Number 

Valid Cases* 

Mean + SD 

(pg ml-1) 

Median 

(pg ml-1) 

Interquartile 

Range 

Range 

 

1a 

 

38 55752+17062 54990 35303 50257 

1b 

 

12 51362+15212 47340 22351 46940 

Study 

Group 1 

50 54698+16594 51615 33427 50257 

2a 

 

11 32730+13727 29414 14360 46316 

2b 

 

9 35969+12664 38356 21935 34826 

Study 

Group 2 

20 34188+13017 30079 15177 46316 

3a 

 

12 57256+14187 58500 28824 42210 

3b 

 

15 46422+14514 45316 29531 45998 

Study 

Group 3 

27 51237+15122 53135 25480 55164 

 

*Excluding either no sample available or factor not detected. 
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Figure 3.29 Serum endostatin concentrations (pg ml-1) for (a) study sub-groups and (b) study groups. The box 

represents the interquartile range, the horizontal line the median and the whiskers the range. 

 (a)       

 

 

(b) 
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Table 3.26 Statistical comparison of serum endostatin concentrations of the study groups and periodontal 

health-severe periodontitis using Two-way ANOVA test. 

 

Group Degrees of  

Freedom (df) 

F Significance 

(p-value) 

Periodontal Health – Severe Periodontitis 

 

1 1.308 0.256 

Study Groups (1, 2 and 3) 

 

2 10.918 0.000*** 

Periodontal Health – Severe Periodontitis 

Versus Study Groups (interaction) 

2 1.185 0.311 

 
* - Significant difference <0.05 

** - Significant difference <0.01 

*** - Highly significant difference <0.001 

 

 

Table 3.27 Statistical comparison between study sub-groups for serum endostatin (Bonferroni test p-values). 

 

Study Groups 

 

Mean Difference 

 

Significance 

(p-value) 

95% Confidence Interval 

Lower Bound Upper Bound 

Group 1     Group 2 

                   

                   Group 3 

 

20510.75 

 

3460.86 

0.000*** 

 

1.000 

10557.89 

 

-5523.31 

30463.61 

 

12445.02 

Group 2     Group 1 

                   

                   Group 3 

 

-20510.75 

 

-17049.89 

0.000*** 

 

0.001*** 

-30463.61 

 

-28148.06 

-10557.89 

 

-5951.73 

Group 3     Group 1 

                   

                   Group 2 

 

-3460.86 

 

17049.89 

1.000 

 

0.001*** 

-12445.02 

 

5951.73 

5523.31 

 

28148.06 

 
* - Significant difference <0.05 

** - Significant difference <0.01 

*** - Highly significant difference <0.001 
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Figure 3.30 Profile plot of periodontal health and severe periodontitis against estimated marginal mean serum 

endostatin concentrations (pg ml-1) for the three study groups. 

 

 

No significant correlations were found between the serum endostatin concentration and the 

smoking dose (Spearman rho 0.230, p=0.330), glycaemic control (Spearman rho -0.230, 

p=0.249) or age (Spearman rho 0.163, p=0.112).  Exploratory analysis indicated a significant 

difference with regards to gender and serum endostatin concentration across the whole 

sample (Mann Whitney male>female p=0.014). When re-analysed by sub-groups no 

significance differences were found with regards to gender once Bonferroni corrections were 

applied for running multiple statistical tests. 

 

3.6.2.2 Relationship between serum pro-angiogenic factors and endostatin 

The relationship between the pro-angiogenic factors Ang-1, MSF and VEGF, examined in 

the previous chapters, with endostatin was investigated using Spearman’s correlation 

coefficient and the ratio between the pro-angiogenic factors and endostatin.  A significant 

weak positive correlation was found between the serum concentrations of VEGF and 
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endostatin (Spearman rho 0.298, p=0.004).  Otherwise no significant correlations were found 

between the serum levels of the other pro-angiogenic factors and endostatin (Ang-1 r=0.017, 

p=0.871; MSF r=0.075, p=0.498).   

 

No significant differences were found between the study groups for either the serum MSF-

endostatin ratios (Two-way ANOVA test F(2,77)=0.511, p=0.602) or the serum VEGF-

endostatin ratios (Two-way ANOVA test F(2,59)=0.648, p=0.648). No significant 

differences were found between periodontally healthy and severe periodontitis sub-groups 

(MSF p=0.302; VEGF p=0.961), and there was no significant interactions found between 

periodontal health status and the study groups (MSF p=0.669; VEGF p=0.973).  

  

A highly significant difference was found in the serum Ang-1-endostatin ratios between the 

study groups (Two-way ANOVA test F(2,85)=6.610, p=0.002; Figure 3.31 and Table 3.28).  

No significant difference was found between periodontally healthy and severe periodontitis 

sub-groups, and there was no significant interaction found between periodontal health status 

and the study groups.  Bonferroni post hoc tests (Table 3.29) revealed significantly higher 

serum Ang-1-endostatin ratios in smokers (Group 2) compared with systemically healthy 

non-smokers (Group 1; 2>1 p=0.014) and subjects with diabetes (Group 3; 2>3 p=0.002).  

These findings strongly suggested that serum Ang-1-endostatin ratios were significantly 

increased in smokers.  Diagnostic statistical analysis revealed that there were outliers in the 

data which potentially had a significant influence on the overall statistical outcome 

(Studentized residual highest=4.12, lowest= -1.77; highest Cook’s distance=0.17; samples 

KJD01, KJD011 and KJD13 were deemed to be outliers).  Bootstrapping analysis confirmed 

that the outcome of the Two-way ANOVA was unlikely to have been significantly influenced 

by the outliers.  Sensitivity analysis, where data from the three outlying samples were 

removed, confirmed highly significant differences in the serum Ang-1-endostatin ratios 

between the study groups (Two-way ANOVA test F(2,82)=4.510, p=0.014).   
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Figure 3.31 Serum Ang-1-endostatin ratios for (a) the different study sub-groups and (b) the clinical study 

group. The box represents the interquartile range, the horizontal line the median and the whiskers the range. 
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Table 3.28 Statistical comparison of Ang-1-endostatin ratios between the study groups and periodontal health-

severe periodontitis using Two-way ANOVA test. Data in brackets are the results following the removal of 

outliers KJD001, KJD011 and KJD013 from the data set. 

 

 

Group Degrees of  

Freedom (df) 

F Significance 

(p-value) 

Periodontal Health – Severe Periodontitis 

 

1 0.005 

(0.059) 

0.942 

(0.808) 

Study Groups (1, 2 and 3) 

 

2 6.610 

(4.510) 

0.002** 

(0.014*) 

Periodontal Health – Severe Periodontitis 

Versus Study Groups (interaction) 

2 0.021 

(0.013) 

0.979 

(0.987) 
 

* - Significant difference <0.05 

** - Significant difference <0.01 

 

 

 
 

Table 3.29 Statistical comparison between study sub-groups for serum Ang-1-endostatin ratios (Bonferroni test 

p-values). Data in brackets are the results following the removal of outliers KJD001, KJD011 and KJD013 from 

the data set. 

 

Study Groups  

 

Mean Difference 

 

Significance 

(p-value) 

95% Confidence Interval 

Lower Bound Upper Bound 

Group 1     Group 2 

 

                   

                  Group 3 

 

-0.4625 

(-0.3291) 

 

0.1607 

(0.1109) 

0.014* 

(0.054) 

 

0.721 

(0.963) 

-0.8515 

(-0.6620) 

 

-0.1712 

(-0.1606) 

-0.735 

(0.0038) 

 

0.4926 

(0.3823) 

Group 2     Group 1 

 

                   

                   Group 3 

 

0.4625 

(0.3291) 

 

0.6232 

(0.440) 

0.014* 

(0.054) 

 

0.002** 

(0.011*) 

0.0735 

(-0.0038) 

 

0.1977 

(0.0794) 

0.8515 

(0.6620) 

 

1.0487 

(0.8005) 

Group 3     Group 1 

 

                   

                   Group 2 

 

-0.1607 

(-0.1109) 

 

-0.6232 

(-0.440) 

0.721 

(0.963) 

 

0.002** 

(0.011*) 

-0.4926 

(-0.3823) 

 

-1.0487 

(-0.8005) 

0.1712 

(0.1606) 

 

-0.1977 

(-0.0794) 

 
* - Significant difference <0.05 

** - Significant difference <0.01 
 

 

3.6.2.3 Endostatin concentration in saliva 

Endostatin was detected in only 11 out of 86 stimulated saliva samples (1a=2/28, 1b=4/12, 

3a=3/13 and 3b=2/15) and was not detected in any of the smoking sub-groups (2a and 2b).  

There were insufficient numbers of positive samples to allow statistical comparison of the 

endostatin concentrations between each study sub-group.  
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In order to ascertain whether unstimulated saliva contained significant levels of endostatin 

12 samples were assayed using the same protocol as for the stimulated saliva.  Endostatin 

was not detected in any of the unstimulated saliva samples (results not shown), and due to 

the relatively small volumes of unstimulated saliva collected, it was decided not to assay any 

further unstimulated saliva samples. 

 

3.6.2.4 Effect of storage on salivary endostatin concentration  

Degradation of endostatin during long-term storage at -80oC may account for the lack of 

detection in the saliva samples.  In order to investigate this, three sets of unstimulated and 

stimulated saliva samples from one individual (KJD001) were assayed: the first had been 

stored at -80oC for approximately two years, the second was stored for four days at -80oC 

and the third were fresh saliva samples (never frozen although stored for two hours at 4oC).  

All samples were diluted 1:10 in reagent diluent and assayed using the standard protocol.  

Endostatin was not detected in either the fresh, recently frozen or long-term stored saliva 

(unstimulated and stimulated) samples, suggesting that either endostatin was not present in 

the samples or was at levels below the limit of detection of the ELISA.  This experiment 

suggested that degradation of endostatin during storage was not the primary reason for the 

lack of detection of endostatin in the study samples, although ideally, further work should be 

carried out to investigate this issue. 

 

3.6.3 Discussion 

Angiogenesis is a complex process controlled by the balance between pro- and anti-

angiogenic factors, which is further influenced by various components of the ECM.  

Although there have been many publications with regards to pro-angiogenic factors, such as 

FGF-2 and VEGF, there have been relatively few for angiogenic inhibitors, such as 

endostatin.  Consequently, little is known regarding the inter-relationship between 

angiogenic factors and inhibitors, both in terms of physiological wound healing or in 

pathology, especially in oral health and disease.   

 

In this study, the concentration of endostatin has been measured in serum, unstimulated and 

stimulated saliva samples from three groups of subjects: (i) systemically healthy non-
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smokers, (ii) systemically healthy smokers and in (iii) subjects with diabetes.  Each clinical 

group was divided into two sub-groups: (a) periodontally healthy and (b) subjects with severe 

periodontitis.  High levels of endostatin were observed in all serum samples, however, there 

appeared to be a significant reduction in serum endostatin concentrations in subjects who 

were long-term smokers. As far as can be ascertained this is the first study to report this 

finding.  There were no statistical differences found with regards to gender across the sub-

groups and there were no significant correlations between smoking (pack years), glycaemic 

control (HbA1c) or age with serum endostatin concentration.  Endostatin was undetectable 

in the majority of the stimulated saliva samples and was not detected in any of the limited 

number of unstimulated saliva samples assayed.   No significant differences were found in 

the endostatin concentrations in either serum or saliva between the periodontally healthy or 

severe periodontitis sub-groups.  

 

Confidence in the methodology was demonstrated by the good assay standard curves, low 

assay background noise, low intra- and inter-assay variation.  Furthermore, the mean serum 

endostatin concentrations and standard deviations were all within the range previously 

reported in the literature for the systemically healthy control subjects (Table 3.24).  

Endostatin was detected in a minority of the stimulated saliva samples, however, the limit of 

detection of the assay may not have been sufficient to detect it in all of the samples, if present.      

 

There have been few studies which have examined serum endostatin concentrations in 

smokers compared with healthy controls.  Iribarren et al. (2006) reported serum endostatin 

concentrations were not significantly different in smokers, compared with non-smoker, or 

affected by a range of risk factors for myocardial infarction, such as age, body mass index 

(BMI), alcohol consumption or glycaemic control.  Likewise, Liu et al. (2015) found no 

significant difference in serum endostatin levels between smokers and non-smokers in 

healthy subjects and those with non-small cell lung cancer.   In the present study, smoking 

was found to result in significant reduction of serum endostatin concentrations, appearing to 

affect both periodontally healthy and subjects with severe periodontitis equally.  However, 

with the exception of Ang-1, there was no change found in the relative levels of endostatin 

compared to MSF or VEGF across the study groups.  A possible explanation for these 
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findings could be that the subjects in this study were generally not undergoing any significant 

systemic angiogenic events at the time of sampling, including the possibility that any 

angiogenic changes associated with severe periodontitis may have reached a chronic 

homeostatic stage.  Therefore, the relative levels of systemic endostatin to VEGF and MSF 

could have reached low maintenance levels, effectively turning off the angiogenic switch. 

Interestingly, significantly raised serum Ang-1 to endostatin ratios were found in the smoking 

group.  Nicotine in smoke has been shown to promote angiogenesis in both in vitro & in vivo 

models (Heeschen et al., 2001, Jacobi et al., 2002, Martin et al., 2009), which may account 

for this finding.  However, due to the multiple toxic constituents within smoke (Chapter 

1.7.1), it is thought that overall smoking results in anti-angiogenic conditions (Buduneli and 

Scott, 2018).  In terms of the periodontal tissues, evidence suggests smoking causes anti-

angiogenic effects, as shown by the lack of increased gingival vascularity in smokers with 

periodontitis compared with non-smokers (Chapter 1.7.3.3) (Rezavandi et al., 2002).  

Furthermore, smoking has been shown to have other detrimental effects in wound healing, 

such as toxic effects on endothelial cells and on gingival/periodontal fibroblast function 

(Silverstein, 1992, Tipton and Dabbous, 1995, Tanur et al., 2000) (Chapter 1.7.3.4).  Another 

possible explanation is that although Ang-1 is considered to be a pro-angiogenic factor, 

especially in tumour growth, it also has anti-angiogenic activities due to its role in the final 

stages of angiogenesis, namely vessel stabilisation and maintenance of quiescent vessels 

(Wong et al., 1997, Brindle et al., 2006).  Therefore, raised relative systemic levels of Ang-

1 could be expected in maintenance conditions where there is little angiogenic activity. 

 

The reduced systemic levels of endostatin and increased Ang-1-endostatin ratio found in this 

study, appears to be counter-intuitive in terms of the reported suppressed vascular reaction 

in the inflamed gingival tissues of smokers.  However, the overall increase in the number of 

small calibre and tortuous gingival vessels in smokers (Chapter 1.7.3.3) may indicate 

suppressed vessel development.  A possible explanation for this could be due to the reduced 

inflammatory cell infiltration into the gingival tissues in smokers (Pauletto et al., 2000, 

Rezavandi et al., 2002).  This would lead to lower levels of pro-inflammatory mediators and 

angiogenic factors being released from the immune cells, such as VEGF, locally into the 

gingival tissue.  Evidence for reduced angiogenic activity due to reduced PMN-induced 
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VEGF activity has been reported in a study in mice (Hao et al., 2007).  These additional 

angiogenic factors released locally within the gingival tissue may be required for continued 

vascular development.  

 

Few studies have examined endostatin concentrations in serum or plasma in subjects with 

diabetes ,and those which have, mainly examined its levels in various cardiovascular diseases 

(Arenillas et al., 2005, Atta et al., 2008).  In the present study, no significant differences were 

found in the serum endostatin concentrations between healthy controls and those with 

diabetes.  However, there are conflicting reports in the literature regarding the effect of 

diabetes on systemic endostatin levels.  Atta et al. (2008) reported that endostatin 

concentrations in plasma were significantly higher in diabetics compared with healthy 

controls, although the age profile of the control group  was significantly younger than the 

diabetes group, which may have affected the outcome. While Sponder et al. (2014) reported 

significantly lower serum levels of endostatin in middle-aged subjects with diabetes 

compared with aged-matched healthy controls.  A possible explanation for the different 

outcomes of these studies could be related to differences in factor levels recorded in serum 

and plasma.  Several studies have reported factor levels can be significantly different between 

serum and plasma, for example, McIlhenny et al. (2002) reported significantly higher 

concentrations of VEGF in serum than plasma.  Furthermore, a recent meta-analysis study 

reported a significant correlation between serum VEGF concentration and the severity of 

diabetic retinopathy, however, no correlation was found in the corresponding plasma samples 

(Zhou et al., 2019).   

 

In the present study, there were no significant differences found between the ratios of the 

angiogenic factors Ang-1, MSF or VEGF to endostatin between either the systemically 

healthy or diabetes study groups.  Several animal studies have reported reduced expression 

of angiogenic factors Ang-1, Tie-2 and VEGF in diabetes, with increased expression of 

angiogenic inhibitors, such as angiostatin and endostatin (Boodhwani et al., 2007, Sodha et 

al., 2008).  Whilst Atta et al. (2008) found raised plasma VEGF-endostatin ratios in human 

subjects with diabetes, compared with health controls, although not significantly so.  The 

implications of these findings is that the molecular changes associated with chronic 
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hyperglycaemia alters the angiogenic switch leading to both impaired angiogenesis and 

wound healing.  However, the exact mechanisms for this are still to be ascertained.    

 

An unexpected finding, in the present study, was the similar serum endostatin levels in the 

systemically healthy and diabetes study groups.  This may have been due to the high levels 

of glycaemic control in the diabetic subjects recruited to this study, who mostly had HbA1c 

levels close to target control levels (mean glycated haemoglobin Group 3a=6.8%+0.92(SD); 

Group 3b=7.69%+1.12(SD)).  Another possible confounding factor was the diversity in the 

diabetes group in terms of their systemic health and medication, both of which could 

influence the levels of angiogenic factors and inhibitors.  Further studies could examine 

whether there is a correlation between serum endostatin concentrations and glycaemic 

control in patients with more poorly controlled diabetes.  In order to achieve statistical 

significance, such a study is likely to require significantly more participants than the present 

study.     

 

There have been few studies which have explored whether there are any gender differences 

in systemic levels of endostatin.   Sponder et al. (2014) reported significantly higher serum 

endostatin levels in both middle-aged healthy females and subjects with Type 2 diabetes, 

compared with the equivalent male cohorts.  The authors hypothesised that the raised serum 

endostatin levels in middle-aged women was related to hormonal influences in that age 

group, although no physiological explanation was given.  In the present study, there initially 

appeared to be significantly higher serum levels of endostatin in males compared with 

females, mainly driven by the systemically healthy group, however, no statistical differences 

were found between the subgroups.  If there are age-related gender differences in systemic 

endostatin levels, there were insufficient numbers of cases across the age ranges in the present 

study to allow statistical analysis.  A larger age stratified study would be required to 

investigate this hypothesis.     

 

At the time of writing, there have been few studies which have reported angiogenic inhibitor 

levels in saliva.  Furthermore, there have been no studies which have compared salivary 

levels of angiogenic factors and inhibitors in periodontal health and disease.  Saliva is 
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considered to be a potential reservoir of wound healing/angiogenic factors important in the 

maintenance of the oral mucosa and the upper gastrointestinal tract (Zelles et al., 1995).  It is 

therefore relevant to examine the possible role of angiogenic factors and inhibitors in human 

saliva, in relation to oral wound healing and periodontal disease.  As far as can be ascertained, 

this is the first study to report the presence of endostatin in saliva, albeit in a minority of 

stimulated saliva samples, and suggests that the high serum concentrations of endostatin does 

not translate into high endostatin concentrations in either stimulated or unstimulated saliva.  

Whether endostatin is present in saliva in all cases has yet to be established and requires 

further investigation using more sensitive assays, such as chemiluminescent assays or 

microarrays.  Immunohistochemistry studies could be used to confirm whether endostatin is 

produced within the salivary gland tissue and by which cell types.  

 

One possibility is that endostatin is absent or at very low levels in human saliva, which may 

account for lack of previous publications. Interestingly, in the present study, endostatin was 

not detected in any of the saliva samples from the smoking group, which mirrors the 

significantly reduced levels of endostatin found in the serum in that group.  However, there 

is insufficient data to draw any definite conclusions.  Evidence that may support this 

hypothesis is that matrix metalloprotein-9 (MMP-9), which is important in the formation of 

endostatin through proteolytic cleavage of collagen XVIII (Heljasvaara et al., 2005), has been 

shown to be significantly reduced in the saliva of heavy smokers (Raitio et al., 2005, Nagler, 

2007).  However, further research is required to confirm this hypothesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



230 
 

Chapter 4 

Assessment of Angiogenesis in Periapical Granulomas 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



231 
 

4.1 Background 

4.1.1 Assessment of angiogenesis  

Immunohistochemistry techniques on biopsy material, both frozen and paraffin-embedded 

sections, have been used for many years to study angiogenesis in several pathological 

conditions, especially in tumours. A major limitation of immunohistochemistry is that it is a 

snapshot of the conditions present in the lesion at the time of biopsy, while angiogenesis is a 

dynamic process and so the conclusions from such studies are commonly inferential in nature 

(Davey et al., 2008).  In order to deal with this inherent difficulty, it is important, whenever 

possible, to compare a lesion with its normal tissue counterpart, from where the lesion 

originates.  Since angiogenesis is known to be controlled by the balance between various 

stimulators and inhibitors, the presence of angiogenic factors in the lesion does not 

necessarily indicate that angiogenesis is actively taking place (Carlile et al., 2001, Harada et 

al., 2001).  Therefore, several studies have employed the quantification of blood vessels 

(vascularity) as an index of angiogenesis (Schor et al., 1998a, Schor et al., 1998b).  In this 

case, angiogenesis is inferred by a significant increase in vascularity in the lesion, by 

comparison to the normal tissue.   

 

In addition to in-vitro angiogenic assay techniques (Irvin et al., 2014), various non-invasive 

imaging techniques are currently undergoing development in order to study angiogenesis 

within a lesion on a longitudinal basis, including doppler ultrasound, dark-field imaging, 

contrast-enhanced magnetic resonance imaging (MRI), positron emission tomography (PET) 

and single-photon emission computed tomography (SPECT) (Cosgrove, 2003, Dobrucki and 

Sinusas, 2007, Ocak et al., 2007, Hu et al., 2017). Presently, these techniques require 

expensive and highly specialised equipment, but are likely to be important research and 

diagnostic tools in the future.   

 

4.1.2 Endothelial cell markers 

In order to assess vascularity of a tissue, specific endothelial cell markers (antibodies) are 

used to stain vessels that are then quantified using a variety of techniques outlined below. 

Endothelial cell markers are broadly divided into two groups: (i) pan-endothelial cell markers 



232 
 

which generally stain all vessels, both in terms of size and developmental stage, and (ii) 

markers specific for activated or proliferating endothelial cells (angiogenic vessels). 

 

4.1.2.1 Pan-endothelial markers   

A wide variety of pan-endothelial markers have been investigated, the most commonly used 

being CD31, CD34 and von Willebrand Factor (vWF) (Goncharov et al., 2017). These factors 

have been shown to stain both vascular and lymphatic endothelial cells in normal tissues 

(Miettinen et al., 1994) and neovessels in a wide range of tumours including breast 

carcinomas (Schor et al., 1998b, Teo et al., 2003), oral squamous cell carcinomas (OSCC) 

(Pazouki et al., 1997, Ascani et al., 2005) and lung tumours (Baillie et al., 2001a, Mineo et 

al., 2004).  The use of these markers, combined with various methods of vascular 

quantification, has given conflicting results regarding their diagnostic and prognostic use in 

various tumours (Chapter 4.1.3).  Many studies have used more than one pan-endothelial 

marker and the staining profiles of the markers often differ.  For example, Mineo et al. (2004) 

found that CD34 expression had a significantly higher predictive value for poor long-term 

survival than CD31 in IB-IIA non-small-cell lung cancer.  This study also found that the 

putative specific angiogenic vessel marker CD105 (endoglin) (Chapter 4.1.2.3) was a good 

predictor of poor outcome in these tumours, but not as good as CD34.  Specificity problems 

have been reported with CD31 staining inflammatory cells, CD34 staining fibroblasts and 

vWF staining stromal cells (Miettinen et al., 1994, Vermeulen et al., 1996, Pazouki et al., 

1997).  Furthermore, it has been reported that such markers react strongly with endothelial 

cells in large blood vessels but their expression is weak or absent in microvessels in most 

normal tissue and in many tumours (Stashenko et al., 1994).  Evidence also suggests that the 

expression of vascular markers may be affected by local conditions, for example FGF-2 and 

VEGF were found to up-regulate vWF mRNA expression in cultured endothelial cells 

(Zanetta et al., 2000), thus, suggesting that tumours that over express these factors may affect 

the intensity of the resultant vWF staining. 

 

4.1.2.2 Angiogenic vessel markers 

Various specific markers for activated or proliferating endothelial cells (angiogenic vessels) 

have been studied including endosialin (CD248) (Teicher, 2007), αvβ3 integrin (Brooks et al., 



233 
 

1994) and CD105 (Burrows et al., 1995, Marioni et al., 2010).  Specific markers of 

angiogenic vessels would provide a more accurate measure of angiogenesis than provided by 

pan-endothelial markers. Several studies have suggested that αvβ3 integrin preferentially 

binds to proliferating small vessels, and has potential prognostic value in breast (Gasparini 

et al., 1998) and colorectal carcinomas (Sato et al., 2001) where this marker was found to be 

highly expressed.  However, αvβ3 integrin was found to be of limited diagnostic value in oral 

dysplasia and OSCC (Pazouki et al., 1997).   

 

4.1.2.3 CD105 (Endoglin) 

CD105 is a membrane protein involved in the TGF-β receptor signalling pathway (Barbara 

et al., 1999) and has been reported to be selectively expressed by proliferating endothelial 

cells (angiogenic vessels) in tumours (Burrows et al., 1995, Duff et al., 2003, Nassiri et al., 

2011).  However, like many current vascular markers CD105 does not appear to be truly 

specific for angiogenic vessels in all tissues.  Minhajat et al. (2006) used double-

immunofluorescence techniques and tissue microarrays to study a number of endothelial 

markers, including CD105, in a variety of human tumours and their adjacent normal peri-

tumour tissue.  Intense vascular CD105 expression was found in newly formed vessels in 

tumours of the brain, lung, breast, stomach and colon, whereas little CD105 expression was 

found in the adjacent normal tissues suggesting that angiogenesis had occurred in the 

development of these tumours.  However, no difference was found in the CD105 expression 

between the tumours and the adjacent normal tissues in liver and renal cell carcinoma.  This 

discrepancy in CD105 expression probably reflects the difference in vascular phenotypes in 

different types of tumour. CD105 has also been reported to stain normal tissue vessels and 

stromal cells in a variety of normal human tissues (Balza et al., 2001), although this may due 

to the specificity of the particular CD105 antibody used in this study.    

   

Several studies have found high CD105 expression in tumours to be associated with poor 

prognosis, such as in non-small-cell-lung cancer (Tanaka et al., 2001) and in various types 

of squamous cell carcinomas including the breast (Kumar et al., 1999), stomach (Ding et al., 

2006), and head and neck (Chien et al., 2006, Kyzas et al., 2006, Bellone et al., 2007).  In 

these studies, CD105 was found to be more informative than pan-endothelial markers.  In 
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OSCC CD105 expression has been shown to be significantly higher than in normal oral 

mucosa (Schimming and Marme, 2002, Schimming et al., 2004, Margaritescu et al., 2010, 

Nair et al., 2016, Silva et al., 2018) with tumours expressing high levels of CD105 being 

associated with poorer prognosis (Kyzas et al., 2006, Marioni et al., 2006, Marioni et al., 

2010).  Likewise, CD105 expression has been reported to be significantly higher in malignant 

salivary gland tumours compared with both benign salivary tumours and normal salivary 

tissue (Tadbir et al., 2012). Currently, there have been few studies which have examined 

CD105 expression in periapical lesions (Tasman et al., 2000, Davey et al., 2008, Lima et al., 

2011, Estrela et al., 2019), with Davey et al. (2008), the publication relating to this chapter, 

being the first to quantify angiogenic activity using CD105 expression in periapical 

granulomas (PG).  

 

4.1.3 Quantification of vascularity  

Various methods have been used to quantify vascularity, the most common being the highest- 

microvascular density (h-MVD) in which only the most vascularised area of the section (hot 

spot) is assessed (Weidner et al., 1991). The number of vessels counted within the known 

area of a microscope eyepiece graticule is recorded, usually at x200 magnification, and the 

highest value is expressed as vessels per mm2 (Chapter 2.3.8).  An association between high 

h-MVD and poor tumour prognosis has been found in some studies (Weidner et al., 1991, 

Penfold et al., 1996, Pazouki et al., 1997), but not in others (Van Hoef et al., 1993, 

Zatterstrom et al., 1995, Chandrachud et al., 1997).   

 

Alternative methods involve estimating average-microvascular density (MVD) or 

microvascular volume (MVV) in randomly selected areas of the sections (Chandrachud et 

al., 1997, Pazouki et al., 1997) (Chapter 2.3.8).  Microvascular volume is a stereological point 

counting technique which uses a 100 point microscope eyepiece graticule.  Stained vessel 

walls which coincide with the points are counted and the results are statistically proportional 

to the volume of the vessels (percentage volume).  

 

Previous findings have demonstrated that different results may be obtained depending on the 

quantification method used (Pazouki et al., 1997, Schor et al., 1998b, Li et al., 2005).  For 
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example, MVV increased significantly, in a step-wise fashion, with disease progression in 

oral lesions, from normal oral mucosa to dysplastic lesions and carcinomas, whereas h-MVD 

did not discriminate between dysplasia and carcinomas (Pazouki et al., 1997).  Li et al. (2005) 

found that h-MVD in CD31 stained sections could not differentiate between normal oral 

mucosa and dysplastic lesions, but did significantly differentiate between normal oral mucosa 

and oral carcinoma.  Therefore, in this thesis three different methods of vascular assessment 

have been carried out (MVV, a-MVD and h-MVD) in order ascertain whether any method 

was more discriminating in PG-PDL tissues.     

 

It is clear that caution needs to be taken regarding the comparison between studies due to the 

variations in the methodology used.  As well as the variation in the quantification methods, 

vascularity may also be affected by the different specificities of the markers used, tissue 

fixation method (formalin-fixed paraffin-embedded or frozen sections) (El-Gazzar et al., 

2005b) and variations in the immunohistochemistry protocols, especially with regard to pre-

treatments used to unmask epitopes (Schor et al., 1998b). 

 

4.1.4 Quantification of vascularity in oral pathology 

As stated above, several studies have reported significantly increased vascularity in OSCC 

compared with normal oral mucosa (NOM) (Pazouki et al., 1997, Carlile et al., 2001, 

Sheelam et al., 2018), with some studies showing no difference between NOM and oral 

dysplasia (Li et al., 2005). Several studies have reported this increased vascularity in OSCC 

to be associated with increased expression of angiogenic factors (positive correlation) such 

as FGF-2 (Li et al., 2005) PDGF (Li et al., 2005) and VEGF (Li et al., 2005, Shang and Li, 

2005, Shang et al., 2007).  Other studies, however, have found either no correlation or 

possibly reduced VEGF expression in OSCC (Artese et al., 2001, Carlile et al., 2001).  This 

inconsistency may be due to the presence of the anti-angiogenic VEGFxxxb isoforms, 

generated by alternative splicing (Ladomery et al., 2007).   

 

In addition to OSCC, several studies have directly measured vascularity in other oral lesions. 

Significantly raised angiogenic factor expression and various measures of vascularity, in 

comparison with appropriate control tissues, have been reported in oral conditions including 
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ameloblastomas (Kumamoto et al., 2002, Hande et al., 2011, Pereira et al., 2016), keratocysts 

(Gadbail et al., 2011), submucous fibrosis (Murgod et al., 2014, Tekade et al., 2017, Sharma 

et al., 2019), oral lichen planus (Tao et al., 2007, Mittal et al., 2012, Sheelam et al., 2018) 

and various salivary gland tumours (Tadbir et al., 2012). Vascularity and angiogenic factor 

expression has also been reported in various periapical lesions and these papers are discussed 

in more detail in Chapter 4.1.7 and 4.1.8. 

 

4.1.5 Periapical granulomas (periradicular granulomas) 

4.1.5.1 Aetiology 

Periapical granulomas (PG) are benign growths believed to arise as a result of low grade 

chronic inflammation caused by the leakage of toxic products out of necrotic root canals into 

the periapical tissues (Yanagisawa, 1980, Nair, 2004).  The aetiology involves the microbial 

invasion of the root canal space, leading to pulp necrosis, either as a result of dental trauma, 

caries, extensive dental treatment or microleakage around failing restorations (Mjor and 

Odont, 2001, Nair, 2004, Kirkevang et al., 2007).  Pulpal exposures in gnotobiotic rats does 

not lead to periapical pathology, while similar pulpal exposures in normal rats leads to large 

periapical lesions suggesting that bacteria are an important aetiological factor (Kakehashi et 

al., 1966).  Over time the endodontic bacterial flora becomes progressively more anaerobic 

in nature (Iwu et al., 1990, Wayman et al., 1992, Stashenko et al., 1994) and eventually the 

bacteria and/or their products leak into the periapical tissues.  The resultant host response and 

associated periapical inflammation can result in either an acute or a chronic periapical lesion.  

Unfortunately, as the source of infection is the necrotic and now avascular root canals the 

host response is unable to totally eradicate the infection.   An acute response leads to the 

formation of an acute apical periodontitis resulting in severe pain, especially on biting, due 

to hyperaemia and oedema of the periapical periodontal ligament (PDL). Histologically, 

these lesions are associated with progressive destruction of the periapical PDL and bone, and 

the ingress of large numbers of polymorphonuclear neutrophils (PMN).  If untreated, 

suppuration occurs leading to the formation of an acute apical abscess.  Alternatively, a 

chronic host reaction leads to the asymptomatic chronic apical periodontitis with the 

formation of a periapical granuloma, which may be detected as a radiolucency on periapical 
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radiographs (Nair, 2004).  It is estimated that PG account for approximately 50% of 

periapical lesions (Ramachandran Nair et al., 1996). 

 

4.1.5.2 Histopathological features of periapical granulomas 

PG are anatomically circumscribed lesions which typically contain a heterogeneous 

collection of vessels, fibroblastoid cells, chronic inflammatory cells (macrophages, 

lymphocytes and plasma cells) and, occasionally, epithelial cells derived from the epithelial 

cells rests of Malassez (Nair, 2004).  At their periphery, PG are surrounded by a dense fibrous 

capsule which is firmly attached to the root surface (Stern et al., 1982, Piattelli et al., 1991, 

Nair, 2004) and is continuous with the healthy PDL (Newman and Challacombe, 1995).  

Approximately 45% of PG have evidence of epithelial proliferation leading to the formation 

of palisades and arcades of epithelial cells which enclose areas of vascular granulation tissue 

(Ramachandran Nair et al., 1996). These epithelial cells are derived from the embryological 

remnants of Hertwig’s Epithelial Root Sheath that lie dormant in the PDL as the Epithelial 

Cell Rests of Malassez (Lin et al., 2007, Padma Priya et al., 2015). Epithelial cell proliferation 

is thought to result from the up-regulation of various growth factors and receptors, such as 

FGF-2 (Moldauer et al., 2006), Keratinocyte Growth Factor (KGF) (Gao et al., 1996b) and 

Epidermal Growth Factor Receptor (EGFR) (Lin et al., 1996) due to the persistent low grade 

chronic inflammation. 

 

The development of PG has been studied in rats, where surgical pulpal exposures lead to the 

rapid formation of periapical lesions (Stashenko et al., 1994, Yamanaka et al., 2012).  In rats 

two clear developmental phases are apparent: initially there is an active phase associated with 

rapid expansion and bone destruction with high levels of prostaglandin E2 (PGE2) and IL-1α 

(over a period of 1 to 3 weeks) followed by a chronic phase associated with significantly 

reduced rate of expansion.  Since research in human PG involves biopsy material, it is likely 

that only the chronic developmental stage can be studied.  However, PGE2 (McNicholas et 

al., 1991), IL-1β (Barkhordar et al., 1992, Lim et al., 1994) and TNFα (Ataoglu et al., 2002) 

are thought to be important mediators in the initiation and growth of human PG, although 

there is likely to be a complex web of factors involved (Walker et al., 2000).    
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Clinically, PG can remain seemingly dormant for significant periods where the host reaction 

is in equilibrium with the infective assault.  PG may progress either into an acute periapical 

abscess or develop into cystic apical periodontitis (radicular cyst), with the formation of 

epithelial lined cavities.  Although several hypotheses have been proposed regarding factors 

involved in the progression and growth of periapical cysts, it is likely that persistent 

inflammatory stimuli plays a significant role, causing increased local expression of 

inflammatory mediators and growth factors, such as IL-1, EGF, FGF-2, KGF and VEGF 

(Thesleff, 1987, Gao et al., 1996b, Leonardi et al., 2003, Moldauer et al., 2006, Lin et al., 

2007).  Approximately 15% of PG are thought to develop into cysts (Ramachandran Nair et 

al., 1996). 

 

4.1.6 Vascular structure of periapical granulomas  

PG have rich vascular networks, consisting mainly of arterioles and venules (Tasman et al., 

2000), but few studies have quantified their vascularity. Bergenholtz et al. (1983) used 

morphometric analysis in conjunction with electron microscopy (EM) to measure the 

vascular volume of various elements of periapical lesions in root treated human teeth 

(Bergenholtz et al., 1983).  The vascular volume was found to vary from 2.0+0.5% (SE) to 

2.6+3.7%.  It was not apparent from the paper whether these lesions were formally diagnosed 

as PG or whether the vascular element included lymphatic vessels.   

 

4.1.7 Expression of angiogenic factors in periapical granulomas 

Several studies have reported angiogenic factor expression in PG, often in comparison with 

other periapical lesions such as periapical cysts, including FGF-2, TNF-α, TGF-α, TGF-β1 

and VEGF, as well as Epidermal Growth Factor Receptor (EGFR) (Lin et al., 1996, Tyler et 

al., 1999, Danin et al., 2000, Leonardi et al., 2003, Moldauer et al., 2006, Nonaka et al., 2008, 

Andrade et al., 2013, Virtej et al., 2013, Fonseca-Silva et al., 2012, Vara et al., 2017, Alvares 

et al., 2018, Kudo et al., 2018). Many of these studies either related angiogenic factor 

expression to the extent of the inflammatory infiltrate, an important source of many 

angiogenic factors, and/or epithelial proliferation, which is commonly thought to provide 

evidence of maturation of PG and progression to periapical cysts (Alvares et al., 2018).  For 

example, two studies reported that low VEGF expression in PG was associated with low 
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levels of inflammatory infiltrate (Leonardi et al., 2003, Nonaka et al., 2008). Similar findings 

were also reported by Andrade et al. (2013) for TGF-β1 expression in PG.  Leonardi et al. 

(2003) reported PG with little epithelial proliferation were associated with high percentage 

of strongly staining VEGF positive inflammatory cells, while the percentage of VEGF 

stained inflammatory cells decreased with increasing levels of epithelial proliferation. They 

postulated that this change in VEGF expression reflected the developmental changes, such 

as epithelial proliferation, that occur in PG as they mature into periapical cysts.  

 

Interestingly, a recent paper by Kaneko et al. (2019) reported that inhibition of NF-κB, an 

important factor in several cellular pathways including VEGF, resulted in significant 

reduction in the size of induced periapical lesions in a rats and was associated with the 

inhibition of endothelial VEGFR2 mRNA and reduced VEGF expression.  However, these 

findings contradict a dual-colour immunofluorescence and real-time PCR study by Kudo et 

al. (2018) which reported that Silent Information Regulator 2 Homologue 1 (SIRT1), which 

also suppresses the NF-κB pathway, resulted in significantly increased VEGF mRNA levels 

in 34 human PG compared with 10 control periodontal ligament (PDL) samples. Clearly, 

further research is required to ascertain the role of VEGF in the development of PG and the 

progression to periapical cysts in humans.   

 

Two major difficulties arise from many of these studies.  As stated previously, the expression 

of angiogenic factors alone may not necessarily mean that angiogenesis is actively taking 

place and that quantification of vascularity may provide more robust evidence of this.  

Another difficulty is that apart from Moldauer et al. (2006), Virtej et al. (2013) and Kudo et 

al. (2018), none of these studies compared the angiogenic factor expression with a suitable 

control tissue, such as the healthy PDL.  Thus, it is difficult to ascertain whether the 

angiogenic factors are up-regulated in the PG compared with the normal tissue counterpart.   

 

4.1.8 Vascularity as an index of angiogenesis in periapical granulomas 

As with other oral granulomatous lesions, such as pyogenic granulomas, it is widely 

presumed that the PG capillary networks arise by angiogenesis (Bragado et al., 1999, Yuan 

et al., 2000b, Freitas et al., 2005, Seyedmajidi et al., 2015).  Currently, there have been few 
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studies which have examined vascularity as an index of angiogenesis in human PG. Three 

studies examined vascularity and VEGF expression in relation to the inflammatory infiltrate 

in human periapical granulomas (Nonaka et al., 2008, Fonseca-Silva et al., 2012, Vara et al., 

2017), although two similar studies were carried out on periapical cysts (Graziani et al., 2006, 

Zizzi et al., 2013a).  However, since no comparable control tissue was used in any of these 

studies, such as healthy periapical PDL, there was no evidence of increased vascularity 

(angiogenesis) during the development of the periapical lesions.  In essence, these are all 

comparative studies between different periapical lesions, or in the case of Vara et al. (2017) 

PG with oral pyogenic granulomas, with the assumption being that high VEGF expression 

provided evidence of angiogenesis had taken place.  

 

Nonaka et al. (2008) used vWF expression as a vascular marker in conjunction with 

microvessel count (MVC) to assess vascularity in 20 PG, 20 periapical cysts and 10 residual 

radicular cysts.  VEGF expression was found to be higher in PG and periapical cysts 

compared with residual radicular cysts, although there was no significant difference in 

vascularity found between the three lesions.  Across the three types of lesion, there was a 

significant association between low inflammatory cell infiltration with low VEGF 

expression, while lesions with high levels of inflammatory cell infiltration were significantly 

associated with higher levels of vascularity.  However, there was no correlation between 

VEGF expression and vascularity (MVC).  Fonseca-Silva et al. (2012) carried out a similar 

study, which also examined mast cell numbers, using CD31 and h-MVD (Chapter 2.3.8 and 

Chapter 4.1.3) to assess vascularity in 28 PG and 40 periapical cysts.  VEGF expression and 

vascularity were found to be similar in PG and periapical cysts, although the mean numbers 

of mast cells were significantly higher in periapical cysts than PG. A recent study by Vara et 

al. (2017), which used endothelial cell VEGF expression and MCV in 20 PG and 20 oral 

pyogenic granulomas, reported significantly higher vascularity and VEGF expression in oral 

pyogenic granulomas.  However, the validity of the comparison between the two lesions is 

questionable as they form in totally different environments, especially when no appropriate 

control tissues were used (i.e. normal oral mucosa and healthy periodontal ligament).  One 

interesting finding from this study was there was no significant correlation between the level 
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of inflammatory cell infiltration and VEGF expression in the PG, although this may simply 

reflect the low variation in the inflammatory cell infiltration the PG samples examined.   

 

Currently, few studies have used CD105 as an angiogenic marker in human periapical 

lesions, although several studies have used CD105 as a mesenchymal stem cell marker in 

periapical lesions (Marrelli et al., 2013, Chrepa et al., 2015, Estrela et al., 2019). Tasman et 

al. (2000) first reported CD105 staining of PG vessels, although vascularity of the lesions 

was not examined. As far as can be ascertained, the present study was the first to use CD105 

as an angiogenic marker in PG (Davey et al., 2008). Subsequently, Lima et al. (2011) 

examined the relationship between mast cell numbers and angiogenesis in human 24 PG and 

24 periapical cysts. Angiogenesis was assessed using vascular CD34 and CD105 staining in 

conjunction with h-MVD and Microvascular Area (MVA), unfortunately, no healthy control 

periodontal ligament tissue was used.  CD34 resulted in significantly higher vascular staining 

compared with CD105 in both PG and periapical cysts, from which they postulated that this 

provided evidence that angiogenesis had taken place, although no difference in the vascular 

(angiogenic) indices were found between the two lesions.  As the extent of the inflammatory 

infiltrate in the PG is likely to affect angiogenic factor levels, as suggested by the literature 

discussed above, the level of inflammatory infiltrate will be examined in comparison with 

vascularity in the present study.    

 

4.1.9 Periodontal ligament (PDL) 

The PDL is a narrow (width 0.15-0.38mm) vascular fibrous connective tissue lying between 

the root cementum and the alveolar bone.  Its principal function is to attach the tooth to the 

surrounding bone through the arrangement of characteristically orientated collagen fibres that 

insert into the root cementum and the alveolar bone.   The PDL has important roles in tooth 

support, sensory perception, protective reflexes and tooth movement. The PDL is a highly 

active connective tissue which is constantly turning over and adapting to functional demands 

(Freezer and Sims, 1987).  The principal cell type in the PDL is the fibroblast which produces 

and turns over collagen and other extracellular matrix (ECM) components (Everts et al., 

1996).  Similar to gingival fibroblasts, there is evidence of heterogeneity in the PDL 

fibroblast populations, which may have implications in PDL wound healing (Lekic et al., 
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1997).  PDL fibroblast populations differ from the gingival fibroblast populations by 

generally expressing higher levels of ECM components, such as collagen type I and 

fibronectin (Kuru et al., 1998). Other PDL cells include undifferentiated mesenchymal cells, 

synthetic cells (osteoblasts and cementoblasts), resorptive cells (osteoclasts and 

cementoclasts), Epithelial Cell Rests of Malassez and, in health, a small number of 

inflammatory cells (macrophages, lymphocytes, PMN and mast cells).   

 

4.1.9.1 Vascular structure of the periodontal ligament 

Electron microscopy studies during the 1960s (Griffin and Harris, 1967, Bevelander and 

Nakahara, 1968) described the fine structure of the blood vessels within the human PDL, but 

not their density.  The majority of publications are in animal models (monkeys, rats, dogs 

and horses) where various labelling methods, such as perfusion of carbon or plastic spheres, 

or corrosive methods have been used to study the distribution of the blood vessels within the 

PDL (Castelli and Dempster, 1965, Folke and Stallard, 1967, Selliseth and Selvig, 1994, 

Masset et al., 2006, Nobuto et al., 2003).  These studies showed significant species variation 

and caution needs to be applied in the interpretation of these studies in relation to the human 

PDL. These studies have demonstrated that there are three main sources of vascular (arterial 

and venous) supply to the PDL: (i) the apical vessels, (ii) vessels that enter the PDL through 

perforations in the tooth socket wall (Cribriform plate) and (iii) from the gingival vessels.  

The primary arterial supply within the PDL runs in an occlusal apical direction close to the 

alveolar bone with the PDL veins, unlike those in other connective tissues, generally not 

being closely associated with the lymphatic supply (Freeman, 1998).   

 

PDL capillaries differ from those found in other fibrous connective tissues in that they have 

a high quantity of fenestrated capillaries, which are thought to be important in meeting the 

high metabolic demand of the PDL cells (Berkovitz, 2004).  The most numerous vessel type 

in the human PDL is the post-capillary venule, which contain 69% of the total PDL blood 

volume and 49% of the luminal surface area (Foong and Sims, 1999). Animal studies have 

consistently demonstrated dense anastomosis between the PDL vascular network and those 

of the surrounding bone and gingiva (Castelli and Dempster, 1965, Carranza et al., 1966, 

Nobuto et al., 1989, Selliseth and Selvig, 1994).  The close association between the PDL, 
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gingival and alveolar vascular networks may be important in wound healing.  A study in 

beagle dogs found that angiogenesis in the PDL microvascular network was important in 

healing following mucoperiosteal flap surgery (Nobuto et al., 2003).      

 

4.1.10 Periodontal ligament vascularity  

Few studies have directly quantified vascularity in human PDL. Light microscope studies 

have found the PDL blood vessel volume in human premolar and maxillary molar teeth range 

from 1.63 to 3.5% (Gotze, 1976, Gotze, 1980) to as high as 11 to 20% (Sims, 1980).  Foong 

and Sims (1999) used transmission electron-microscope techniques to investigate the human 

canine PDL blood vessel volume using material from a burns patient who had undergone jaw 

reconstruction.  Their data suggested the mean PDL luminal blood vessel volume to be 

9.52+2.28% (SE), which is similar to that found in the mouse and marmoset models of 

between 7.5 to 11.3% (Sims et al., 1996, Freezer and Sims, 1987, Parlange and Sims, 1993). 

The discrepancy between the data from the two types of microscopy may reflect the technical 

differences between the two methods and the different ways the data was presented.  For 

instance, vascular volume can be measured in terms of luminal volume or vascular volume 

(including vessel walls) leading to significant discrepancies. Also, many of these studies 

involved small numbers of specimens which may not reflect the true population variation. 

Foong and Sims (1999) for example, only examined the PDL around two teeth from the same 

individual. 

 

Evidence also indicates that the vascularity of the human PDL varies depending on which 

part of PDL and what type of tooth is being studied. Light and electron-microscopy (EM) 

studies on human PDL found that the vascular volume progressively increased from the 

coronal third to the apical third (Gotze, 1976, Foong and Sims, 1999). Foong and Sims (1999) 

found the total percentage vascular volume in human canine PDL to be 18.7%, 30.9% and 

50.4% in the coronal, middle and apical thirds respectively.  Similar differences were also 

found in the transverse distribution of the vessels across the PDL with the percentage vascular 

volume in human PDL to be 9% (0.85% of the total PDL volume), 78% (7.44%) and 13% 

(1.23%) for the cemental, middle and alveolar thirds respectively.  Within the middle 
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circumferential third, 66% of the blood volume was contained in either venous capillaries or 

post-capillary-sized venules.  

 

4.1.10.1 Age-related effects on periodontal ligament vasculature 

Evidence from qualitative light microscopy studies initially suggested that age-related 

arteriosclerotic changes occurred in the human PDL (Grant and Bernick, 1970, Grant and 

Bernick, 1972).  It was proposed that these changes led to the reduction in PDL vessel luminal 

size in older subjects resulting in “relative ischaemia”, although, the actual impact of this on 

the PDL blood supply is likely to be greatly reduced due to anastomosis of vessels within the 

PDL.  However, a more extensive histological study examined PDL vessel dimensions in a 

wide age range of cadavers (3rd to the 10th decades) and found no evidence of significant 

arteriosclerotic changes in the human PDL (Severson et al., 1978).          

 

4.1.11 Vascularity as an index of angiogenesis in the periodontal ligament 

Various angiogenic factors have been detected in human PDL tissue including EGF (Chang 

et al., 1996), FGF-2 (Gao et al., 1996a), TGF-β (Yamaji et al., 1995), TNF-α (Rossomando 

et al., 1990) and VEGF (Booth et al., 1998, Virtej et al., 2013).  Currently, there have been 

few publications which have quantified angiogenesis using vascular indices in the healthy 

human PDL, although there have been several publications which have examined the change 

in vascularity (mainly vessel surface area) during orthodontic tooth movement in animal 

models (Krishnan and Davidovitch, 2006, Noda et al., 2009).  A far as can be ascertained, 

this is the first study to use the vascular markers vWF and CD105 in combination with 

microvascular volume or density (MVV, a-MVD or h-MVD) and MSF expression to assess 

angiogenesis in the human PDL.    
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4.2 Aims of the study 

The aims of this study, as stated in Davey et al. (2008), were: 

1. “To quantify vascularity in PG using different endothelial markers and assess its 

value as an index of angiogenesis by comparing PG with healthy PDL. 

2. To use oral squamous cell carcinomas (OSCC), compared with adjacent normal oral 

mucosa (NOM), as a positive angiogenic control.” 

 

Additional aims of this study were to: 

3. Quantify MSF expression in PG and healthy PDL in comparison with a positive 

angiogenic control (OSCC-NOM). 

4. Investigate whether there is a correlation between MSF expression in PG-PDL with 

three vascular indices. 

 

4.3 Methods 

Details of the materials and methods used in this study are outlined in Chapter 2.3.  

Optimisation of the staining protocols and vascular indices was required and are detailed in 

the following sections. 

 

4.3.1 Optimisation of the endothelial marker staining protocols 

Prior to staining the study sections, the vWF and CD105 antibodies were optimised in order 

to achieve maximal antigen retrieval with minimal tissue damage and background staining. 

Optimisation was based on the primary antibodies manufacturer’s recommendations, 

although there was evidence from other work within the laboratory that the staining profiles 

of these markers varied widely between different tissues.  Hence the staining protocols were 

specifically optimised for human PG and PDL tissues.  The two main variables affecting 

antigen retrieval were: (i) the dilution of the primary antibody and (ii) the type of pre-

treatment used (if required).  Chapter 2.3 details the final optimised staining protocols and 

the pre-treatment procedures. 
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4.3.1.1 von Willebrand Factor (vWF) antibody optimisation 

Preliminary studies were carried out to optimise the vWF staining of the PG and PDL tissues. 

Various vWF antibody dilutions and pre-treatments (none, microwave in citrate buffer and 

two standard concentrations of Protease XXIV – 0.1 and 0.01%) were examined. An antibody 

dilution of 1:3000, with 0.01% Protease XXIV pre-treatment, was found to result in very 

good vessel staining with minimal background.  This was the optimal protocol, adopted for 

the study sections (Chapter 2.3.5 and Figure 4.1).  Although the microwave pre-treatment 

also resulted in good vessel staining, it was found to result in some staining of inflammatory 

cells in all of the sections including the negative controls, significant tissue damage and 

occasional tissue lifting.   

 

Figure 4.1 vWF staining of (a) PDL and (b) PG sections (x200 magnification)*.  Scale bar = 50μm.  

(a)            (b) 

   
*Images from Davey et al. (2008) 

 

     

Due to the very thin and fragile PDL tissue, all of the primary antibodies used in this study 

caused staining at the margins of the tissue.  This staining was discounted in the vascular 

assessments. 

 

4.3.1.2 Diffuse vWF staining 

During the initial vascular assessment, it was noted that some PG sections contained diffuse 

areas of vWF staining.  At high magnification it was apparent that these areas contained high 

levels of extra-vascular red blood cells probably the result of rupturing of immature blood 

vessels during the surgical removal and processing of the tissues.  Diffuse perivascular vWF 

staining has been previously reported in conditions associated with vascular leakage, such as 
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cutaneous small cell vasculitis (Meijer-Jorna et al., 2002), leading to extracellular release of 

vWF. Vascular assessment of these diffusely stained areas was found to be more difficult due 

to the uncertainty of what was true vessel staining (Figure 4.2).  Twenty random fields (25 

point grid at x400 magnification) were assessed for each study section in order to gauge the 

number of sections affected and the extent of this staining. Seven PG and eight PDL sections 

were affected, although the number of fields containing diffuse staining was small (2 to 3 

fields out of 20 per section) in the majority of cases.  Only one PG and one PDL section 

contained significantly higher numbers of affected fields (50%). The three worst affected PG 

and PDL sections were then reassessed for MVV and MVD in order to study the effect of the 

diffuse staining on the counts.  Twenty random fields were selected for each section in order 

to include a significant number of fields containing diffuse areas of staining.  Each section 

was assessed using two variations of the standard protocol. In the first method (standard 

score), vessels were only counted if they could be absolutely identified as being stained 

vessels, whether they were in a diffuse area of staining or not.  In the second method (diffuse 

score) any vessels in the non-diffuse staining areas were counted as normal; in addition, any 

possible vessels in the diffuse staining areas, that is any structure significantly more stained 

than the surrounding tissue, were also counted (Table 4.1).  A comparison of “standard 

scores” and “diffuse scores” using the mean values showed that the latter were higher, with 

the difference being significant (Wilcoxon signed-rank test: MVV p=0.03) or marginally 

significant (MVD p=0.06).  When the raw data was analysed (20 readings per specimen), the 

“diffuse scores” were significantly higher than the “standard scores” (Wilcoxon signed-rank 

test: MVV p=0.001 and MVD p=0.008). However, the diffuse and standard scores were 

directly and highly significantly correlated (Spearman’s rank correlation: MVV rho=0.978, 

p<0.001; MVD rho 0.974, p<0.001) and did not affect the results regarding a comparison 

between PG and PDL tissues.  For the final protocol, only absolutely definite vessels within 

the diffuse staining areas were counted (standard score).  This reduced the dubiety in the 

counting and improved the intra- and inter-observer variation, although slight 

underestimations of the vascularity at the individual field level may occur.  
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Figure 4.2 Diffuse vWF staining in a PG (magnification x200).  Scale bar 100µm. 

Blood vessels and    diffuse areas of vWF staining. 

 

 
 

 
Table 4.1 The effect of diffuse vWF staining on the mean MVV and MVD scores (+SD) using standard 

vessel counting and diffuse vessel scoring.  

 
Section Tissue Mean MVV 

standard  score  

+ SD (%) 

Mean MVV 

diffuse score  

+ SD (%) 

 Mean MVD  

+ SD (mm-2) 

Mean MVD  

diffuse score  

+ SD (mm-2) 

00/681GT 

 

PG 3.6+5.0 4.6+6.28  115+93 125+97 

00/0733GNT 

 

PG 6.2+4.76 7.0+6.2  270+195 270+195 

38764/00(13) 

GNT 

PG 3.2+2.80 4.4+4.68  120+95 130+98 

00/0685D HPDL 

 

PDL 6.8+7.68 7.4+8.12  220+161 220+161 

0084B HPDL 

 

PDL 2.2+3.32 2.4+3.28  70+73 80+83 

0088B HPDL 

 

PDL 5.2+3.2 5.4+3.52  285+127 290+125 

Group Mean  (+SD) 

 

4.53+1.81 

 

5.2+1.84 

 

 180+90 

 

185+86 

 

*Wilcoxon test on raw 

data 

Standard vs diffuse score 

0.001*  0.008* 

 

*Statistics generated on SPSS using all of the individual field scores for each section (n=120 individual counts). 

 

4.3.1.3 CD105 (Endoglin) antibody optimisation 

Preliminary studies were carried out to optimise the CD105 staining of the PG and PDL 

tissues. A 1:75 CD105 dilution combined with an autoclave pre-treatment resulted in good 

levels of blood vessel staining with minimal background staining.  A comparison of citrate 

buffer microwave and autoclave pre-treatments was carried out at various CD105 dilutions 

(1:75, 1:100 and 1:150). Good levels of blood vessel staining with minimal background 

staining was found with the autoclave pre-treatment at all dilutions with marginally better 
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vessel staining at 1:75 dilution.  This protocol was adopted for the study sections (Chapter 

2.3.6 and Figure 4.3).  Microwave pre-treatment resulted in good levels of vessel staining at 

1:75 CD105 dilution but significantly reduced staining at 1:100 and 1:150 dilutions.  In all 

these experiments it was noted that the majority of the background staining was associated 

with staining of immune cells and this finding was consistent with CD105 staining in breast 

tumours (Personal communication: Dr Stephane Perrier). CD105 has been found to stain 

normal stromal cells in several healthy human tissues (Balza et al., 2001).  Unlike the vWF 

stained PG sections, there was no significant diffuse CD105 staining associated with extra-

vascular red blood cells.  

 

Figure 4.3 CD105 staining of (a) PDL and (b) PG sections (x200 magnification)*.  Scale bar = 50μm. 
 

   

*Images from Davey et al. (2008) 

 

 

4.3.1.4 The effect of the length of slide storage on CD105 antigen retrieval  

During the CD105 optimisation it was observed that the sections which had been cut 

previously and stored (light-tight boxes) for significant periods of time appeared to show 

different CD105 staining profiles to recently cut sections.  This age effect was not found with 

the vWF stained sections.  This possible age effect on CD105 antigen retrieval was studied 

by repeating the CD105 optimisation, as outlined above, using both old and recently cut 

sections.  In order to maximise the possible effect of long-term storage, sections cut four 

years previously and stored in slide boxes (old sections) were compared with sections cut 

from the same blocks the day prior to staining.  Similar good levels of blood vessel staining, 

with low background staining, were found with the autoclaved sections (1:75, 1:100 and 

1:150 CD105 dilutions) in both the new and old sections.  In the microwave pre-treatment 
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group, similar findings were found as before in the newly cut sections, however, very poor 

levels of blood vessel staining were found in the old sections at all CD105 dilutions.  A 

possible explanation is oxidation which has previously been reported to cause some antigens 

to degrade with time, such as CD3 and chromogranin, in paraffin-embedded sections 

(Bertheau et al., 1998, Jackson, 2007). The autoclave pre-treatment appeared to overcome 

this age-related CD105 degradation or masking effect, although the exact mechanism for this 

has not been determined.  Therefore, where possible the sections were cut immediately prior 

to staining.  Due to the good reliability of staining, low background and resistance to loss of 

antigen retrieval in storage the final study sections were stained at a 1:75 CD105 dilution 

with an autoclave pre-treatment (Chapter 2.3.6).          

 

4.3.2 Optimisation of the vascularity protocols 

4.3.2.1 Adaptation of the standard assessment of vascularity  

Preliminary MVV and MVD assessments of the sections were carried out using a 100 point 

(Mertz) eyepiece graticule at a magnification of x200 as described by Pazouki et al. (1997).  

Due to the narrowness of the PDL sections large areas of counting grid were empty of tissue 

at this magnification leading to problems with compatibility of the counts between the PG 

and PDL sections.  Consequently, in order to compensate for this discrepancy, the area of the 

grid covered by the PDL tissue was recorded and the resultant vascular scores (MVV and 

MVD) were multiplied to convert to whole grid scores.  However, this resulted in significant 

inter-observer variation of the PDL scores due to the subjective nature of estimating the 

percentage coverage of the grid, while there was excellent consensus of the PG scores.  A 

quarter section of the 100 point counting grid (25 point square) at x400 magnification was 

found to consistently fit within the narrow PDL sections and was subsequently used to assess 

all of the tissue types.  The 25 point grid scores could then be converted to give the final 

MVV (%) and MVD (mm-2) scores.  This change resulted in greatly reduced inter-observer 

variation of the preliminary PDL scores without significantly affecting the final MVV and 

MVD scores. 
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4.3.2.2 Intra-observer variation of standardised fields 

Three vWF stained PG and PDL sections were selected and six randomly selected fields from 

each section were digitally imaged (standardised fields) at x400 magnification.  A square 

grid similar to the light microscope eyepiece graticule was superimposed onto the images 

and the images were stored onto a computer.  These standard images were assessed for MVV 

and MVD on two separate occasions seven days apart.  Each section was allocated a number 

from 1 to 6 and the order in which the sections were assessed was randomly selected using a 

dice.  Similarly, the order of assessment of the individual fields for each section was 

determined in the same fashion.  This was carried out in order to reduce the chances of bias 

in the counting as there were relatively few sections/fields used.  The consistency of the 

counts between the two occasions, both for MVV and MVD, was found to be very high 

(Wilcoxon signed-rank test p=1.0) suggesting very low intra-observer variation when 

examining standardised views.  There was slightly more variation in the MVV scores and 

this was probably due to the difficulty in assessing whether the grid intersection was either 

on or very close to the vessel wall.  No such dubiety was found using the MVD scoring.   

 

4.3.2.3 The effect of sampling on intra-observer variation  

It was important to establish the number of random fields per section required to compensate 

for tissue heterogeneity in order to achieve consistent vascularity scores (MVV and MVD).  

Previous studies from our laboratory have commonly used 10, 15 or 18 random fields per 

each section (Chandrachud et al., 1997, Schor et al., 1998a, Carlile et al., 2001).  None of 

these studies involved PDL or PG tissues, so a small study was carried out to confirm the 

minimum number of random fields required to achieve consistent vascularity scores.  Two 

PG and PDL vWF stained sections were randomly selected and each section was repeatedly 

recounted (MVV and MVD) with increasing number of random fields (minimum of 5 fields 

up to a maximum of 30 fields). The difference between the mean scores (+SD) for each field 

count was assessed using the Mann-Whitney U test (Table 4.2).  The p-values for both the 

mean MVV and MVD scores generally increased and became consistent after 15-20 random 

fields, in both PG and PDL tissue, thus there was little benefit in counting more fields.   
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Table 4.2 Influence of the number of random fields counted per section on (a) MVV (%) and (b) MVD (mm-2) 

scores for PG and PDL sections (25 point grid x400 magnification). 

(a) MVV (%) 
 

Block 

reference 

Tissue 

 

No fields 

counted 

No of 

points 

Mean 

(+SD) field 

counts 

Mann-Whitney  

(p-value) 

38764/00 (12) 

 

PG 

 

5 125 3.2+4.8 0.557 

 

- 

10 250 4.8+3.6 0.725 

 15 375 5.2+4.0 0.588 
 20 500 6.0+3.6 0.711 

 25 625 5.6+4.0 0.785 

 30 750 6.0+4.0 - 

 

00/0672AG PG 5 125 7.2+1.8 0.941 

 

- 

10 250 7.2+2.5 0.419 
 15 375 6.4+2.5 0.84 

 20 500 6.2+3.0 0.596 

 25 625 6.7+3.2 0.885 

 30 750 6.5+3.2 - 

 

0086A PDL 5 125 5.6+2.0 0.629 
 

- 

10 250 5.2+2.0 0.508 
 15 375 5.2+2.0 0.736 

 20 500 5.6+2.4 0.788 

 25 625 6.0+2.8 0.856 

 30 750 5.6+2.4 - 

 

0088B PDL 5 125 1.6+2.0 0.949 

 

- 

10 250 2.4+2.8 0.704 

 15 375 3.6+3.6 0.943 

 20 500 4.0+3.6 0.678 

 25 625 4.0+3.2 0.962 
 30 750 4.0+3.2 - 

(b) MVD (mm-2) 
 

Block 

reference 

Tissue 

 

No fields 

counted 

No of 

points 

Mean 

(+SD) field 

counts 

Mann-Whitney  

(p-value) 

38764/00 (12) 

 

PG 

 

5 125 80+110 0.791 

 

- 

10 250 90+87 0.766 

 15 375 80+86 0.656 

 20 500 100+110 0.876 
 25 625 104+106 0.965 

 30 750 103+100 - 

 

00/0672AG PG 5 125 180+130 0.526 

 

- 

10 250 140+107 1.0 

 15 375 140+99 0.522 
 20 500 120+95 0.93 

 25 625 116+90 0.719 

 30 750 127+98 - 

 

0086A PDL 5 125 100+71 0.948 
 

- 

10 250 110+99 0.977 
 15 375 113+106 0.821 

 20 500 125+116 0.694 

 25 625 112+113 0.859 

 30 750 107+111 - 

 

0088B PDL 5 125 160+134 0.742 
 

- 

10 250 180+132 0.681 

 15 375 160+130 0.604 

 20 500 180+120 0.645 

 25 625 164+115 0.951 

 30 750 167+118 - 
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4.3.2.4 The effect of sampling on inter-observer variation 

Another observer (MM) independently repeated the above exercise in order to examine the 

effect of the number of random fields per section on the inter-observer variation (Table 4.3).  

The consistency between the observers, shown by the Mann-Whitney U test p-values, was 

found to generally improve with increasing numbers of random fields counted.  Again, by 

the 15th random field the level of consistency did not greatly improve with further increase 

in the number of fields counted, thus confirming 15 random fields as being the minimum 

number of fields necessary for the PG-PDL sections. Generally, good levels of consistency 

were achieved for the PG sections, but significantly poorer levels were found with the PDL 

sections. This was probably due to the fine structure of the PDL with the resultant 

haemorrhaging in some sections that made assessment more difficult. In order to overcome 

these difficulties further training of three observers was carried out using computerised 

images of sections prior to the study sections being assessed for MVV and MVD.  Following 

this training, differences in intra- and inter-observation were not significant. 

 

Table 4.3 Influence of the number of random fields counted per section on inter-observer variation of MVV 

(%) scores (examiners - KJD and MM) for PG and PDL sections (25 point grid x400 magnification).  
 

(a) 38764/00 (12) GNT (PG)  
       

No. fields 
Counted 

No. points 
Counted 

Observer Mean count 
 + SD 

 

Difference Between 
Observers  - Mann-

Whitney  (p-value) 

5 125 MM 7.2+3.2 0.192 

KJD 3.2+4.8 

10 250 MM 5.6+2.0 0.449 

KJD 4.8+3.6 

15 375 MM 6.0+2.4 0.488 

KJD 5.2+4.0 

20 500 MM 7.2+3.2 0.437 

KJD 6.0+3.6 

25 625 MM 6.4+2.8 0.54 

KJD 5.6+4.0 

30 750 MM 6.8+3.2 0.504 

KJD 6.0+4.0 
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(b) 00/0672AG (PG) 
 

No. fields 

counted 

No. points 

Counted 

Observer Mean count 

+ SD 

 

Difference Between 

Observers  - Mann-

Whitney  (p-value) 

5 125 MM 8.0+5.6 0.824 

KJD 7.2+1.8 

10 250 MM 6.4+2.8 0.45 

KJD 7.2+2.5 

15 375 MM 6.4+3.3 0.982 

KJD 6.4+2.5 

20 500 MM 6.4+3.3 0.884 

KJD 6.2+3.0 

25 625 MM 5.8+2.6 0.28 

KJD 6.7+3.2 

30 750 MM 6.8+3.0 0.768 

KJD 6.5+3.2 

 
(c) 0086A HPDL (PDL)      
 

No. fields 

counted 

No. points 

Counted 

Observer Mean + SD 

 

Difference between 

Observers  - Mann-
Whitney  (p-value) 

5 125 MM 6.4+3.6 0.032 

KJD 1.6+2.0 

10 250 MM 7.2+3.2 0.004 

KJD 2.4+2.8 

15 375 MM 5.2+2.0 0.075 

KJD 3.6+3.6 

20 500 MM 6.0+2.4 0.026 

KJD 4.0+3.6 

25 625 MM 6.4+2.8 0.017 

KJD 4.0+3.2 

30 750 MM 6.0+2.0 0.020 

KJD 4.0+3.2 

 
(d) 0088B HPDL (PDL)       
 

No. fields 

counted 

No. points 

Counted 

Observer Mean + SD 

 

Difference Between 

Observers  - Mann-
Whitney   (p-value) 

5 125 MM 5.6+2.0 0.91 

KJD 5.6+4.4 

10 250 MM 5.6+2.0 0.934 

KJD 5.6+4.0 

15 375 MM 6.4+2.0 0.22 

KJD 5.2+3.6 

20 500 MM 6.0+2.0 0.334 

KJD 4.8+3.2 

25 625 MM 6.0+2.0 0.045 

KJD 4.8+2.8 

30 750 MM 6.0+2.0 0.053 

KJD 4.8+2.8 
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4.3.3 Oral squamous cell carcinoma (OSCC): positive angiogenic control 

Initial examination of the MVV and MVD (vWF and CD105) scores showed no statistically 

significant differences between the PG and PDL sections.  This finding was unexpected as it 

had been previously suggested that the formation of granulomatous lesions was accompanied 

by angiogenesis and so it was anticipated that the presumably angiogenic PG would have 

higher vascularity levels than the healthy PDL. Previous studies have indicated vascularity 

to be a good index of angiogenesis in OSCC (Pazouki et al., 1997, Schimming and Marme, 

2002, Li et al., 2005).  These studies found significantly higher vascularity in the OSCC 

compared to its histologically normal peri-tumour normal oral mucosa (NOM), suggesting 

that angiogenesis had occurred in the development of the OSCC.  Hence, OSCC and its 

associated NOM were used as a positive angiogenic control in order to verify the robustness 

of the protocol and confirm the PG-PDL findings.   

 

4.3.3.1 Optimisation of the OSCC sections 

Optimisation studies confirmed that the staining protocols used to stain the PDL and PG 

sections for vWF and CD105 (Chapter 2.3.5 and 2.3.6 respectively) resulted in good levels 

of staining of the OSCC-NOM with minimal background staining.  Fourteen OSCC sections, 

six of which contained histologically normal peri-tumour tissue (NOM), were stained with 

the vWF and CD105 markers (Figures 4.4 and 4.5).  Positive (PG and PDL) and negative 

control sections were included to ensure conformity of staining.  Control sections, stained 

with the corresponding non-immune IgG, were always negative.   

 

 
Figure 4.4 Consecutive sections of OSCC stained with vWF (a) and (c) and CD105 (b) and (d).  Scale bar 

100μm (a) and (b) (magnification x100).  Scale bar 50μm (c) and (d) (magnification x200)*.     
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*Images from Davey et al. (2008) 

 

 

Figure 4.5 Consecutive sections of Peri-tumour NOM (a) vWF and (b) CD105 (magnification x100)*. Scale 

bar = 100μm.  Maximal contrast observed between vWF and CD105 staining in NOM is shown in this figure. 
 

  
*Images from Davey et al. (2008) 

 

 

4.3.3.2 Highest-Microvascular Density (h-MVD) 

Highest-microvascular density (h-MVD), in which microvascular density is only assessed in 

vascular “hot spots” (Weidner et al., 1991), has been widely used in vascular assessment of 

tumour angiogenesis (Chapter 4.1.3).  With the inclusion of the OSCC-NOM sections in the 

study, h-MVD counts were carried out to allow further comparison with the published data.  

In the OSCC-NOM sections three fields were counted in the most vascularised area and h-

MVD was calculated as the mean of these scores (Chapter 2.3.8). Vessels were 

homogeneously distributed in the PG and PDL sections with no evidence of vascular hot 

spots. Therefore, h-MVD was calculated in the PG and PDL sections as the mean of the 

highest three MVD field values found per section.  
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4.3.4 Optimisation of Migration Stimulating Factor (MSF) staining protocol 

Prior to staining the study sections, the MSF antibody was optimised in order to achieve 

maximal antigen retrieval with minimal tissue damage and background staining.  Negative 

control sections were used to ensure no significant cross reactivity of the reagents, this being 

shown by minimal/no background staining. MSF expression was initially localised using the 

MSF 7.31s ascites mouse anti-human polyclonal antibody, diluted 1:25 in PBS, combined 

with a citrate buffer microwave pre-treatment (Chapter 2.3.3) (Personal communication: Dr 

Teresa Estella). However, this antibody was superseded by the highly specific MSF 7.1AF 

(Ascites Fluid) mouse anti-human monoclonal antibody. As with other markers, the staining 

profile for this antibody was shown to vary depending on the type of tissue (oral mucosa, 

skin, breast, etc.) (Personal communication: Jacqui Cox), and so specific optimisation was 

carried out for the PG and PDL tissues. The two main variables affecting antigen retrieval 

were: (i) the dilution of the primary antibody and (ii) the type of pre-treatment used (if 

required).  Chapter 2.3.2, 2.3.3 and 2.3.4 details the staining protocols and pre-treatment 

procedures. Various dilutions of the MSF 7.1AF antibody (1:700, 1:1000, 1:1200 and 1:1500 

in PBS) with either no pre-treatment or a microwave pre-treatment in citrate buffer were 

investigated.  Microwave pre-treatment caused high background staining at all dilutions, 

especially in the PDL sections.  A further problem associated with the microwave pre-

treatment was the high levels of inflammatory cell staining (especially plasma cells) even in 

the negative control sections.  In the no pre-treatment group the 1:700 and 1:1000 dilutions 

of the MSF antibody caused significant overstaining in both PG and PDL sections. The 

1:1200 dilution was associated with good levels of staining of isolated cell groups 

(fibroblasts, vascular endothelial cells and inflammatory cells), low background staining and 

good consistency between duplicate slides. The 1:1500 MSF antibody dilution resulted in a 

similar, but substantially weaker staining, compared to the 1:1200 dilution.  Further dilutions 

studies (1:1200, 1:1500 and 1:2000 dilutions with no pre-treatment) found a rapid diminution 

in cellular MSF staining with increasing antibody dilution beyond 1:1200, with no cellular 

MSF staining by the 1:2000 dilution. The background MSF staining was minimal at the 

1:1200 MSF antibody dilution and was affected little by further antibody dilution. Therefore, 

the study PG and PDL sections were stained in duplicate at a MSF antibody dilution of 

1:1200 in PBS with no pre-treatment. Chapter 2.3.4 details of the final optimised MSF 
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staining protocol and Figure 4.6 shows representative samples of MSF stained PG and PDL 

sections.  Several staining runs were required to stain all of the sections, so both positive and 

negative PG and PDL control sections were included in each run to ensure conformity of 

staining.  In order to allow comparison with the vascular assessment of the PG and PDL 

sections, the same sections were used in this series of experiments. There was no evidence 

of diffuse MSF staining, as was found with the vWF staining (Chapter 4.3.1.2), and no 

evidence of reduced antigen retrieval with long-term storage as encountered with the CD105 

staining (Chapter 4.3.1.4).   

 

MSF staining intensity was scored using pre-determined calibration slides as either no 

staining (-), weak (+), moderate (+) or strong (++) staining.  The final intensity of the MSF 

staining was assessed by two or three independent observers (KJD, JC and GO) and the final 

intensity grades were agreed by consensus.     

 

Figure 4.6 MSF staining of (a) PDL and (b) PG sections (x100 magnification).  Scale bar = 200μm. 
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4.3.5 Verification of the MSF staining protocol 

4.3.5.1 Oral squamous cell carcinoma (OSCC): positive angiogenic control 

Initial assessment showed the intensity of the MSF staining in the PG and PDL sections to 

be either weakly positive or negative (fibroblasts, vessels and inflammatory cells).  In order 

to verify the robustness of the protocol and confirm the PG and PDL findings, OSCC and its 

associated histologically normal peri-tumour tissue NOM was used as a known positive 

angiogenic control. To allow direct comparison with the vascularity indices, consecutive 

sections from the same OSCC-NOM specimens were used in this study.  Optimisation and 

final MSF staining of the OSCC-NOM sections was carried out by Dr Ohe as part of another 

study. Coincidently, the MSF protocol used to stain the OSCC-NOM sections was identical 

to that used to stain the PDL and PG, and these conditions resulted in good levels of staining 

of both the OSCC and NOM with minimal background staining.  Unfortunately, two OSCC 

sections, one of which contained NOM tissue, were excluded from the study due to persistent 

overstaining with the MSF antibody. Although these sections could have represented 

particularly strongly MSF positive sections the staining was so intense that the assessment of 

the MSF expression of the individual cell types was impossible. Therefore, twelve OSCC 

sections, five of which contained histologically normal peri-tumour tissue (NOM), were 

stained for MSF.  
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4.3.5.2 Observer variation 

Intra- and inter-observer variation of the MSF staining intensity was assessed in the 

individual tissues (PG, PDL, OSCC, paired-OSCC and NOM tissues) and in the specific cell 

types (Fibroblasts, Vascular Endothelial cells, Inflammatory cells and Epithelial cells) (Table 

4.4).  

 

Intra-observer variation was examined by one observer (KJD) reassessing all of the sections 

on two separate occasions (Table 4.4a). With the exception of the OSCC-Fibroblast and 

OSCC-Vessel Endothelial cell counts, the intra-observer variations were not significant with 

p-values ranging from 0.317 to 1 (Wilcoxon paired sample test).  In the majority of tissues, 

the intra-observer variations were very low showing good consistency between the counts. 

When the OSCC-Fibroblast and OSCC-Vessel Endothelial cell intra-observer variations 

were examined there were very strong positive correlations found between the counts in each 

case (Spearman’s rank correlation: fibroblasts rho=0.866, p<0.001; vessels rho=0.881, 

p<0.001).  These differences were only found in the OSCC and were probably due to the 

heterogeneous nature of the OSCC sections. 

 

Inter-observer variation was examined by two or three independent observers (KJD, JC and 

GO) (Table 4.4b). With the exception of the OSCC-Epithelial counts, the inter-observer 

variations were not significant with p-values ranging from 0.157 to 1 (Wilcoxon paired 

sample test).  When the OSCC-Epithelial inter-observer variation was examined there was a 

nearly significant positive correlation between the counts (Spearman’s rank correlation: 

rho=0.519, p=0.084) suggesting consistent differences in the observer’s counts.  One 

observer was significantly more experienced in the MSF staining assessment of OSCC 

sections and so this examiner provided further training and the final scores was agreed by 

consensus (Table 4.10). 

 

Overall, both the intra- and inter-observer variations suggested there was good consistency 

between the counts, although further training was required in the assessment of some cell 

types in the OSCC-NOM tissues, and intra-observer variation was generally more consistent 

than the inter-observer variation.    
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Table 4.4 Assessment of (a) Intra- and (b) Inter-observer variation (Wilcoxon p-values) for MSF staining 

intensity of the cell types (Fibroblast, Blood Vessel Endothelial Cells, Inflammatory Cells and Epithelial Cells) 

in the different tissues. 
 

(a) Intra-observer variation 
 

Tissue 

(number) 

TISSUE 

Fibroblasts Blood Vessels Inflammatory Cells Epithelial Cells 

PG 

(13) 

1 1 1 x 

PDL 

(13) 

1 1 1 x 

OSCC 

(12) 

0.046 0.025 0.317 1 

Paired OSCC 

(5) 

0.317 0.317 1 1 

NOM 

(5) 

1 1 1 1 

 

 
 (b) Inter-observer variation 

 
Tissue 

(number) 

TISSUE 

Fibroblasts Blood Vessels Inflammatory Cells Epithelial Cells 

PG 

(13) 

0.785 0.157 0.317 x 

PDL 

(13) 

0.317 0.317 0.317 x 

OSCC 

(12) 

0.317 0.317 0.317 0.002 

Paired OSCC 

(5) 

0.317 0.317 0.317 0.074 

NOM 

(5) 

1 1 1 0.257 

 

 

 

4.4 Results 

4.4.1 Final consensus assessment of vascularity  

The final consensus MVV, MVD and h-MVD for all of the tissues were quantified by two or 

four independent observers and any sections with an inter-observer variation above 15% were 

recounted and agreed by consensus. Intra-observer variation was checked by one observer, 

(KJD), by recounting all of the sections on two separate occasions. A limited number (up to 

six) of random sections from other areas of the specimens were also examined for a small 

number (n=10) of specimens. No significant histological variation was observed between the 

replicate sections. The final consensus vWF-MVV, vWF-MVD, vWF-h-MVD, CD105-

MVV, CD105-MVD and CD105-h-MVD scores for the all of the tissues are summarised in 

Table 4.5. The corresponding data for the six OSCC sections which contained histologically 

normal oral mucosa were referred to as “paired OSCC-NOM”.  



262 
 

Table 4.5 Overall summary of the mean vascularity indices (+SD) (MVV, MVD and h-MVD) in all of the 

tissue groups (PG, PDL, OSCC, paired OSCC and NOM) for both vascular markers (vWF and CD105).  
 

 

 

 

 

 

 

No Mean + SD Mean + SD Mean + SD Mean + SD 

vWF 

MVV 

(%) 

CD105 

MVV 

(%) 

vWF 

a-MVD 

(mm-2) 

CD105 

a-MVD 

(mm-2) 

vWF 

h-MVD 

(mm-2) 

CD105 

h-MVD 

(mm-2) 

% 

mean 

CD105 

to vWF 

(MVV) 

% 

mean 

CD105 

to vWF 

(MVD) 

% mean 

CD105  

to vWF 

(h-MVD) 

 

PG 

 

13 2.64+1.1 2.7+1.0 113+42 109+27 220+70 226+41 127+97 

 

108+64 

 

112+38 

PDL 

 

13 3.58+2.0 3.37+1.6 122+63 115+40 221+84 228+45 101+31 

 

108+41 

 

116+43 

OSCC 14 4.07+1.2 3.66+1.4 113+25 92+33 955+210 1150 

+233 

101+61 

 

86+37 

 

*124+29 

OSCC  6 3.86+1.2 3.83+1.9 113+23 103+44 906+181 1122 

+252 

118+89 

  

97+51 

  

**125+26 

NOM 6 2.84+0.9 1.87+0.5 78+19 55+9 594+180 389+55 71+28  

 

71+6  

 

68+13 

* h-MVD OSCC > NOM (p=0.001) 

** h-MVD Paired OSCC > NOM (p=0.002) 

 

4.4.1.1 Visualisation of the blood vessels 

Good positive staining of blood vessels, with minimal background, was achieved with both 

antibodies (Figures 4.1, 4.3, 4.4 and 4.5).  The intensity of the staining was similar with both 

antibodies in all of the tissues, except for CD105 in NOM, which was generally lower.  

Maximal contrast observed between vWF and CD105 staining in NOM is shown in Figure 

4.5 and further investigated in Chapter 4.4.1.6.  Antibody to vWF stained only blood vessels, 

whereas CD105 antibody stained blood vessels and occasionally cells of the inflammatory 

infiltrate (Figure 4.4).  These were easily distinguished from blood vessels and therefore did 

not affect the quantification of the latter. Control sections, stained with corresponding non-

immune IgG, were always negative. 

 

4.4.1.2 Observer variation 

Intra- and inter-observer variations for each antibody and vascular index are shown in Table 

4.6.  With the exception of the h-MVD inter-observer variation, the intra- and inter-observer 

variations were not significant, with p-values ranging from 0.423 to 0.875 (Wilcoxon paired 

sample test).  When the h-MVD inter-observer variations were examined there were 

moderate to strong positive correlations between the observer’s counts (Spearman’s rank 

correlation: vWF rho=0.503, p=0.009; CD105 rho=0.757, p<0.001) suggesting consistent 

differences in the observer’s counts.  This difference was only found in the OSCC and NOM 

tissues and was probably due to the examiners being less experienced in this assessment 
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method.  Further training was carried out and the final h-MVD counts were agreed by 

consensus. 

 

Table 4.6 Assessment of MVV, MVD and h-MVD intra- and inter-observer variation (Wilcoxon p-values). 

 
Intra-observer variation 

Wilcoxon 

MVV MVD h-MVD 

vWF 

 

0.875 0.637 0.665 

CD105 

 

0.820 0.720 0.571 

 
Inter-observer variation 

Wilcoxon 

MVV MVD h-MVD 

vWF 

 

0.864 0.423 0.01* 

CD105 

 

0.637 0.569 0.01* 

 
* Significant difference between observers. 

 

 

The overall high p-values, with the exception of h-MVD inter-observer variation, suggested 

that there was good consistency between the counts, although intra-observer variation was 

generally more consistent than the inter-observer variation.   MVD p-values were generally 

lower than the MVV, especially for the vWF MVD inter-observer variation, although this 

was within acceptable limits.  This shows the importance of independent observers in the 

assessment of the study sections. 

 

4.4.1.3 Correlation between vascular indices 

MVV, MVD and h-MVD are different indices of vascularity and could be expected to be 

correlated. However, it has been previously reported that different results may be obtained 

depending on the vascular index used (Pazouki et al., 1997) (Chapter 4.1.3).  Volume and 

density vascularity scores were directly and significantly correlated for all tissues and 

antibodies, with the exception of the correlation between CD105 MVD and h-MVD (Table 

4.7).  This discrepancy may reflect the difference in methodology between the MVD and h-

MVD counts.  Overall, the high correlation between the vascular indices confirms the validity 

of the protocol. 
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Table 4.7 Correlation between the MVV, MVD and h-MVD vascular indices (Spearman rank correlation).  
 

TISSUE 

 

Primary  

Antibody 

Vascular index no Spearman’s rho P-value 

All Tissues 

 

vWF 
 

MVV MVD 
 

46 0.513 <0.001** 

MVV h-MVD 

 

46 0.533 <0.001** 

MVD h-MVD 
 

46 0.319 0.031* 

All Tissues 

 

CD105 

 

MVV MVD 

 

46 0.680 <0.001** 

MVV h-MVD 
 

46 0.296 0.046* 

MVD h-MVD 

 

46 -0.137 0.364 

** Highly significant correlation. 
* Significant correlation 

 

 

4.4.1.4 Comparison of PG and PDL  

Six parameters of vascularity (vWF-MVV, vWF-MVD, vWF-h-MVD, CD105-MVV, 

CD105-MVD and CD105-h-MVD) were assessed for each PG and PDL section (Table 4.5). 

Values tended to be higher in the PDL tissues compared to the PG, but the differences were 

not significant (Table 4.8).  Results for MVV, MVD and h-MVD are shown in Figures 4.7, 

4.8 and 4.9, respectively.  CD105 values expressed as a percentage of vWF (Table 4.5) were 

not different, (approximately 100%) in PG and PDL samples.  

 

 
Table 4.8 Comparison of PG-PDL and OSCC-NOM by different methods (Mann-Whitney U test p-values). 

Ranking was OSCC > NOM unless otherwise stated. 
 

Tissues  Ab Method 

MVV MVD h-MVD 

PG (13) vs 

PDL (13) 

vWF 

 

0.317 1.0 0.856 

CD105 
 

0.367 0.837 0.840 

CD105 as % vWF 

 

0.513 0.786 0.719 

OSCC (14)  vs 

NOM (6) 

vWF 
 

0.031* 0.007** 0.005** 

CD105 

 

0.002** 0.014* 0.001** 

CD105 as % vWF 
 

0.343 0.591 0.001** 

OSCC (6)  vs 

NOM (6) 

vWF 

 

0.08 0.01* 0.026* 

CD105 
 

0.03* 0.10 0.002** 

CD105 as % vWF 

 

0.522 0.335 0.002** 

* Significant  
** Highly significant 
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Figure 4.7 Estimate of microvascular volume (MVV, %) for PG and PDL (a) vWF and (b) CD105.  The box 

represents the interquartile range, the horizontal line the median and the whiskers the range. 
 

       (a)          (b) 

      
 

 
Figure 4.8 Estimate of microvascular density (MVD, mm-2) for PG and PDL (a) vWF and (b) CD105.  The box 

represents the interquartile range, the horizontal line the median and the whiskers the range. 
 

       (a)          (b) 
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Figure 4.9 Estimate of highest-microvascular density (h-MVD, mm-2) for PG and PDL (a) vWF and (b) CD105.  

The box represents the interquartile range, the horizontal line the median and the whiskers the range. 
 

      (a)        (b) 

     
 

4.4.1.5 Assessment of inflammatory infiltration 

Previous studies on angiogenic factor expression in periapical lesions have associated 

angiogenic factor expression with inflammatory infiltration (Chapter 4.1.7). The extent of 

inflammatory infiltration of each section was independently assessed by two examiners using 

four pre-determined PG and PDL calibration sections. The sections were scored either as 

Grade 0 (no inflammatory infiltrate), Grade 1 (mild degree of inflammatory infiltrate), Grade 

2 (moderate degree of inflammatory infiltrate) or Grade 3 (severe inflammatory infiltrate). 

The final scores were agreed by consensus (Figure 4.10). As expected, statistically higher 

levels of inflammatory infiltration were found in the PG compared to the PDL tissue (Mann-

Whitney U test p=0.001). No correlation was found between the inflammatory index of the 

PG and the vascularity scores.  
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Figure 4.10 Graph showing the mean (+SE) inflammatory index scores for the PG and PDL sections. 
 

 
 

4.4.1.6 Comparison of OSCC and peri-tumour NOM tissues  

Vascularity values were significantly higher in OSCC (n=14) than in the NOM tissues (n=6) 

(Table 4.5), irrespective of the antibody or quantification method used (p-values ranging 

from 0.031 to 0.001) (Table 4.8). Results for MVV (vWF and CD105) are shown in Figure 

4.11, MVD in Figure 4.12 and those for h-MVD in Figure 4.13.  When comparing only the 

six OSCC which contained NOM, the difference between paired OSCC and NOM groups 

was still significant for vWF-MVD (p=0.01), vWF-h-MVD (p=0.026), CD105-MVV 

(p=0.03) and CD105-h-MVD (p=0.002).  In all cases, vascularity values for the six OSCC 

were not significantly different than those for the 14 OSCC (p values ranged from 0.51 to 

0.93). When CD105 vascularity values were expressed as a percentage of vWF (Tables 4.5 

and 4.8), the percentage was lower in NOM than in OSCC and highest in the “hot spot” of 

tumours (h-MVD).  Consequently, the difference was statistically significant only for h-

MVD (p=0.002).  

 

These findings demonstrate, as previously reported, that angiogenesis is associated with the 

development of OSCC and verifies the use of OSCC-NOM as a good positive control model 

of angiogenesis for this protocol.  Furthermore, the robustness of the methodology is further 

shown by the significant or near significant differences between tumour and normal tissues 
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being detectable even in very small experimental groups.  These findings give a high level 

of confidence in the unexpected PG-PDL vascularity finding.   

 
Figure 4.11 Estimate of microvascular volume (MVV, %) for OSCC and NOM sections using (a) vWF and (b) 

CD105.  The box represents the interquartile range, the horizontal line the median and the whiskers the range. 

         (a)            (b) 

         
 

 

Figure 4.12 Estimate of microvascular density (MVD, mm-2) for OSCC and NOM sections using (a) vWF and 

(b) CD105.  The box represents the interquartile range, the horizontal line the median and the whiskers the 

range. 
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Figure 4.13 Estimate of highest-microvascular density (h-MVD, mm-2) for OSCC and NOM sections using (a) 

vWF and (b) CD105.  The box represents the interquartile range, the horizontal line the median and the whiskers 

the range. 

         (a)                     (b) 

     

 

4.4.1.7 Staining intensity 

There was no difference between PG and PDL specimens in the intensity of the vWF and 

CD105 staining, however, the intensity of the staining with CD105 antibody was generally 

weaker in NOM than in OSCC (Figure 4.5 and Table 4.9).  Analysis of the six matched 

specimens revealed that the intensity of vWF-positive vessels was similar in NOM and OSCC 

(p=0.29), whereas that of CD105-positive vessels was significantly lower in NOM (p=0.012).   

 
Table 4.9 Staining intensity of vessels positive for vWF and CD105.   
 

Vascular  

marker 

Tissue Staining intensity Chi-square 

p-value + 

 

++ +++ 

vWF 

 

NOM 

 

2 3 1  

0.29 

OSCC 

 

0 4 2 

PDL 

 

0 0 13  

1.0 

PG 

 

0 0 13 

CD105 NOM 

 

5 1 0  

0.012* 
 OSCC 

 

0 4 2 

PDL 

 

0 0 13  

1.0 

PG 

 

0 0 13 

*Significant difference  

 

 

Although there was a wide variation in the vascularity scores, especially in the PDL, it is of 

interest that all values were similar in OSCC, PG and PDL samples and lower in peri-tumour 
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NOM samples.  This highlights the importance of comparing each lesion with its normal 

counterpart.  

 

4.4.2 MSF antibody staining profile and consensus scoring 

MSF staining, where present, was clearly defined in particular cell types (Fibroblasts, 

Vascular Endothelial Cells and Inflammatory Cells; Epithelial Cells in the OSCC-NOM 

sections), with low background staining and good agreement between duplicate sections.  

Differential MSF staining intensities were encountered both within tissues, in terms of 

cellular staining, and between tissues.  Representative sections are shown in Figure 4.6.  Two 

OSCC sections, one containing adjacent NOM, were excluded due to persistent overstaining 

with the MSF 7.1 AF antibody.   

 

The final consensus MSF staining intensities were quantified by two or three independent 

observers (KJD, JC and GO) and the final score was agreed by consensus.  The final 

consensus MSF staining intensity scores for the fibroblasts, vascular endothelial cells, 

inflammatory cells and epithelial cells for the PG, PDL, OSCC, paired-OSCC and NOM 

sections are shown in Table 4.10. 

 

4.4.2.1 Comparison of PG and PDL  

MSF staining intensity was assessed in fibroblasts, vascular endothelial cells and the 

inflammatory cell infiltrate for each PG and PDL section (summarised in Table 4.10 with 

statistical analysis shown in Table 4.11).  MSF staining intensity was differential with many 

sections containing weak or no MSF staining in the different cell types.  MSF staining was 

not statistically different for any of the cell types in the PG and PDL sections. 

 

 

 

 

 

 

 



271 
 

Table 4.10 MSF staining intensity for the cell types (Fibroblasts, Vascular Endothelial Cells, Inflammatory 

Cells and Epithelial Cells) for the PG, PDL, OSCC, Paired OSCC and NOM tissues. 
 

Tissue 

(number) 

MSF Staining Intensity 

Fibroblasts 

+             +             - 

Vessels 

+             +             - 

Inflammatory Cells 

+             +             - 

 

Epithelial Cells 

+            +             - 

PG (13)  2            5             6                          

(15)       (39)      (46) 
+/+ 

 7 

 0             8            5                      

(0)         (61)      (39)       
+/+ 

 8 

 3           1           9                     

(23)        (7)       (60) 
+/+ 

 4 

          N/A 

PDL (13) 

 

 

 0            2            11                 

(0)         (15)      (85) 
+/+ 

 2 

 3             3            7                                    

(23)        (23)     (54) 
+/+ 

 6 

 2             1           10                     

(15)        (7)       (78) 
+/+ 

 3 

          N/A 

OSCC  (12) 

 

 

8            4              0   

(67)       (33)        (0) 

+/+ 

12  

12           0             0 

(100)     (0)          (0) 

+/+ 

12 

 5             3             4 

(42)        (25)     (33) 

+/+ 

 8 

 8           0            4 

(67)       (0)        (33)  

+/+ 

 8   

Paired 

OSCC (5) 

3            2              0 
(60)      (40)         (0) 

+/+ 

 5 

 5            0            0 
(100)     (0)          (0) 

+/+ 

 5 

 2             1             2 
(40)       (20)      (40) 

+/+ 

  3 

 2            0            3 
(40)       (0)        (60) 

+/+ 

 2 

NOM (5) 

 

 

 

2            2              1 

(40)      (40)       (20) 

+/+ 
 4 

 4            1            0 

(80)      (20)        (0) 

+/+ 
 5 

 1             2             2 

(20)       (40)      (40) 

+/+ 
 3 

 2           0            3 

(40)       (0)        (60) 

+/+ 
 2 

 

Key: 
+  Strong intensity of MSF staining (+, ++ and ++). 

+ Weak intensity of MSF staining. 

- No MSF staining. 
( ) Percentage of total samples. 

N/A Not applicable. 

 

 

4.4.2.2 Comparison of OSCC and peri-tumour NOM tissues  

Both the OSCC and NOM tissues generally showed high levels of MSF staining intensity, 

especially in the fibroblast and vascular endothelial cells.  No significant differences were 

found in the cellular MSF staining intensities (Fibroblast, Vascular Endothelial Cells, 

Inflammatory and Epithelial cells) between the OSCC and the NOM sections (summarised 

in Table 4.10 with statistical analysis shown in Table 4.11).  However, data from a larger 

study in the laboratory compared MSF staining in OSCC and peri-tumour NOM (unpublished 

data) found significantly higher MSF staining of vascular endothelial cells in OSCC 

compared to NOM (Chi-squared score p<0.001; Fisher’s Exact Test p=0.001). A marginally 

significant difference was found in fibroblasts (OSCC>NOM; Chi-squared score p=0.0434; 

Fisher’s Exact Test p=0.0717) but no significant difference in MSF staining of epithelial cells 

was seen (Chi-squared score p=0.682; Fisher’s Exact Test p=0.999).  This study quantified 

MSF staining in terms of intensity and area of staining (personal communication: Dr G Ohe).   
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Table 4.11 Statistical comparison (Fisher’s Exact Test p-values) of the MSF staining of the comparable tissues 

(PG-PDL, OSCC-NOM, paired OSCC-NOM and OSCC-OSCC).  
 

Tissues Tissue 

Fibroblasts Blood Vessels Inflammatory Cells Epithelial Cells 

PG (13) - 

PDL (13) 

0.0968 0.6951 1 x 

OSCC (12) - 

NOM (5) 

0.2941 1 1 0.5928 

OSCC (5) - 

NOM (5) 

1 1 1 1 

OSCC (12) - 

OSCC (5) 

1 1 1 0.5928 

 
 Statistics: positive MSF staining (+/+) versus negative staining (-). 

 

4.4.2.3 Comparison of the PG-PDL and the OSCC-NOM tissues  

Although the PG-PDL and OSCC-NOM are not comparable tissues, the difference in MSF 

expression between the known positive angiogenic control tissues, OSCC-NOM, and the PG-

PDL tissues was examined. Significantly higher MSF staining of the fibroblasts (PG<OSCC 

p=0.0149; PDL<OSCC p=0.0001) and vascular endothelial cells (PG<OSCC p=0.0391; 

PDL<OSCC p=0.0052) were found in the OSCC compared with the PG and PDL sections 

(Table 4.12). However, the only significantly difference in the MSF staining of the 

inflammatory cells was found in the PDL-OSCC sections (PDL<OSCC p=0.0472).  Apart 

from the fibroblast MSF staining (PDL<NOM p=0.022) there were no significant differences 

found between the peri-tumour NOM and the PG and PDL sections.  This may reflect the 

low number of NOM sections available. 

 

Table 4.12 Statistical comparison (Fisher’s Exact Test p-values) of the MSF staining of the PG and PDL 

sections with the OSCC and NOM angiogenic control sections (PG-OSCC, PDL-OSCC, PG-NOM and PDL-

NOM).  
 

 Tissues 

Fibroblasts Blood Vessels Inflammatory Cells 

PG (13)  < 

OSCC (12) 

0.0149* 0.0391* 0.1152 

PDL (13)  < 

OSCC (12) 

0.0001** 0.0052** 0.0472* 

  

PG (13)  < 

NOM (5) 

0.596 0.249 0.326 

PDL (13)  < 

NOM (5) 

0.022* 0.101 0.268 

 

Statistics: positive MSF staining (+/+) versus negative staining (-). 
* Significant  

** Highly significant  
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4.4.3 Correlation between MSF staining and vascular indices 

MSF staining intensity of the cell types (Fibroblasts, Vascular Endothelial Cells, 

Inflammatory Cells and Epithelial Cells) for each tissue were examined in relation to the 

vascular indices (vWF-MVV, vWF-MVD, vWF-h-MVD, CD105-MVV, CD105-MVD and 

CD105-h-MVD).  The results are shown in Table 4.13.   

 

 

Table 4.13 Correlation between MSF staining and the Vascular Indices (vWF-MVV, vWF-MVD, vWF-h-

MVD, CD105-MVV, CD105-MVD and CD105-h-MVD) for (a) Fibroblasts, (b) Blood Vessels, (c) 

Inflammatory Cells and (d) Epithelial Cells for all tissue groups (Spearman’s rank correlation).  P-values are 

shown with Spearman’s rho values in brackets. 

 
(a) Fibroblasts 
 

Correlation 

 

All 

(43) 

PG 

(13) 

PDL 

(13) 

OSCC 

(12) 

OSCC 

(5) 

NOM 

(5) 

vWF MVV vs MSF Fibroblasts 

 

0.221 

(0.18) 

0.953 

(0.018) 

0.115 

(0.458) 

0.296 

(-0.329) 

0.498 

(-0.406) 

0.866 

(0.105) 

vWF MVD vs MSF Fibroblasts 

 

0.599 
(-0.078) 

0.229 
(-0.358) 

0.03* 

(0.599) 
0.208 

(-0.392) 
0.764 

(-0.186) 
0.727 

(0.216) 

vWF h-MVD vs MSF Fibroblasts 

 

<0.001** 

(0.621) 

0.484 

(-0.213) 

0.05* 

(0.553) 

0.713 

(-0.119) 

0.866 

(0.105) 

0.897 

(-0.081) 

  

CD105 MVV vs MSF Fibroblasts 

 

0.187 

(0.194) 

0.295 

(0.315) 

0.116 

(0.457) 

0.927 

(-0.03) 

0.361 

(-0.527) 

0.931 

(0.054) 

CD105 MVD vs MSF Fibroblasts 

 

0.274 

(-0.161) 

0.425 

(-0.242) 

0.041* 

(0.573) 

0.714 

(-0.118) 

0.866 

(-0.105) 

0.965 

(0.028) 

CD105 h-MVD vs MSF Fibroblasts 

 

<0.001** 

(0.669) 

0.995 

(-0.002) 

0.067 

(0.523) 

0.646 

(0.148) 

0.897 

(-0.081) 

0.668 

(-0.264) 

 

 

(b) Blood Vessel Endothelial Cells 
 

Correlation 

 

All 

(43) 

PG 

(13) 

PDL 

(13) 

OSCC 

(12) 

OSCC 

(5) 

NOM 

(5) 

vWF MVV vs MSF Blood vessels 

 

0.222 
(0.179) 

0.486 
(0.212) 

0.423 
(-0.243) 

0.484 
(-0.224) 

0.437 
(-0.459) 

0.182 
(0.707) 

vWF MVD vs MSF Blood vessels 

 

0.971 

(0.005) 

0.198 

(0.382) 

0.984 

(-0.006) 

0.782 

(-0.09) 

0.111 

(-0.791) 

0.165 

(0.725) 

vWF h-MVD vs MSF Blood vessels 

 

<0.001** 

(0.729) 
0.124 

(0.449) 
0.717 

(-0.111) 
0.379 
(-0.28) 

0.118 
(-0.783) 

0.343 
(0.544) 

  

CD105 MVV vs MSF Blood vessels 

 

0.269 

(0.163) 

0.254 

(0.341) 

0.505 

(-0.203) 

0.943 

(-0.023) 

0.45 

(0.447) 

0.548 

(0.363) 

CD105 MVD vs MSF Blood vessels 

 

0.443 

(-0.113) 

0.224 

(0.362) 

0.46 

(-0.225) 

0.504 

(0.214) 

0.041* 

(0.894) 

0.327 

(0.559) 

CD105 h-MVD vs MSF Blood vessels 

 

<0.001** 

(0.727) 

0.07 

(0.518) 

0.243 

(-0.349) 

0.962 

(-0.015) 

0.102 

(-0.803) 

0.559 

(0.354) 
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(c) Inflammatory Cells 
 

Correlation 

 

All 

(43) 

PG 

(13) 

PDL 

(13) 

OSCC 

(12) 

OSCC 

(5) 

NOM 

(5) 

vWF MVV vs MSF Inflammatory cells 

 

0.110 
(-0.234) 

0.117 
(-0.456) 

0.146 
(-0.427) 

0.15 
(-0.442) 

0.794 
(-0.162) 

0.734 
(0.211) 

vWF MVD vs MSF Inflammatory cells 0.294 

(-0.154) 

0.167 

(-0.408) 

0.827 

(-0.067) 

0.734 

(-0.110) 

1 

(0) 

0.498 

(0.406) 

vWF h-MVD vs MSF Inflammatory cells  

 

0.147 
(0.213) 

0.109 
(-0.466) 

0.365 
(-0.274) 

0.914 
(-0.035) 

0.8 
(-0.158) 

0.863 
(0.108) 

  

CD105 MVV vs MSF Inflammatory cells 

 

0.026* 

(-0.321) 

0.076 

(-0.508) 

0.095 

(-0.482) 

0.205 

(-0.394) 

0.252 

(-0.632) 

0.467 

(-0.433) 

CD105 MVD vs MSF Inflammatory cells 

 

0.062 
(-0.272) 

1.173 
(-0.403) 

0.476 
(-0.217) 

0.557 
(-0.188) 

1 
(0) 

0.617 
(0.306) 

CD105 h-MVD vs MSF Inflammatory cells 

 

0.088 

(0.249) 

0.716 

(-0.112) 

0.130 

(-0.443) 

0.343 

(0.3) 

0.594 

(-0.324) 

0.361 

(-0.527) 

 

 

(d) Epithelial Cells 
 

Correlation 

 

All 

(17) 

PG 

(13) 

PDL 

(13) 

OSCC 

(12) 

OSCC 

(5) 

NOM 

(5) 

vWF MVV vs MSF Epithelial cells 

 

0.297 

(0.233) 

x x 0.873 

(0.052) 

0.812 

(0.148) 

0.638 

(0.289) 

vWF MVD vs MSF Epithelial cells 

 

0.387 
(0.194) 

x x 1 
(0) 

0.495 
(0.408) 

0.628 
(0.296) 

vWF h-MVD vs MSF Epithelial cells 

 

0.501 

(0.152) 

x x 0.874 

(-0.051) 

1 

(0) 

0.812 

(0.148) 

  

CD105 MVV vs MSF Epithelial cells 

 

0.333 
(-0.217) 

x x 0.184 
(-0.411) 

0.058 
(-0.866) 

0.454 
(0.444) 

CD105 MVD vs MSF Epithelial cells 

 

0.181 

(-0.296) 

x x 0.156 

(-0.436) 

0.638 

(-0.289) 

0.807 

(0.152) 

CD105 h-MVD vs MSF Epithelial cells 

 

0.701 
(0.087) 

x x 0.937 
(-0.026) 

0.812 
(-0.148) 

0.638 
(0.289) 

 

* Significant correlation 
** Highly significant correlation 

 

 

4.4.3.1 Fibroblasts 

When all tissues were examined highly significant moderate positive correlations were found 

between Fibroblast MSF staining with both vWF-h-MVD (rho=0.621, p<0.001) and CD105-

h-MVD (rho=0.669, p<0.001). PDL Fibroblast MSF staining significantly correlated with 

vWF-MVD (rho=0.599, p=0.03), vWF-MVD (rho=0.553, p=0.05) and CD105-MVD 

(rho=0.573, p=0.041). No other significant correlations were found between Fibroblast MSF 

staining and the vascular indices in the different tissues.     

 

4.4.3.2 Blood vessel endothelial cells 

When all tissues were examined highly significant strong positive correlations were found 

between Vessel Endothelial Cell MSF staining with both vWF-h-MVD (rho=0.729, p<0.001) 
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and CD105-h-MVD (rho=0.727, p<0.001). Otherwise no significant correlations were found 

between Endothelial Cell MSF staining and the vascular indices in the different tissues. 

 

4.4.3.3 Inflammatory cells 

When all tissue were examined a significant weak negative correlation was found between 

Inflammatory cell MSF staining and CD105-MVV (rho=-0.321, p=0.026). Otherwise no 

significant correlations were found between Inflammatory Cell MSF staining and the 

vascular indices in the different tissues. 

 

4.4.3.4 Epithelial cells 

No significant correlations were found between the vascular indices and Epithelial MSF 

staining either overall or at individual cell type level, although a nearly significant negative 

correlation was found between CD105-MVV and MSF Epithelial Cell staining (rho=-0.866, 

p=0.058).  

 
 

4.4.4 Correlation between inflammatory infiltration and MSF expression 

Previous studies on angiogenic factor expression in periapical lesions have directly 

associated angiogenic factor expression with the extent of inflammatory infiltration (Chapter 

4.1.8).  The PG and PDL sections were previously graded for inflammatory cell infiltration 

using calibrated sections (Chapter 4.4.1.5 and Figure 4.10).  MSF expression in the different 

cell types (Fibroblasts, Blood Vessels and Inflammatory cells) was examined in relation to 

the level of inflammatory cell infiltration in the PG and PDL tissues (Table 4.14).  A 

significant moderate positive correlation was found between PDL-Blood Vessel MSF 

expression and the level of inflammatory infiltration (rho 0.623, p=0.023).  A highly 

significant moderate positive correlation was found between PDL-Inflammatory Cell MSF 

expression and the level of inflammatory infiltration (rho 0.696, p=0.008).  No other 

significant or near significant correlations were found.  
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Table 4.14 Correlation between Inflammatory Infiltration and the MSF Expression (Fibroblasts, Blood Vessel 

Endothelial cells and Inflammatory cells) in the PG and PDL tissues.   
  

Correlation All 

(26) 

PG 

(13) 

PDL 

(13) 

p-value rho p-value rho p-value rho 

Inflammatory Index - 

Fibroblast MSF Staining 

 

0.216 0.251 0.884 0.045 0.492 -0.209 

Inflammatory Index  - Blood 

Vessel MSF Staining 

 

0.091 0.338 0.471 0.220 0.023* 0.623 

Inflammatory Index - 

Inflammatory Cell  MSF 

Staining 

0.117 0.315 0.741 -0.102 0.008** 0.696 

 

* Significant correlation 

** Highly significant correlation 

 

4.5 Discussion   

Angiogenesis cannot be measured directly in human lesions, but can be inferred by 

measuring indices of angiogenesis (e.g. angiogenic factor expression, vascularity) in both the 

lesion of interest and its normal tissue counterpart.  In this study, vascularity and the 

expression of the angiogenic factor Migration Stimulating Factor (MSF) were assessed in 

four different types of tissue: periapical granuloma (PG), normal periodontal ligament (PDL), 

oral squamous cell carcinoma (OSCC), and peri-tumour histologically normal oral mucosa 

(NOM). Vessels were stained with antibodies to von Willebrand factor (vWF) and CD105 

and quantified by three methods that reflect vascular volume and density. These were 

average-microvascular volume (MVV), average-microvascular density (MVD) and highest-

microvascular density (h-MVD). Furthermore, fibroblast, vascular endothelial cell and 

inflammatory cell MSF expression was assessed in each tissue and epithelial cell MSF 

expression was also assessed in the OSCC and NOM tissues.  Each lesion was compared 

with its corresponding normal tissue, thus representing two different models (PG-PDL and 

OSCC-NOM) that can be compared to each other.  Two main questions are addressed by this 

study: (i) is there evidence of angiogenesis, either measured using vascularity and/or by MSF 

expression, in chronic PG? and (ii) is CD105 a marker of angiogenic vessels? 

 

Vascularity was significantly higher in OSCC than in NOM indicating that angiogenesis 

accompanies the development of the former. This finding confirms the validity of the OSCC-

NOM model as a positive control (Pazouki et al., 1997) and was consistent with the concept 

of tumour growth being angiogenesis-dependent in order to meet the increased metabolic 
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requirements of the tumour (Folkman, 1971). In contrast, there was no difference in 

vascularity between PG and PDL tissues, irrespective of the antibody or methodology used. 

Therefore, there is no evidence of angiogenesis taking place in the PG-PDL model. This 

finding was unexpected as it had been previously suggested that the formation of 

granulomatous lesions is accompanied by angiogenesis (Bragado et al., 1999, Yuan et al., 

2000b).  Therefore, it was anticipated that a presumably angiogenic PG would have higher 

vascularity levels than the PDL. Information obtained from tissue sections is applicable to a 

fixed point in time. The possibility cannot be excluded, therefore, that angiogenesis may have 

occurred at earlier stages of PG development. This could be examined in animal models, but 

it is not possible to determine in humans, as only chronic lesions are clinically detectable and 

accessible for ex-vivo experimentation. Nevertheless, chronic oral lesions, such as oral lichen 

planus (Tao et al., 2007, Mittal et al., 2012, Sheelam et al., 2018), have been found to contain 

significantly higher vascularity than the corresponding normal tissue. Sampling error is 

another potential problem, given the heterogeneity of the tissues examined. However, no 

significant differences in vascularity values were found when up to six replicate sections of 

PG and PDL specimens were assessed. Furthermore, no significant differences in vascularity 

were found in the OSCC-NOM model, in spite of the well-known heterogeneity of the 

tumours.   

 

Various methods have been used to quantify vascularity, the most common being the highest 

microvascular density (h-MVD) in which only the most vascularised area of the section (hot 

spot) is assessed (Weidner et al., 1991).  Alternative methods involve estimating average-

microvascular density (MVD) or volume (MVV) in randomly selected areas of the sections 

(Chandrachud et al., 1997, Pazouki et al., 1997).   Previous findings have demonstrated that 

different results may be obtained depending on the quantification method used (Pazouki et 

al., 1997, Schor et al., 1998b, Li et al., 2005).  For example, MVV increased significantly, in 

a step-wise fashion, with disease progression in oral lesions, from normal oral mucosa to 

dysplastic lesions and carcinomas, whereas h-MVD did not discriminate between dysplasia 

and carcinomas (Pazouki et al., 1997).  Similarly, Li et al. (2005) found that h-MVD in CD31 

stained sections could not differentiate between normal oral mucosa and dysplastic lesions, 
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but did significantly differentiate between normal oral mucosa and oral carcinoma.  It is 

important, therefore, to assess vascularity by more than one method. 

 

The vessels were homogeneously distributed in PG and PDL, and there was no evidence of 

vascular hot spots. Nevertheless, the highest-MVD, as well as the average-MVD and MVV 

were assessed in conjunction with vWF and CD105 staining to allow direct comparison 

between the OSCC-NOM and the PG-PDL models.  Confidence in the methodology adopted 

was demonstrated by: (i) the lack of significant inter- and intra-observer variations, (ii) the 

significant correlation between h-MVD, MVV and MVD values and (iii) the significant 

difference between OSCC and NOM tissues.  The latter results are in agreement with 

previous publications using larger numbers of specimens (Pazouki et al., 1997, Schimming 

and Marme, 2002, Li et al., 2005). 

 

It is widely assumed that angiogenesis is involved in the formation of PG. Evidence 

supporting this assumption includes the presence of various angiogenic factors in these 

lesions (Lin et al., 1996, Tyler et al., 1999, Danin et al., 2000, Leonardi et al., 2003, Moldauer 

et al., 2006, Nonaka et al., 2008, Fonseca-Silva et al., 2012, Andrade et al., 2013, Virtej et 

al., 2013, Vara et al., 2017, Alvares et al., 2018, Kudo et al., 2018).  Since angiogenesis 

cannot be measured directly in human tissues, expression of such factors is taken as an index 

of angiogenesis. In the present study, irrespective of the cell type examined, no significant 

difference in MSF expression was identified between PG and PDL tissues.  Overall, MSF 

expression was weak or negative for all of the cell types examined in the PG and PDL tissues.   

It had been anticipated that the presumably angiogenic PG would show significantly higher 

levels of MSF expression than the healthy control PDL. The weak or negative MSF 

expression found in both the PG and PDL tissues mirrors the lack of evidence of active 

angiogenesis found in the same sections using the various measures of vascularity.  However, 

it is not possible to rule out that angiogenesis, possibly associated with transiently increased 

MSF expression, as occurs in wound healing (Picardo et al., 1992), may have occurred at an 

earlier stage in PG development as only longstanding chronic lesions are clinically detectable 

in humans.   
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However, angiogenesis is regulated by a complex network of stimulators and inhibitors, 

including both soluble factors and insoluble extra-cellular matrix components. The 

expression of an angiogenic factor, therefore, does not necessarily indicate that angiogenesis 

has taken place, as the environment may not be permissive for angiogenic activity.  In PG, 

the expression of angiogenic factors has been commonly studied in relation to the level of 

immune cell infiltration and/or the extent of epithelial proliferation, not to the vascularity of 

the lesions (Lin et al., 1996, Tyler et al., 1999, Danin et al., 2000, Leonardi et al., 2003, 

Moldauer et al., 2006, Andrade et al., 2013, Virtej et al., 2013, Alvares et al., 2018).  In the 

present study, no significant correlations were found between MSF expression in the various 

cell types (Fibroblasts, Vascular Endothelial Cells and Inflammatory Cells) with the extent 

of the inflammatory infiltration of the PG.  Significant correlations were found between the 

extent of inflammatory cell infiltration in PDL with both the Blood Vessel MSF expression 

and the Inflammatory Cell MSF expression.  This suggests that although there was both little 

MSF expression and inflammatory cell infiltration in the majority of the PDL tissues, those 

sections which did have increased inflammatory cell infiltration were associated with raised 

MSF expression in both the vascular endothelial cells and in the inflammatory cells.  This 

could suggest that MSF expression may be raised in the early stages of periodontal ligament 

inflammation. 

 

Significant correlations were found between MSF expression of PDL fibroblasts with the 

measures of vessel density (MVD and h-MVD) with both markers (vWF and CD105). This 

suggests that although the MSF expression of the PDL fibroblast was generally negative, 

those sections which contained areas of increased vascular density, vascular hot spots, were 

associated with increased MSF expression in the PDL fibroblasts.  It has been previously 

reported that gingival and periodontal fibroblasts exhibit foetal-like characteristics (Irwin et 

al., 1994, Moxham and Grant, 1995), with some gingival fibroblasts subpopulations 

producing detectable levels of MSF, while skin fibroblasts do not produce MSF (Irwin et al., 

1994, Schor et al., 1988a).  Therefore, the most likely source of MSF within the PDL is from 

the PDL fibroblasts and if MSF does play a significant role in angiogenesis within the PDL, 

it would be expected that MSF expression in the PDL fibroblasts would be increased in areas 

of high vascular density.  However, further research is required to clarify this hypothesis.   
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No other significant correlations were found between the cellular MSF expression of the 

individual cell types with the measures of vascularity in the different tissues. When cellular 

MSF expression of the individual cell types (fibroblasts, vascular endothelial cells, 

inflammatory cells and epithelial cells) were examined in all of the tissues combined, 

significant correlations were found with some of the vascular indices (Table 4.13). However, 

these apparent correlations are likely to be simply due to statistical anomalies.   

 

Quantification of vascularity represents another index of angiogenesis. Nokana et al.(2008) 

examined the differences in vascularity (using Microvessel Count (MVC): a vascular index 

not directly comparable with the vascular indices used in the present study) in PG, radicular 

and residual radicular cysts in comparison with the level of VEGF expression and the extent 

of the inflammatory infiltration.  However, the vascularity of these tissues was not compared 

with the appropriate healthy tissue, the periodontal ligament, and so angiogenesis was 

assumed to have occurred due to the high levels of expression of VEGF in these tissues.  The 

argument applies to the other similar studies which examined vascularity in PG (Lima et al., 

2011, Fonseca-Silva et al., 2012, Vara et al., 2017).  In all cases, it is important to test the 

robustness of an angiogenic index by comparing an assumed angiogenic tissue with its closest 

non-angiogenic counterpart. For example, expression of VEGF, a potent angiogenic factor, 

was found to be similar or higher in NOM than in OSCC, therefore it cannot be taken as a 

reliable index of angiogenesis in OSCC (Baillie et al., 2001b).  This finding may be due to 

the presence of both pro-angiogenic and anti-angiogenic splice variants of VEGF, which 

cannot be distinguished by previously available antibodies (Ladomery et al., 2007).  In 

contrast, vascularity appears to represent a good index of angiogenesis in oral tissues 

(Pazouki et al., 1997, Schimming and Marme, 2002, Li et al., 2005).  It should be noted that, 

when using pan-endothelial markers, not all tumours have higher vascularity than the normal 

tissue from which they originate (Schor et al., 1998a, Schor et al., 1998b).  In such cases it is 

not possible to determine whether angiogenesis has taken place.  

 

Interestingly, in the present study, high levels of MSF expression were found in both the 

OSCC and NOM tissues, with no significant differences found in the cellular MSF staining 

intensities (Fibroblast, Vascular Endothelial Cells, Inflammatory and Epithelial Cells) 
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between the OSCC and the NOM sections.  Although the PG-PDL and OSCC-NOM are not 

directly comparable tissues, significantly higher MSF staining was found in the OSCC 

compared with the PG and PDL sections.  It was anticipated that MSF expression in the 

OSCC-NOM would mirror the differences in vascularity, with significantly higher MSF 

expression in the OSCC compared with the NOM. A possible explanation for the lack of 

significant difference in the MSF expression found in the OSCC-NOM model used in this 

study could be due to field change/cancerisation effects on the seemingly histologically 

normal mucosa adjacent to OSCC lesions. Several studies have shown peri-tumour NOM to 

have raised or significantly higher vascularity than true healthy NOM and so peri-tumour 

NOM cannot be regarded as being a truly normal tissue (Carlile et al., 2001, El-Gazzar et al., 

2005a, Margaritescu et al., 2010).  Likewise, it could be postulated that the expression of 

angiogenic factors, such as MSF, could be similarly increased in the peri-tumour NOM 

compared to true NOM.  An alternative hypotheses for why the high level of MSF expression 

in the NOM did not result in angiogenic activity could be due to either some other cofactor 

not being present, such as another angiogenic factor or an extracellular matrix component, or 

due to the presence of an MSF inhibitor.  A functional MSF inhibitor (MSFI), neutrophil 

gelatinase-associated lipocalin (NGAL), has been identified, although the exact mechanism 

for how it inhibits MSF has still to be identified (Jones et al., 2007).        

 

However, data from a larger study carried out in the laboratory which specifically studied 

MSF staining in OSCC and peri-tumour NOM (unpublished data) found significantly higher 

vascular and fibroblast MSF expression in OSCC compared to NOM (personal 

communication: Dr G Ohe).  The inconsistency between this study and the present study 

probably reflects the different number of OSCC-NOM sections assessed and the different 

methodologies used to quantify the MSF staining intensity. Therefore, the lack of significant 

difference found in the MSF expression between the OSCC and NOM tissues in the present 

study may simply be due to insufficient number of NOM specimens examined. 

 

Pan-endothelial markers such as CD34, CD31 and vWF do not distinguish between mature 

and newly formed (or angiogenic) vessels.  Furthermore, it has been reported that such 

markers react strongly with endothelial cells in large blood vessels but their expression is 
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weak or absent in microvessels in most normal tissue and in many tumours (Stashenko et al., 

1994). Although no evidence was found in the present study of vessels not expressing vWF, 

the use of a marker specific for angiogenic vessels would be preferable to provide an accurate 

measure of angiogenesis.  CD105 (endoglin) has been reported to be such a marker, being 

selectively expressed by proliferating endothelial cells in vitro and angiogenic vessels in 

tumours (Burrows et al., 1995, Nassiri et al., 2011), including OSCC (Schimming and 

Marme, 2002, Schimming et al., 2004, Margaritescu et al., 2010, Nair et al., 2016, Patil et 

al., 2018, Silva et al., 2018). Furthermore, high expression of CD105 in tumours has been 

associated with poor prognosis, being more informative than pan-endothelial markers 

(Kumar et al., 1999, Tanaka et al., 2001, Chien et al., 2006, Kyzas et al., 2006).   

 

Unexpectedly, CD105 stained vessel endothelial cells in a similar fashion to vWF in PG and 

PDL and did not provide any additional information in these tissues.  This differs from Lima 

et al. (2011) who reported significantly higher CD34 vascular staining compared with CD105 

in PG and periapical cysts. They concluded that the differential staining between the two 

vascular markers provided evidence of angiogenesis taking place, probably resulting from 

hypoxic conditions in the periapical lesions leading to raised HIF-1 expression. However, as 

with the other studies which have examined vascularity in periapical lesions, healthy PDL 

was not used as a control.  

 

In the OSCC-NOM model used in the present study, staining with CD105 added very limited 

value to staining with vWF. These results agree with those of Balza et al.(2001) who found 

CD105-positive vessels in a variety of normal (non-oral) human tissues.  CD105 has been 

previously shown to stain vessels in periapical granulation tissue, although no attempt was 

made to quantify or compare this with other tissues (Tasman et al., 2000).  In NOM, CD105 

expression was weaker than in OSCC regarding intensity of staining. When expressed as a 

percentage of vWF-positive vessels, CD105-positive vessels were also significantly lower in 

NOM than in OSCC when measured by h-MVD, but not by MVV or MVD.  Otherwise, there 

were no significant differences in the four tissues examined, although they tended to be 

similarly high in PG, PDL and OSCC and lower in NOM.  The hypothesis that CD105 is a 

specific marker for angiogenic vessels has not been proved. If this hypothesis were correct, 
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the present results would indicate that angiogenesis is taking place in all the four tissues 

examined, at similar high levels in OSCC, PG and PDL and at lower levels in NOM.  

However, an alternative hypothesis can be proposed, namely that CD105 may be associated 

with high tissue turnover or some other intrinsic characteristic of these tissues, rather than 

with the formation of new blood vessels.  

 

To date, although there have been a significant number of studies which have detected 

angiogenic factor expression in PG, there have been very few studies which have examined 

vascularity as a marker of angiogenesis.  Unfortunately, there are difficulties in relating the 

findings of these studies due to disparities in the methodologies used, such as different 

vascular markers (vWF, CD31, CD34 or CD105), vascular and inflammatory indices, and 

the number of assessors.  The unique feature regarding the present study was the inclusion 

of PDL as a tissue appropriate control to confirm whether or not angiogenesis had taken 

place.  A further potential issue is that PG are assumed to be static lesions, but there is the 

possibility that some PG may be progressing towards periapical cyst formation.  Further 

studies could include periapical cysts, in addition to the PDL and PG, to examine changes in 

vascularity. Epithelial and inflammatory markers may to help ascertain whether the PG are 

static or are likely to have been in the process of developing into periapical cysts.   
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Chapter 5  

General Discussion, Conclusions and Further 

Investigations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



285 
 

5.1 General Discussion 

In this thesis, a comparison of a number of angiogenic factors involved in the regulation of 

oral wound healing and the use of vascularity as an index of angiogenesis have been explored.  

Oral soft tissues are known to display features of enhanced wound healing, in comparison to 

dermal tissue, with reduced healing times and minimal scarring, despite the high microbial 

load and a wet environment (Sciubba et al., 1978, Schor et al., 1996, Szpaderska et al., 2003, 

Wong et al., 2009).  Furthermore, oral wound healing is associated with reduced 

inflammation, faster re-epithelisation time and less angiogenic activity compared with 

dermal healing (Szpaderska et al., 2003, Szpaderska et al., 2005, DiPietro and Schrementi, 

2018).  Therefore, the study of oral wound healing may provide insight into improved wound 

care in general resulting in reduced scarring. 

As discussed in Chapter 1.4, several theories have been proposed to account for the enhanced 

wound healing ability of oral tissues including angiogenic factors in saliva and factors 

intrinsic to oral soft tissues, including foetal-like fibroblast populations and high stem cell 

activity (Polverini, 1995, Schor et al., 1996, Izumi et al., 2007, Chen et al., 2010, Zhang et 

al., 2012, DiPietro and Schrementi, 2018, desJardins-Park et al., 2019).  There is strong 

evidence that the angiogenic factor content of saliva is important in oral wound healing and 

maintenance of the upper gastro-intestinal tract (Zelles et al., 1995), as demonstrated by the 

studies by Bodner’s group in rodent models (Chapter 1.5) (Bodner, 1991, Bodner et al., 

1991a, Bodner et al., 1991b, Bodner et al., 1992, Dayan et al., 1992, Bodner et al. 1993, 

Bodner and Dayan, 1995).  Furthermore, a study in mice by Noguchi et al. (1991) reported 

the addition of Epidermal Growth Factor (EGF) restored the healing capacity of incisional 

wounds on the tongue to normal following removal of the submandibular glands.  However, 

the presence of saliva does not entirely account for all aspects of enhanced oral wound 

healing (Szpaderska et al., 2003, DiPietro and Schrementi, 2018).  Therefore, it is likely that 

a number of intrinsic factors inherent to the oral soft tissues are also likely to be involved, 

although the exact mechanisms are poorly understood.   

Wound healing is a complex process involving specific time critical interactions between 

various soluble mediators, blood cells, parenchymal cells and the extracellular matrix (ECM) 

(Gurtner et al., 2008).  Angiogenesis is a key stage in oral wound healing and its disruption 
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(deficient or excessive) leads to delayed and ineffective healing (DiPietro, 2016).  

Angiogenic factors from both the systemic system (i.e. in serum) and those contained in 

saliva are likely to be involved in oral soft tissue healing.  Although there is strong evidence 

that the angiogenic factor content of saliva is likely to contribute to enhanced oral wound 

healing, little is known regarding the relative concentrations of pro-angiogenic factors and 

inhibitors in saliva and how they compare with systemic levels.  In this thesis, the 

concentration of the pro-angiogenic factors Ang-1, MSF and VEGF, in relation to the 

angiogenic inhibitor endostatin, have been assessed in serum and saliva.  The broad aims of 

this aspect of the thesis are to investigate whether: (i) serum and salivary concentrations of 

the pro-angiogenic factors Ang-1, MSF and VEGF and the inhibitor endostatin are 

significantly different between periodontal health and severe periodontitis; (ii) serum and 

salivary concentrations of these factors are significantly altered in smokers and in subjects 

with diabetes compared with matched healthy controls.   

 

Few studies have examined the levels of angiogenic factors in both unstimulated and 

stimulated whole saliva.  The majority of the time the oral cavity is bathed in unstimulated 

saliva, mostly derived from the submandibular glands.  Stimulated saliva differs from 

unstimulated saliva, both in terms of its lower viscosity, being mainly derived from the 

parotid glands and is mainly produced during mastication. The angiogenic factor content of 

stimulated saliva is also likely to have a role in oral wound healing, especially in the time 

period shortly following injury. As far as it can be ascertained, this is the first study to report 

concentrations of Angiopoietin-1 (Ang-1) and the anti-angiogenic factor Endostatin in saliva.   

 

In the second aspect of this thesis, an immunohistochemistry study was carried out to 

examine whether various measures of vascularity can be used as direct evidence of 

angiogenesis taking place in periapical granulomas (PG) in comparison to healthy 

periodontal ligament (PDL).  The broad aims were to: (i) quantify vascularity in PG using 

different endothelial markers and assess its value as an index of angiogenesis by comparing 

PG with healthy PDL; (ii) quantify MSF expression in PG and healthy PDL and investigate 

whether there is a correlation between MSF expression and vascularity. 
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Historically, the oral cavity has been regarded as being isolated from the systemic system, 

however, it is known that patients with generalised deep periodontal pocketing have large 

areas of ulcerated pocket walls potentially open to the systemic circulation (Offenbacher et 

al., 1996, Hujoel et al., 2001, Park et al., 2017).  In essence, immediately adjacent to the 

ulcerated periodontal pocket walls is a large chronically inflamed soft tissue wound, i.e. the 

underlying periodontal connective tissue.  Due to the highly vascular nature of the inflamed 

periodontal soft tissues, various inflammatory mediators, growth/angiogenic factors and 

bacteria can readily enter the systemic circulation.  Currently there is great interest regarding 

the relationship between periodontal disease and systemic health, and there is increasing 

evidence that periodontal inflammation may contribute to systemic inflammation (D'Aiuto et 

al., 2013, Pink et al., 2015).  For example, several studies have associated periodontitis with 

increased systemic levels of factors including C-reactive protein (CRP), IL-1β, IL-2, TNFα 

and IFN-γ (Noack et al., 2001, Gorska et al., 2003, Paraskevas et al., 2008) (Chapter 1.6.4). 

Therefore, systemic over spill from periodontal inflammation may acerbate various chronic 

systemic diseases, which are also known to have altered angiogenic-mediated responses, 

such as diabetes mellitus (Khader et al., 2006, Nascimento et al., 2018), cardiovascular 

disease (Genco et al., 2002, Janket et al., 2003, Bahekar et al., 2007, Carrizales-Sepulveda et 

al., 2018) and rheumatoid arthritis (Kaur et al., 2013, Fuggle et al., 2016).   

In this thesis, each study group was sub-divided into periodontally healthy subjects (sub-

group A) and those with severe periodontitis (sub-group B) to ascertain whether periodontal 

inflammation (periodontitis) resulted in significant changes in the serum and salivary 

concentrations of each angiogenic factor.  Unexpectedly, no evidence was found that severe 

periodontitis resulted in significant changes to serum or salivary levels of Ang-1, MSF, 

VEGF or endostatin in comparison to periodontal health.  The only exception was with the 

unstimulated salivary concentrations of VEGF, which were found to be marginal 

significantly higher in severe periodontitis (p=0.052), once outliers had been removed.   

It had been anticipated that periodontal inflammation, associated with severe periodontitis, 

would result in the increased release of pro-angiogenic factors, such as Ang-1, MSF and 

VEGF, which would be reflected in significantly higher concentrations in serum and saliva.  

This hypothesis is based on several studies which have reported significantly increased 
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VEGF levels in serum (Pradeep et al., 2011, Turer et al., 2017), GCF (Booth et al., 1998, Lee 

et al., 2003, Guneri et al., 2004, Prapulla et al., 2007, Pradeep et al., 2011, Padma et al., 2014, 

Sakallioglu et al., 2015, Zhu et al., 2015, Pannicker and Mehta, 2016, Turer et al., 2017, 

Romano et al., 2018, Afacan et al., 2019, Tayman et al., 2019) and in unstimulated saliva 

(Booth et al., 1998) in periodontitis compared to periodontal health.  Furthermore, studies 

have demonstrated that the reduction in periodontal inflammation following successful non-

surgical periodontal therapy is associated with a significant reduction in serum VEGF levels 

(Pradeep et al., 2011, Turer et al., 2017).  These findings support the view that periodontal 

inflammation could have a negative impact on systemic health and successful periodontal 

therapy may have some degree of systemic benefits.  However, several studies have either 

reported no significant difference in serum VEGF concentrations in periodontitis compared 

to periodontal health (Widen et al., 2016, Tayman et al., 2019) or even reduced 

concentrations (Zhu et al., 2015).  Furthermore, there is little data in the literature to indicate 

whether levels of angiogenic inhibitors, such as endostatin, are significantly changed in 

severe periodontitis compared with periodontal health.  Therefore, the true relationship 

between periodontal and systemic health still requires further research. 

In the present study, VEGF concentration in unstimulated saliva was found to be marginally 

significantly higher in severe periodontitis compared with healthy controls.  This finding was 

consistent with two previous studies (Booth et al., 1998, Wu et al., 2018), with Wu et al. 

(2018) also reporting a non-significant increase in VEGF levels in unstimulated saliva in 

periodontitis.  Booth et al. (1998) hypothesised that raised levels of VEGF produced in 

periodontal inflammation overspilled into the saliva via the GCF.  This hypothesis has been 

supported by subsequent evidence from immunohistochemistry studies which reported 

increased VEGF and VEGFR2 expression in periodontitis, (Johnson et al., 1999a, Artese et 

al., 2010, Vladau et al., 2016).  Currently, there is insufficient evidence from the data from 

this thesis or the literature to extend the assumption that all pro-angiogenic factors, such as 

Ang-1 and MSF concentrations in serum and saliva are raised in periodontitis.  In fact, an 

ELISA study by Lester et al. (2009), which examined a range of inflammatory mediators and 

angiogenic factors in gingival tissue from extracted teeth, reported that tissue level Ang-1 

concentrations were significantly lower in severe periodontitis compared with periodontal 

health.  As expected, the concentrations of other factors, such as VEGF, were found to be 
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significantly raised in severe periodontitis.  This group hypothesised that the reduced Ang-1 

levels in periodontal disease promoted inflammation through reduced inhibition of VEGF 

and endothelin.  Therefore, it is likely that there is a dynamic and time-related relationship 

between the concentrations of various pro-angiogenic factors in periodontal disease, which 

is influenced by the inflammatory state, the nature of the underlying extracellular matrix and 

the presence of inhibitors, such as endostatin.  

Like diabetes, there is substantial evidence that smoking is a major risk factor for both 

reduced wound healing capacity (Silverstein, 1992, Towler, 2000) and increased risk of 

periodontal disease (Bergstrom, 1989, Grossi et al., 1994, Tomar and Asma, 2000, 

Bergstrom, 2003, Zeng et al., 2014) (Chapter 1.7).  Smoking results in changes to the 

regulation of the periodontal vasculature (Chapter 1.7.3.3) (Bergstrom and Preber, 1986, 

Bergstrom et al., 1988, Mirbod et al., 2001, Scardina and Messina, 2005) and reduced 

periodontal tissue inflammation (Chapter 1.7.3.1) (Pauletto et al., 2000, Rezavandi et al., 

2002) resulting in reduced bleeding on probing (Bergstrom and Floderus-Myrhed, 1983, 

Preber and Bergstrom, 1985, Dietrich et al., 2004).  Furthermore, smoking has been shown 

to be associated with impairment of both gingival and periodontal ligament fibroblast 

function and has toxic effects on endothelial cell function (Silverstein, 1992, Tipton and 

Dabbous, 1995, Tanur et al., 2000).  Although nicotine itself has been shown to have 

angiogenic characteristics, overall the multiple toxic constituents within smoke inhibit 

angiogenesis (Buduneli and Scott, 2018).  Evidence of the inhibitory effect of smoking on 

angiogenesis in periodontal tissues has been suggested by the lack of increased gingival 

vascularity in smokers with periodontitis compared with non-smokers (Rezavandi et al., 

2002) (Chapter 1.7.3.3).  Contrary to the findings of these vascularity studies, significantly 

raised concentrations of VEGF in serum (Kimura et al., 2007, Ugur et al., 2018) and FGF-2 

in unstimulated whole saliva (Ishizaki et al., 2000) have been reported in smokers compared 

with non-smokers.   

In the present study, there were no significant changes in serum concentrations of Ang-1, 

MSF or VEGF in smokers compared with healthy never-smoking controls.  However, there 

were indications that smoking may result in reduced angiogenic factor levels in periodontal 

health in both serum and saliva (non-significant).  Interestingly, a significant reduction in 
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serum endostatin concentrations was found in the smokers.  This finding differs from 

previous studies which reported no significant difference in serum endostatin concentrations 

between smoking and non-smokers (Iribarren et al., 2006, Liu et al., 2015).  Furthermore, 

when the relative levels of the angiogenic factors (Ang-1, MSF and VEGF) were compared 

with endostatin, which may give an indication of the angiogenic conditions, the only 

significant finding was the relative Ang-1 to endostatin concentration was significantly raised 

in the smoking group.  A possible explanation for these findings could be that the subjects in 

this study were generally not undergoing any significant systemic angiogenic events at the 

time of sampling, including the possibility that any angiogenic changes associated with 

severe periodontitis may have reached a chronic homeostatic stage and were not significantly 

affecting the systemic levels of these factors.  Therefore, the relative levels of systemic 

endostatin to VEGF and MSF could have reached low maintenance levels, effectively turning 

off the angiogenic switch.   The reduced systemic levels of endostatin and increased Ang-1-

endostatin ratio found in this study, appears to be counter-intuitive in terms of the reported 

suppressed vascular reaction in the inflamed gingival tissues of smokers.  However, the 

overall increase in the number of small calibre and tortuous nature of the gingival vessels in 

smokers may indicate suppressed vessel development (Mirbod et al., 2001, Scardina and 

Messina, 2005).  A possible explanation for this could be due to the reduced inflammatory 

cell infiltration into the gingival tissues in smokers (Pauletto et al., 2000, Rezavandi et al., 

2002).  This would lead to lower levels of pro-inflammatory mediators and angiogenic 

factors, such as VEGF, being released from the inflammatory cells locally into the gingival 

tissue.  Evidence for reduced angiogenic activity due to reduced PMN-induced VEGF 

activity has been reported in a study in mice (Hao et al., 2007).  These additional angiogenic 

factors released locally within the gingival tissue may be required for continued vascular 

development.  Essentially, the results of the present study provide further evidence that 

smoking leads to dysfunctional regulation of angiogenesis, which may contribute to 

increased risk of periodontal disease progression and reduced oral wound healing. 

 

Altered angiogenesis is widely thought to be one of the mechanisms by which chronic 

hyperglycaemia in diabetes results in poor wound healing (Chapter 1.8.3.3) (Goodson and 

Hung, 1977, Bohlen and Niggl, 1979, Rasul et al., 2012).  In the present study, no significant 
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differences were found in serum concentrations of Ang-1, MSF, VEGF or endostatin between 

the diabetes group and healthy controls, which is consistent for previous studies regarding 

serum concentrations of Ang-1 and VEGF (Gui et al., 2013, Zeng et al., 2013, Yeboah et al., 

2016).  However, several studies have reported significantly raised serum VEGF levels in 

Type 2 diabetes in comparison with healthy controls (Ozturk et al., 2009, Mahdy and Nada, 

2011, Shao et al., 2016, Nalini et al., 2017).  Potential reasons for the difference in the 

findings in the VEGF levels may relate to the size of the study cohorts, differences in 

glycaemic control, genetic factors, age-related factors, co-morbidity, poly-pharmacy and 

differences in laboratory protocols. 

 

Interestingly in the present study, once an extreme outlier was removed from the dataset, 

serum Ang-1 concentration was found to be significantly lower in the diabetes group 

compared with the healthy controls.  If this is the case, a possible hypothesis for this outcome 

could be related to Ang-1 being an angiogenic factor principally involved in the later stages 

of angiogenesis and in vessel maintenance in quiescent vessels (Chapter 1.5.3.2).  Therefore, 

as diabetes is associated with prolonged and dysfunctional angiogenesis, associated with 

exacerbated inflammation, it would be expected that there would be a low requirement for 

Ang-1.  Alternatively, systemic Ang-1 concentrations may be unchanged compared to 

healthy controls, but is reduced in relation to other factors, such as Ang-2 and VEGF, 

systemic levels of which have been shown to be raised Type 2 diabetes (Lim et al., 2005).  

Ang-2 is thought to be a competitive inhibitor for Ang-1, through binding to the Tie2 

receptor, and is important in vessel disruption required early in angiogenesis (Maisonpierre 

et al., 1997, Gale et al., 2002, Bogdanovic et al., 2006).  Indeed, increased ratios of Ang-1 to 

Ang-2 have been reported in subjects with diabetes, compared with healthy controls, in 

plasma (Lim et al., 2004, Lim et al., 2005, Yeboah et al., 2016)  and in serum (Chen et al., 

2015, Li et al., 2015).  Similar findings have been reported in diabetic mouse wound healing 

models, where diabetic wounds are associated with prolonged periods of raised Ang-1 to 

Ang-2 ratios, suppressed levels of VEGF and reduced endothelial cell numbers (Kampfer et 

al., 2001).  Similar studies have also shown that therapeutic use of Ang-1 results in enhanced 

wound healing associated with faster re-epithelialisation, increased levels of angiogenesis 

and blood flow (Cho et al., 2006, Balaji et al., 2015).  This raises the possibility of using 
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Ang-1 to promote wound healing in patients with diabetes, although there are currently 

concerns regarding potential side effects and the risk of promoting tumour progression (Koh, 

2013).  

 

The Ang-1 and VEGF serum concentrations in the diabetes group, in the present study, did 

not reflect the corresponding salivary concentrations.  Unfortunately, it was not possible to 

quantify salivary concentrations of MSF and endostatin.  Although no significant differences 

were found in salivary concentration of Ang-1, significantly raised salivary VEGF 

concentrations (stimulated and unstimulated saliva) were found in the diabetes group.  This 

finding is consistent with other studies, which have reported significantly raised VEGF 

concentrations in unstimulated whole saliva in subjects with diabetes in pregnancy (Surdacka 

et al., 2011) and older subjects with denture stomatitis (Radovic et al., 2014).  However, the 

present study is the first to report raised VEGF concentrations in both unstimulated and 

stimulated saliva in diabetes.    

 

Currently, there have been surprisingly few studies which have examined angiogenic factor 

levels in human saliva in diabetes.  Significant raised salivary concentrations of epidermal 

growth factor (EGF) and transforming growth factor-beta1 (TGF-β1) have been reported in 

subjects with diabetes (Astaneie et al., 2005, Bernardi et al., 2018), although Oxford et al. 

(2000) reported significantly reduced salivary concentrations of EGF in diabetes. Whilst a 

recent study reported no significant differences in salivary concentrations of nerve growth 

factor (NGF) in diabetes (Tvarijonaviciute et al., 2017).  Therefore, work is required to 

ascertain to what extent the salivary angiogenic profile is altered in diabetes. Another 

consideration is whether the reduced salivary flow in diabetes (Lopez-Pintor et al., 2016), 

which could influence salivary concentrations levels, and other confounding factors, such as 

side effects of medication, account for any differences found.  

Another risk factor associated with reduced healing capacity is age (Guo and Dipietro, 2010), 

although in healthy, older subjects this manifests as delayed healing without affecting the 

quality of healing (Gosain and DiPietro, 2004).  However, medical conditions and medication 

are more likely to negatively affect oral wound healing in older subjects than age itself.  One 

possible reason for delayed oral wound healing in older people could be due to changes to 
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the angiogenic content of saliva, in addition to reduced flow rates associated with advanced 

age and medication (Affoo et al., 2015).  Age related changes in salivary concentrations of 

angiogenic factors have previously been reported, for example, stimulated saliva levels of 

FGF-2 were found to be significantly higher in non-smoking young individuals compared to 

middle-aged, who in turn had significantly higher levels than the elderly (Westermark et al., 

2002).  A significant but weak negative correlation with NGF and age in stimulated saliva 

has also been reported (Nam et al., 2007).  In the present study, significant positive 

correlations were found between age and salivary concentrations of Ang-1 (unstimulated) 

and VEGF (both stimulated and unstimulated).  A similar finding was previously reported in 

a small study which examined unstimulated saliva concentration in VEGF (Upile et al., 

2009).  With regards to VEGF, it has been shown that it is produced in both major and minor 

salivary glands (Taichman et al., 1998).  Evidence from a small immunohistochemistry study 

found VEGF expression in human minor salivary glands was not significantly affected with 

increasing age (de Oliveira et al., 2002).  Currently, there are no studies which provide 

evidence to whether Ang-1 is produced in healthy human salivary glands, if so, whether its 

production is influenced by increasing age.  With regards to the findings of the present study, 

one possibility is that the increased unstimulated saliva concentrations of Ang-1 and VEGF 

may reflect the reduced submandibular and sublingual salivary flow rates associated with old 

age (Affoo et al., 2015).  However, this does not account for the raised concentrations of 

VEGF in stimulated saliva with age as evidence shows that stimulated saliva production is 

not significantly reduced with increasing age.  A possible explanation is that the diabetes 

study group accounts for a larger proportion of the older subjects in the study, who may also 

be on multiple medications, which could reduce the saliva flow and hence increase the Ang-

1 and VEGF concentrations in saliva.  Furthermore, other factors which potentially affect 

saliva flow could also influenced the results such as depression, stress and anxiety which 

were not formally taken into account in the study criteria (Bergdahl and Bergdahl, 2000, Tan 

et al., 2018).   Further work could assess salivary flow rates and total protein levels to allow 

these factors to be taken into account when assessing the concentrations of angiogenic factors 

in saliva.  

Angiogenesis is a complex and dynamic process influenced by the presence of angiogenic 

factors, inhibitors and by the context of the underlying extracellular matrix.  A common 
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assumption is that the detection of angiogenic factors, in itself, provides evidence of 

angiogenesis taking place at that time.  Angiogenesis cannot be measured directly in human 

lesions, but can be inferred by measuring indices of angiogenesis (e.g. angiogenic factor 

expression and vascularity) in both the lesion of interest and its normal tissue counterpart 

(Davey et al., 2008).  PGs are chronic inflammatory lesions, partially derived from the PDL, 

and in common with other oral granulomatous lesions, such as pyogenic granulomas, it is 

widely presumed that the PG capillary networks arise by angiogenesis (Bragado et al., 1999, 

Yuan et al., 2000b, Freitas et al., 2005, Seyedmajidi et al., 2015).  Several studies have 

reported angiogenic factor expression in PG, often in comparison with other periapical 

lesions such as periapical cysts, but not with the healthy PDL, including FGF-2, TNF-α, TGF-

α, TGF-β1 and VEGF, as well as Epidermal Growth Factor Receptor (EGFR) (Lin et al., 

1996, Tyler et al., 1999, Danin et al., 2000, Leonardi et al., 2003, Moldauer et al., 2006, 

Nonaka et al., 2008, Andrade et al., 2013, Virtej et al., 2013, Fonseca-Silva et al., 2012, Vara 

et al., 2017, Alvares et al., 2018, Kudo et al., 2018).   

In this thesis, three different vascular indices (MVV, a-MVD and h-MVD) were used to 

investigate whether the combination of PG along with its healthy counterpart, the PDL, could 

provide direct evidence of angiogenic activity in the same way as the established NOM-

OSCC (positive control) model (Davey et al., 2008).  However, no significant differences in 

vascularity and similarly low levels of expression of MSF were found in PG and PDL tissues, 

suggesting that little angiogenic activity was taking place in the PG lesions at the time of 

biopsy.  In contrast, significantly higher vascularity indices were found in OSCC compared 

to NOM, indicating that angiogenesis had occurred in the development of the OSCC.  

Interestingly, high levels of MSF staining were found in both OSCC and NOM tissues, 

probably due to field cancerisation/change effects in the seemingly histologically normal oral 

mucosa adjacent to OSCC.  Evidence from several studies suggest that peri-tumour NOM 

does not always reflect the findings in true healthy oral mucosa, for example, peri-tumour 

NOM from oral cancers has been reported to have raised or significantly higher vascularity 

than healthy oral mucosa  (Carlile et al., 2001, El-Gazzar et al., 2005a, Margaritescu et al., 

2010).   
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A further element of this study was the use of CD105 (endoglin), which had been reported 

to be a specific angiogenic vessel marker in tumours (Burrows et al., 1995, Duff et al., 2003, 

Nassiri et al., 2011), including OSCC (Schimming and Marme, 2002, Schimming et al., 2004, 

Margaritescu et al., 2010, Nair et al., 2016, Patil et al., 2018, Silva et al., 2018).  Furthermore, 

high expression of CD105 in tumours has been associated with poor prognosis, being more 

informative than pan-endothelial markers (Kumar et al., 1999, Tanaka et al., 2001, Chien et 

al., 2006, Kyzas et al., 2006).  CD105 expression has previously been reported in periapical 

lesions (Tasman et al., 2000, Davey et al., 2008, Lima et al., 2011, Estrela et al., 2019), with 

Davey et al. (2008), the publication relating to this thesis, being the first to quantify 

angiogenic activity using CD105 expression in periapical granulomas (PG).   

In the present study, the staining profile of CD105 in PG-PDL tissues was very similar to the 

pan-endothelial marker von Willebrand Factor (vWF) suggesting that either there was high 

angiogenic activity in both the PG and PDL tissues or that CD105 does not act as a specific 

angiogenic marker in these tissues.  This finding is consistent with Balza et al. (2001) who 

reported positive CD105 vascular staining in various types of normal human tissue.  This is 

in contrast to Lima et al. (2011) who reported significantly higher CD34, another pan-

endothelial marker, vascular staining compared with CD105 in PG and periapical cysts.  They 

concluded that the differential staining between the two vascular markers provided evidence 

that angiogenesis had taken place, despite the fact there was no differences in the vascular 

indices used (h-MVD and microvascular area) and healthy PDL had not been used as a 

control tissue.  Therefore, there is some dubiety as to whether CD105 is a true angiogenic 

marker in PGs and further work is required.  A possible hypothesis to explain the findings of 

the present study is that CD105 staining is associated with high tissue turnover or some other 

intrinsic characteristic of PGs rather than angiogenic activity (Davey et al., 2008).  

A possible explanation for the low angiogenic activity found in the present study could be 

due to PG being chronic static lesions and angiogenesis had occurred at an earlier stage in 

their formation.  Whether angiogenesis is reactivated in PG which subsequently progress to 

form periodontal cysts, has yet to be ascertained.  In reality, such developmental studies could 

only be carried out in animal models where periapical lesions can be induced.  But, the 

findings of this thesis raises the question as to whether the expression of angiogenic factors 
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in periapical lesions alone, which is commonly used in the literature, is sufficient evidence 

of angiogenic activity.  For example, the expression of angiogenic factors may be counter-

balanced by angiogenic inhibitors or the context of the ECM.  

Overall, the protocols and strict patient selection criteria used in this thesis have attempted to 

counteract issues such as previous smoking and diurnal variation when collecting saliva 

samples, which were not accounted for in several papers in the literature.  However, several 

issues and limitations were encountered in this thesis.  With regards to limitations of the 

methodologies used in this thesis, perhaps the most significant was the assumption that the 

detection of various angiogenic factors, either using ELISAs or by immunohistochemistry 

methods, indicates that angiogenesis is taking place.  This is mainly due to the complex time-

critical and environment-related nature of angiogenic activity, where the relative levels of 

angiogenic factors, presence of inhibitory factors and the nature of the extracellular matrix 

could have an impact on angiogenic activity.  As shown in this thesis, the use of vascular 

indices in immunohistochemistry studies can be used, in conjunction with angiogenic factor 

expression, to provide direct evidence of angiogenesis.  However, it would be extremely 

difficult to use such techniques directly in relation to ELISA studies using clinical samples.   

A logistical limitation encountered during this study was the time taken to recruit sufficient 

numbers of subjects, approximately 2 years, taking into account the strict selection criteria 

(Chapter 2.1.1, 2.1.2 and 2.1.3) and the requirements of the ethics committee approval.  

Furthermore, difficulty was encountered in engaging colleagues to help recruit patients, 

which compounded the time taken to collect the clinical samples.  Therefore, it was necessary 

to store samples in non-stick Eppendorf tubes at -80oC for a significant period of time prior 

to assaying.  Although, there was no evidence of significant degradation of factor levels 

during storage, it cannot be ruled out that this may have taken place to a certain extent.  

Another issue related to the recruitment was the initial intention to have sufficient numbers 

of subjects with diabetes to allow statistical analysis both in terms of the entire diabetes group 

and in terms of Type 1 and Type 2 diabetes.  Unfortunately, only a very small number of 

Type 1 diabetics were recruited, so statistical analysis could only be performed on the entire 

diabetes group.  In future studies, measures would be taken to have better staff engagement 

in recruitment and perhaps in taking the clinical samples.  Although, calibration procedures 
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would need to be implemented to ensure consistency in approach, especially regarding the 

recording of the periodontal clinical data. 

Another consequence of the difficulties in recruiting subjects for this study, was the uneven 

size of the study groups. For example, the periodontally healthy control sub-group was 

significantly larger than the other sub-groups due to the availability of these subjects within 

the department. However, the size of the study sub-groups were all above the sample sizes 

required by the power calculation to allow statistical analysis (Chapter 2.1.4).  As far as 

possible factors such as age and gender were accounted for during recruitment, however, 

there was a bias for older men (>60 years old) in the diabetes group, due to the nature of the 

condition.  Furthermore, due to the demographics of the local population the majority of 

subjects were white Scottish, with few subjects from ethnic minorities.  Studies have 

suggested the ethnic/genetic variation may affect systemic angiogenic factors levels, for 

example, systemic levels of angiogenin were found to be significantly higher in healthy 

subjects of black or South Asian origin compared with white Europeans (Bennett et al., 

2013).  No significant differences were reported in a similar study for systemic levels of 

VEGF, Ang-1 and Ang-2 between subjects of South Asian origin and white Europeans 

(Jaumdally et al., 2007).  Currently, there is no evidence to suggest that ethnicity is likely to 

have affected the angiogenic factor levels studied in this thesis, although further research is 

required in this area.  Another consideration is even though strict selection criteria were 

applied, other confounding factors may have influenced the angiogenic factor levels, such as 

stress, other medication or alcohol, although basic alcohol histories were recorded.  The 

influence of such confounding factors could be investigated in future studies.  Furthermore, 

it has to be recognised that the accuracy of the patient data regarding their smoking and 

alcohol intake is likely to be unreliable (Rebagliato, 2002, Stockwell et al., 2004).  

With regards to the use of ELISAs for detecting angiogenic factors in clinical samples, there 

are a number of limitations.  Firstly, as stated above, the detection of factors assumes that 

these factors are biologically active, when this may not be the case.  Secondly, the antibodies 

in the ELISA kits may not detect all the angiogenically active isoforms and breakdown 

products of the parent angiogenic factor, and so, underestimating the true angiogenic levels.  

For example, fragments of MSF have been shown to have biological activity in tissue culture 
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studies, with regards fibroblast migration, but may include angiogenic activity (Ellis et al., 

2010).   

A significant limitation with the endostatin and MSF ELISAs used in the present study was 

the limit of detection (LOD) was insufficient to detect these factors, assuming these factors 

were present, in the saliva and GCF samples.  There was some evidence to suggest that these 

factors were likely to be present in these fluids because detectable levels, albeit at the limit 

of detection of the ELISAs, were found in some samples.  Furthermore, GCF samples did 

result in positive fibroblast activity in the migration assay, however, it was not confirmed 

that this was specifically due to MSF, which would require the use of a MSF inhibitor.  

Furthermore, the commercial endostatin ELISA kit had been optimised for use with a wide 

range of human fluids, including saliva, this was not fully the case with the in-house MSF 

ELISA.  Although the MSF ELISA did undergo optimisation prior to use with the saliva 

samples, there was an continued issue of relatively high background noise, which was not 

encountered with the commercial ELISA kits.  This may indicate an issue with high levels 

of non-specific binding, which has previously been reported with commercial ELISA kits 

which had not been specifically optimised for use with saliva (Matin et al., 2016).  In the 

Matin et al. (2016) paper, high levels of non-specific binding in a commercial NGF ELISA 

kit was thought to be due to the presence of a heterophile antibody in the saliva samples.  

Non-specific binding issues have also been reported as being a common issue potentially 

affecting many ELISAs, especially when assaying serum samples for subjects with 

autoimmune conditions, such as rheumatoid arthritis (Terato et al., 2016).  Another issue with 

the MSF protocol was the necessity to use an unaliquoted stock sample of MSF capture 

antibody, which is likely to have degraded during storage leading to increasing background 

noise and limiting detection.   

GCF samples are often studied as a relatively non-invasive method to ascertain factor levels 

in the underlying periodontal tissues (Wassall and Preshaw, 2016).  In this study, it had been 

planned to assess the relationship between salivary and GCF concentrations of MSF in 

periodontal health and severe periodontitis, and to study the effect of smoking and diabetes. 

Furthermore, the relationship between MSF levels in GCF and MSF expression in healthy 

PDL samples would also be examined. To date, there have been no studies which have 
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reported MSF concentrations in either GCF or saliva.  One of the most disappointing issues 

related to this thesis was that the LOD of the MSF ELISA was insufficient to detect MSF in 

the GCF samples, if present, which was made worse by the high dilution required as part of 

the eluting process.  Significant time and effort was taken to collect the GCF, calibrate the 

Periotron 8000, calculate GCF volumes, process and store the GCF samples.  Although there 

was some indication that there may be MSF present in saliva, as shown by a small number 

of positive samples, it is uncertain whether MSF is any present in GCF.  Unfortunately, too 

much of the valuable GCF samples had been used and the other factor ELISA kits were out 

of date, so it was not possible to assay the remaining samples.  Furthermore, the detailed 

periodontal data required for the GCF element of this study could not be utilised beyond 

confirming that the study subgroups were either periodontally healthy (sub-group A) or 

severe periodontitis (sub-group B).  Previous studies have indicated that human gingiva 

contains sub-populations of MSF-producing gingival fibroblasts (Irwin et al., 1994), so it 

would be of interest to ascertain whether MSF was detectable in periodontal health and 

disease.  In order for such a study to be carried out in the future the limit of detection of the 

MSF ELISA would need to be significantly improved, probably by converting the assay from 

the current chromogenic ELISA to either fluorescence, or even better, to chemiluminescence.  

Further optimisation of the assay would also be required to ensure there was no cross 

reactivity with other proteins within saliva, and so, reduce the background noise. 

One of the challenges encountered in analysing the angiogenic factor levels in the clinical 

samples was determining whether there were any extreme outliers in the dataset, these are 

often defined as three or more times the standard deviation (Southworth, 2012).  As expected 

from previous studies, there were large variations in the individual angiogenic factor levels 

found.  However, where previous data was available the angiogenic factors levels (mean and 

standard deviations) in the present study were consistent with the literature.  The issue of 

identifying extreme outliers in the data, which may have a disproportionate effect on the 

outcome, and determining whether such data should be either retained or removed was made 

in conjunction with a statistician.  Outliers can result from laboratory or data transcription 

errors, or from patients who genuinely have unusual levels of factors, for example, as the 

result of an undiagnosed condition (Southworth, 2012).  In order to comply with research 

integrity protocols the full dataset was used throughout the present study, only when extreme 
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outliers were identified using diagnostic statistical methods (Studentized residuals of >3 

and/or Cook’s distance >1), were a small number of samples removed (Field, 2018).  

Although a potential issue with the removal of extreme outliers is that they may represent a 

genuine proportion of subjects in the wider population, which may warrant their inclusion, 

however, to do so would significantly affect the overall statistical analysis. 

Following the outcome of this thesis, many questions still remain.  Further studies could 

include the further development of the MSF ELISA, as previously discussed, by converting 

the assay to chemiluminescent ELISA to increase the sensitivity.  This would allow 

verification of whether MSF is present in saliva and GCF.  Furthermore, the relative levels 

of MSF in serum and oral fluids could be compared with the MSF inhibitor Neutrophil 

Gelatinase-Associated Lipocalin (NGAL) (Jones et al., 2007), especially as commercial 

ELISA kits for NGAL are now widely available.  In the intervening time since the laboratory 

work for this thesis was completed, the sensitivity of commercial ELISAs has improved, 

which may allow verification of whether endostatin is present in saliva.  Furthermore, the 

development of multiplex immunoassays systems now facilitate simultaneous assaying of 

several pro- and anti-angiogenic factors, as well as inflammatory markers, using small 

volumes of clinical samples.  Such studies would allow the relative comparison of these 

factors to be investigated, which may provide additional insight into the enhanced healing 

capacity of oral soft tissues and the changes associated with the development of periodontal 

disease.  Furthermore, this work could ascertain whether the angiogenic balance is 

significantly affected by risk factors such as poorly controlled diabetes, smoking and alcohol 

consumption.  Currently, there have been very few studies which have examined the relative 

levels of angiogenic factors in periodontal health and disease, especially with regards to the 

relative levels of Ang-1, Ang-2 and endostatin in comparison with known key angiogenic 

factors such as VEGF.  Unfortunately, multiplex immunoassays are expensive, so such work 

would require substantial grant funding and the collection of further clinical samples.  

However, such studies do not take into account the nature of the extra-cellular matrix, which 

would require cell culture studies, which were beyond the scope of this thesis.   

Currently, there are significant gaps in the literature regarding the relative expression of 

factors such as Ang-1, Ang-2, MSF and endostatin in both periodontal health and 
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periodontitis, and in normal human salivary gland tissue.  Currently, there have been few 

studies which have related angiogenic factor expression in oral tissues to the levels detected 

in serum and in oral fluids. Immunohistochemistry studies, including the use of vascular 

indices to provide direct evidence of angiogenic changes, could be carried out if it was 

possible to obtain sufficient numbers of gingival and normal salivary gland tissue biopsies.  

In-situ hybridisation studies could establish whether these factors are manufactured in normal 

salivary gland tissue and, if so, by which cells.  

Although the power calculations for the current study showed that there was sufficient 

number of subjects, and the group sizes were comparable with similar studies in the literature, 

there were non-significant trends found in the data, such as reduced angiogenic factor levels 

in several of the factors studied in periodontally healthy smokers.  Further studies could 

specifically examine angiogenic factor levels in serum, saliva and GCF between smokers and 

never smokers in periodontal health and severe periodontitis in larger numbers of subjects to 

help to establish whether there are any significant findings.  

In this thesis several factors, both pro- and anti-angiogenic, thought to be important in the 

regulation of oral wound healing, have been examined in periodontal health and in severe 

periodontitis. Evidence from this thesis has shown that risk factors known to cause 

dysfunctional angiogenesis, namely diabetes and smoking, can affect both pro- and anti-

angiogenic factor concentrations both systemically and in saliva.  However, the study of 

angiogenesis is complex involving the time-related interaction of multiple angiogenic, 

growth and inflammatory factors, as well as contextual factors related to the underlying 

extracellular matrix.  Saliva is a complex fluid containing a vast array of other biologically 

active molecules, which may also play an important part in oral wound healing, in addition 

to factors intrinsic to the oral soft tissues (Chapter 1.5).  This thesis has also raised the issue 

that the expression or measurement of angiogenic factors levels does not provides evidence 

that angiogenesis has taken place and proposes that, where possible, vascular indices can be 

used to provide direct evidence of angiogenesis by comparing pathological tissue with its 

closest normal tissue.  Furthermore, caution needs to be taken when using supposed specific 

angiogenic markers, such as CD105, when using them to stain vessels in normal or non-

neoplastic lesions. 
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5.1.1 Summary of conclusions 

• No significant differences were found in serum and salivary concentrations of Ang-1, 

MSF, VEGF and endostatin between periodontal health and severe periodontitis. 

• Salivary levels of VEGF were significantly raised in diabetes. 

• Smoking significantly reduced serum endostatin levels. 

• Quantification of vascularity can provide evidence of angiogenesis in addition to the 

expression of angiogenic factors. 

• No evidence of angiogenesis was found in PGs. 

• CD105 did not act as a specific angiogenic marker in PGs or in healthy PDL tissues. 

 

5.1.2 Summary of further studies 

• Development of a chemiluminescent MSF ELISA. 

• ELISA studies to investigate the relationship between MSF and NGAL in serum and oral 

fluids in periodontal health and severe periodontitis. 

• Multiplex immunoassay studies to examine the complex relationship between pro-

angiogenic factors, inhibitors and inflammatory markers in serum and oral fluids in 

periodontal health and severe periodontitis. 

• Immunohistochemistry studies to examine the relative expression of angiogenic factors 

and inhibitors in oral tissues and correlate this to the levels in serum and oral fluids in 

periodontal health and severe periodontitis. 

• In-situ hybridisation studies to investigate whether angiogenic factors and inhibitors are 

manufactured in normal salivary gland tissue and, if so, by which cells. 
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Appendix 1 

Clinical study forms 

1) Tayside committee on medical research ethics approval. 

2) Clinical research study poster. 

3) Patient/volunteer information sheet. 

4) Clinical study – staff information sheet. 

5) Clinical study – consent form. 

6) Clinical study – data collection sheet. 
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2) 

 
Clinical Research Study. 

 

Are you interested in taking part in a clinical study which 

could help towards improving our understanding of how 

wound healing occurs within the mouth? 
 

If you are interested then please contact Kevin Davey on the 

3rd floor Periodontology clinic for details.   
 

The study would only require a single one hour visit on top 

of any periodontal treatment you may already be receiving. 

 

An inconvenience fee of £5 will be paid (+ travel expenses 

if applicable). 

 

This study is open to all students, staff & members of the 

public. 

 

Many thanks, 
 

Kevin Davey. 

Lecturer in Periodontology (Principal investigator), 

3rd Floor Periodontology clinic, 

Ext 35973 (clinic). 

Ext 35826 (office). 

k.j.davey@dundee.ac.uk 
Tayside Committee on Medical Ethics approval Ref 129/02. 
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 3)          Ed.140605 

Patient/Volunteer information sheet. 

Quantification of angiogenic factors in  

oral fluids and serum. 
 

We invite you to participate in a research project.  We believe it to be of potential importance.  However, 

before you decide whether or not you wish to participate, we need to be sure that you understand firstly why 

we are doing it, and secondly what it would involve if you agreed.  We are therefore providing you with the 

following information.  Read it carefully and be sure to ask any questions you have, and, if you want, discuss 

it with outsiders.  We will do our best to explain and to provide any further information you may ask for now 

or later.  You do not have to make an immediate decision. 

 

1) Background:- 

What are angiogenic factors? 

These are substances produced by the body, which are thought to be very important in the healing of wounds.  

We currently do not fully understand how these factors work in the body. 

 

Why are we looking for the amounts of angiogenic factors in the mouth? 

Nobody has previously measured the actual amounts of many of the angiogenic factors found in the mouth.  It 

has been known for many years that the mouth has exceptional powers of healing, often without scarring.  If 

we knew the amount of these angiogenic factors found in the mouths of healthy individuals it would allow us 

to compare it to the levels found in people we know to have poor healing such as diabetics & smokers.  

Eventually it may be possible to produce treatments to improve the healing in such patients.  The results from 

this study will be important in reaching this goal. 

 

What do we mean by oral fluids? 

Oral fluids includes:- 

i) Saliva - This is produced by salivary glands and is very important in the protection of the mouth, keeping 

the mouth moist, helping swallowing and in the digestion of our food.  A small amount of saliva is produced 

all the time, but it is produced in greater amounts during eating.  We would like to take samples of saliva at 

both times to see if it is an important source of angiogenic factors in the mouth.   

ii) Gingival crevicular fluid (GCF) - This is the fluid which continuously flows around the gum pockets and 

like saliva GCF is important in the protection of the gums from disease.  We would like to take samples of 

GCF also to see if it is an important source of angiogenic factors in the mouth. 

 

What is serum & why is it needed? 

Serum is the liquid part of normal blood after all the red & white blood cells have been removed from it in the 

laboratory.  We would like to see if the levels of the angiogenic factors in serum match the levels found in the 

oral fluids.  If this study found that this was the case then future studies could use oral fluid samples only to 

look at the levels of these angiogenic factors. 

 
Why have I been chosen for this study? 

As part of your normal periodontal examination we have found that you have fallen into one of two groups of 

patients which we are interested in for this study.  One group has people who are resistant to periodontal 

disease & have healthy gums.  The other group of people have active gum disease.  We are also interested in 

whether you are a smoker or a non-smoker & if you are healthy or suffer from diabetes.   Any differences 

found in the levels of the angiogenic factors between each group of people may allow us to understand more 

about how smoking and diabetes affects healing.  This may lead to improved treatments for these diseases in 

the future.  This study could also improve our understanding of how gum disease occurs & how we could 

improve the treatment of it.    
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2) What does the study entail?  
How are the samples taken? 

There are 2 types of saliva sample needed.  The first only involves spitting saliva into a small bottle for a 

short while.  The second saliva sample is the same but you would be also asked to move a small sterile marble 

around the mouth to increase the amount of saliva produced. 

Samples of GCF are taken by placing a small piece of special blotting paper into the gum crevice, between the 

gum & the teeth.  This is left there for 30 seconds.  This may be repeated a few times in several parts of the 

mouth.  

The dentist or a specially trained nurse would take about 2-3 tablespoons of blood from your forearm. 

After the samples have been taken a thorough examination of your gums will be carried out to accurately 

assess the condition of your gums.  This will be followed by a short questionnaire on how you thought the 

oral examination was done.  

Will the procedures be uncomfortable? 

The taking of the saliva & gingival crevicular fluid samples should be pain free with no after effects.  You 

may feel a little short term discomfort when the blood sample is taken.  It is also common to have a little 

bruising around the area where the blood was taken from.  This usually disappears after about a week or so 

with no long-term problems. 

As with any gum examination we would record your gum pockets using special gum probes & some patients 

may find this a little uncomfortable.  Any discomfort caused is minor & very short lasting.  We are interested 

in how comfortable you feel the gum probing procedure to be & we would ask you to fill in a short 

questionnaire so we can assess this.    

 

How many visits will it take? 

These samples would be taken during any additional appointments made for your routine periodontal 

treatment.  If you do not require to return for further treatment, your travel expenses would be paid for the 

extra appointment to collect the samples.  These samples would be collected by a clinical member of staff & 

not by the students. 

 

Will I need to do or not do anything immediately before the visit when the samples would be taken? 

Apart from not eating or chewing gum within 2 hours before the visit, there are no other restrictions.  After 

the visit you can carry on with your day as normal. 

 

Will this affect the dental treatment I receive? 

No, once these samples are taken normal routine periodontal treatment can be performed as required. 

 

Who do I contact if I have a problem? 

In the very unlikely event of a problem you should contact the Periodontology department directly on (01382) 

635973 & ask to speak to one of the dentists involved in the study. 

 

Why are diabetic patient’s Medical Practitioners/Diabetes clinic contacted for Glycosylated 

Haemoglobin (HbAC1) scores? 

It is known that the effects of diabetes tend to be more severe if your diabetic control is poor.  This 

includes your risk of having gum disease & poor wound healing.  By requesting your most recent 

Glycosylated Haemoglobin score it allows us to readily gauge your long term diabetic control which is 

important when we analyse the results of this study. 

3)  Confidentiality. 
Who will have access to my records? 

Your personal details will be kept strictly confidential.  Any personal details will be kept either in a locked 

cupboard or on a password-secured computer.  Only the clinical staff involved in the research will have 

access to your personal details, as would be the case during normal routine treatment.  Any published 

information would be coded & personal information will not be released to any external body. 

 

4) What are my rights? 
How can I obtain more information? 
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You can contact the Periodontology department & ask for more information from the clinical staff involved in 

the study.  We would be happy to answer any questions that you may have. 

 

Can I refuse to take part or change my mind later even if I agree to take part now? 

Yes, you are free to withdraw from the study at any point.  This will not affect the routine treatment which 

you normally receive in the department. 

 

Who has given permission for this study to go ahead? 

The Tayside Committee on Medical Research Ethics, which has responsibility for scrutinising all proposals 

for medical research on humans in Tayside, has examined the proposal and has raised no objections from the 

point of view of medical ethics. 

 
Participation in this study is entirely voluntary and you are free to refuse to take part or to withdraw 

from the study at any time without having to give a reason and without this affecting your future dental 

care or your relationship with the dental staff looking after you. 

 

Thank you for spending the time to read this information sheet.  Please ask any further questions you 

wish about any aspect of the study.   

 

Yours Sincerely, 

Dr Kevin Davey BDS BMSc MFDS RCS (Edin) (Dentist) 

Clinical Lecturer in Periodontology, 

University of Dundee Dental Hospital & School.  
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4) 
Quantification of Migration Stimulating Factor (MSF) in oral fluids and serum. 
Kevin Davey. 

 

(i) Aims of the study: 

➢ To quantify the levels of MSF in the oral fluids (Saliva/GCF) and in serum in 

periodontal health and disease. 

➢ To compare the levels of MSF found in smokers and non-smokers. 

➢ A preliminary study into the effects of diabetes on the levels of MSF. 

 

This study would: - 

i) Determine if the levels of MSF found in saliva/GCF change significantly between 

periodontal health & disease.  This could further our understanding of the role MSF 

in the maintenance of oral health and the changes that occur in periodontal disease. 

ii) If the levels of MSF found in subjects with known reduced healing potential, such 

as smokers & diabetics, is significantly changed this could lead to the therapeutic 

use of MSF to enhance periodontal healing.  

iii) If it is found that the levels of MSF in saliva/GCF correlates well with the levels of 

MSF found in serum, this could allow for large population studies of MSF using 

oral fluids rather than taking blood. 

 

(ii) Study groups / Inclusion criteria: 

➢ Three cohorts of patients will be studied.  Two groups (Groups 1 & 2) will contain 

systemically healthy patients.  Group 1 will also contain patients who have never 

smoked & Group 2 will contain patients who are current long-term smokers (>10 per 

day).  The third group (Group 3) will contain diabetic subjects.   

 

Medical criteria for Groups 1 & 2:  

➢ Clear medical/drug histories - including no: 

➢ NSAIDs / steroid creams. 

➢ Diabetes. 

➢ No recent antibiotics (last 3 months). 

➢ No recent periodontal treatment (within the last 6 months) – Will consider 3 months. 

 

Medical criteria for Group 3:  

➢ Patients with diabetes.  Each type of diabetes (Type 1 & 2) will be further divided into 

the Periodontally healthy & the Severe Chronic Periodontitis groups as above.  

➢ Type 1 diabetes 

➢ Periodontally healthy. 

➢ Severe Chronic Periodontitis. 

➢ Type 2 diabetes 

➢ Periodontally healthy. 

➢ Severe Chronic Periodontitis. 

 

➢ The level of long-term diabetic control will be assessed by the glycosylated 

haemoglobin. 
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Exclusion criteria: 

➢ No pregnant subjects will be accepted into the study: 

➢ Woman of child bearing age are to be specifically asked if they are likely 

to be pregnant. 

➢ Previous or irregular smoker. 

➢ Medical history where the recording of the clinical data / taking of the clinical samples 

would require extra pre-cautions 

➢ Patients requiring Antibiotic cover. 

➢ Patients with known infectious disease 

➢ Hepatitis B/C 

➢ HIV 

➢ Immuno-compromised patients. 

 

Sub-groups: - 

➢ Within each Group there will be two sub-groups (a and b).  Sub-group (a) will contain 

periodontally healthy patients & Sub-group (b) will contain patients with severe active 

periodontal disease (Chronic Periodontitis).  The sub-groups are defined as follows:- 

 

Sub-group 1: Periodontally healthy patients with no loss of attachment (LOA), periodontal 

probing depths  <3mm, minimal full mouth plaque scores (<15%) & minimal full mouth 

bleeding on probing scores (BOP) (<15%)11. 

 

Sub-group 2: Patients with evidence of severe Chronic Periodontitis (CP) with high full 

mouth plaque scores (>40%), significant LOA (>5mm), > 5mm periodontal probing depths 

(true pocketing) & generalised BOP (>40% full mouth bleeding scores)11. 

 

 

Summary of the study groups:- 

Group 1 - Systemically healthy / non-smokers. 

  1a - Periodontally healthy. 

  1b - Severe Chronic Periodontitis. 

 

Group 2 - Systemically healthy / Smokers. 

  2a - Periodontally healthy. 

  2b - Severe Chronic Periodontitis. 

 

Group 3 - Diabetic subjects (smokers & non-smokers including any medications) 

  Type 1 diabetes 

3a - Periodontally healthy. 

   3b - Severe Chronic Periodontitis. 

   

Type 2 diabetes 

3a - Periodontally healthy. 

   3b - Severe Chronic Periodontitis 
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Quantification of angiogenic factors in oral fluids and serum. 

 

CONSENT FORM 

 

NB. This form must be completed and signed by the research subject in the presence of someone 

with knowledge of the research designated by the Principal Investigator.  This may be a doctor, 

nurse, clinical research assistant or other member of the research team who must countersign 

the form as witness to the subject’s signature 

 

Please tick (✓) appropriate box 

 

Have you read and understood the Subject Information Sheet?    

 Yes  No  

 

Have you been given an opportunity to ask questions and further discuss this study?  

 Yes  No  

 

Have you received satisfactory answers to all of your questions?    

 Yes  No  

 

Have you now received enough information about this study?    

 Yes  No  

 

Who have you spoken to? Dr/Mr/Mrs/Miss  ……………………………………………………… 

 

Do you understand that your participation is entirely voluntary?    

 Yes  No  

 

Do you understand that you are free to withdraw from this study: 

 

At any time?          

 Yes  No  

 

Without having to give a reason for withdrawing?      

 Yes No  

 

Without this affecting your present or future medical care?     

 Yes  No  

 

Do you agree that your records in this research and supporting medical records be made available for 

inspection by monitors from: 

 

NHS Tayside monitors?         

 Yes  No  

 

Do you agree to take part in this study?       

 Yes  No  

 

Do you agree to any tissue (Blood, Saliva & Gingival Fluid) used in this 

study being retained for use in future research?     Yes  No  

 Not applicable  
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Diabetic patients only – Do you consent that your doctor / diabetic clinic can  

be contacted in order to obtain your glycosylated haemoglobin results?   

 Yes  No  

 

 

Subject’s signature ……………………………………………. Date ………………….………… 

 

Subject’s name in block capital letters ……………………………………………………………… 

 

Telephone contact (Subject)  …………………………….(Home)   …………………………..(Work) 

 

Signature witnessed by  ……………………………………… Date .…………………………… 

 

Witness name in block capital letters    …………………………………………………………….. 
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Study no …… 
6) 

Patient details for the clinical Angiogenesis study. 
 

Clinician:…………………………….. 

Date:…./…./…. 

Time samples taken …… am/pm. 

Patient filled in consent form  

 

Patient details: 

Age:………years. 

Sex: M/F. 

 

Smoking history: 

   Patient has never smoked:  

   Current smoker   

      How many packets smoked per day …… 

      How long for …… years. 

      Pack years ……… 

 

Checklist: 

➢ Medical history taken  

➢ Confirm not in exclusion category   

➢ Periodontal measurements: 

Full mouth plaque/bleeding scores  

Mobility chart  

Periodontal pocket chart  

 

Study group category: 

 

 Group 1 - Systemically healthy / non-smoker 

   1a - Periodontology healthy . 

   1b - Severe chronic adult periodontitis . 

 

 Group 2 - Systemically healthy / smokers 

   2a - Periodontally healthy . 

   2b - Severe chronic adult periodontitis . 

 

 Group 3 - Diabetic smokers/non-smokers 

   3a - Periodontally healthy . 

   3b - Severe chronic adult periodontitis . 

 

    Type 1 diabetic  

   Type 2 diabetic  
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Non-smoker  

   Smoker . 

 

 

➢ Periodontal diagnosis (1999) 

………………………………………………………………………………………………

………………………………………………………………………………………………

……………………………………………………………………………… 

 

 

➢ Clinical samples: 

➢ 10ml blood sample + labelled  

 

➢ Unstimulated saliva sample + labelled  

 

➢ Stimulated saliva sample + labelled  

 

➢ GCF samples taken from: 

 

i) Healthy sites (x4) 

     

Site Tooth (FDI) Site. Periotron reading 

1    

2    

3    

4    

5    

6    

7    

8    

  

 

ii) Diseased sites (x4) 

    

Site Tooth (FDI) Site. Periotron reading 

1    

2    

3    

4    

    

    

 

 

Time GCF samples taken …….. 

Time after samples taken before freezing ……… hrs. 
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Comments: 

 

➢ Relevant additional clinical information: 

………………………………………………………………………………………………

………………………………………………………………………………………………

………………………………………………………………………………………………

………………………………………………………………………………………………

…………………………………………………………………… 

 

 

➢ Problems encountered in taking the clinical samples: 

………………………………………………………………………………………………

………………………………………………………………………………………………

………………………………………………………………………………………………

………………………………………………………………………………………………

…………………………………………………………………… 

 

 

➢ Problems encountered in the laboratory procedures: 

………………………………………………………………………………………………

………………………………………………………………………………………………

………………………………………………………………………………………………

………………………………………………………………………………………………

…………………………………………………………………… 

 

 

Contact Kevin Davey: 

Office extension 35826 

8th Floor lab  35827 

Microscope room 35825 

10th Floor lab  35883 

 

 

 

 

 

 

 

 

 

 



376 
 

Appendix 2 

Summary of the demographic data for the clinical study 

 

 

 

Note: 

• Not possible to collect all types of clinical samples from some subjects. 

• A small number of the Group 3 patients also smoked. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



377 
 

Appendix 3 

Data Tables 
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Table 1:  Raw data and Ang-1 concentrations (pg ml-1) in serum, unstimulated and stimulated saliva. 

 

(a) Group 1a: 

 
Study no Age (years) Gender 

(M/F) 

Pack 

Years 

HbA1c 

(%) 

Ang-1 concentration 

(pg ml-1) 

Serum Unstim 

Saliva 

Stimult 

Saliva 

001 33 M 0 - 95872 1077 4188 

002 36 M 0 - - - - 

004 22 F 0 - - 28509 28306 

006 27 F 0 - 74156 27390 41852 

008 44 F 0 - 36375 90371 64101 

009 37 M 0 - 53567 4497 2854 

012 32 F 0 - 42782 38100 44071 

014 36 M 0 - 47389 22932 30371 

015 30 M 0 - 42551 8918 4569 

017 26 F 0 - 56918 25843 - 

018 22 M 0 - 62838 27519 91754 

019 43 M 0 - 44115 2045 3632 

020 67 M 0 - 18634 115549 117061 

021 22 M 0 - 39767 45120 53055 

027 46 M 0 - 21179 0 1887 

028 70 M 0 - 69202 76423 53734 

029 39 M 0 - 58517 71468 80469 

030 23 M 0 - 27977 44751 22409 

032 36 F 0 - 46602 111115 67569 

038 57 M 0 - 49760 52874 65366 

040 37 F 0 - 57611 64266 52741 

041 38 F 0 - 47060 - - 

042 45 M 0 - 70930 - - 

043 34 M 0 - 60060 - - 

044 33 M 0 - 43200 - - 

045 40 M 0 - 41770 - - 

046 31 F 0 - 29590 - - 

047 46 F 0 - 48670 - - 

048 48 F 0 - 46030 - - 

050 50 M 0 - 46030 - - 

051 22 M 0 - 31719 50557 93096 

055 70 M 0 - 30222 91649 110415 

057 58 M 0 - 45916 104285 67759 

063 56 M 0 - 30506 1356 0 

067 60 F 0 - 42624 0 2023 

073 73 F 0 - 43493 34698 61365 

080 59 F 0 - 25243 35968 37115 

099 33 F 0 - 57657 - - 

101 45 F 0 - 36204 - - 

N=39 Mean=41+15yrs M=23/F=16   N=37 N=27 N=26 
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(b) Group 1b: 

 
Study no Age (years) Gender 

(M/F) 

Pack 

Years 

HbA1c 

(%) 

Ang-1 concentration 

(pg ml-1) 

Serum Unstim 

Saliva 

Stimult 

Saliva 

024 23 F 0 - - 28306 34946 

031 69 M 0 - 24771 17905 13996 

036 74 M 0 - 54267 22693 28222 

039 54 F 0 - 62829 12552 10226 

056 66 M 0 - 31511 91615 76103 

060 58 M 0 - 60806 31601 20889 

064 51 M 0 - 42586 8997 8851 

074 59 M 0 - 33445 5871 6457 

075 44 M 0 - 50818 7391 6223 

076 73 F 0 - 15290 45801 34513 

079 38 F 0 - 36342 54212 37556 

084 66 M 0 - 60844 79167 51414 

085 59 M 0 - 50244 16684 20027 

092 65 F 0 - - 6223 - 

        

N=14 Mean=57+14yrs M=9/F=5   N=12 N=14 N=13 

 
 

(c) Group 2a: 

 
Study no Age (years)  Gender 

(M/F) 

Pack 

Years 

HbA1c 

(%) 

Ang-1 concentration 

(pg ml-1) 

Serum Unstim 

Saliva 

Stimult 

Saliva 

003 47 F 30 - 11943 7340 23771 

010 24 F 1 - 53724 44425 34949 

011 23 M 4 - 71487 73660 77615 

022 22 F 3 - 54966 40395 30874 

023 33 F 2 - 68014 1605 8258 

054 63 M 15 - 58585 0 2843 

077 47 F 30 - 29506 88 46392 

095 27 M 11 - 18935 22366 24351 

098 74 M 30 - 27787 42256 45510 

100 48 F 30 - 29414 - - 

102 25 F 5 - 10744 - - 

        

N=11 Mean=37+17yrs M=4/F=7 Mean=14.6+13.5  N=11 N=9 N=9 

 

 
(d) Group 2b: 

 
Study no Age (years)  Gender 

(M/F) 

Pack 

Years 

HbA1c 

(%) 

Ang-1 concentration 

(pg ml-1) 

Serum Unstim 

Saliva 

Stimult 

Saliva 

007 61 F 40 - 63878 60944 45293 

013 33 M 17 - 71108 2187 2679 

016 37 F 3 - 46869 36121 42140 

059 51 M 30 - 42624 29962 37510 

083 41 F 25 - 46069 29797 40426 

089 47 M 15 - 45156 43988 46037 

093 43 M 25 - 22392 39121 46712 

094 44 F 26 - 26201 53344 59333 

096 52 M 10 - 18438 31127 28772 

        

N=9 Mean=47+10yrs M=5/F=4 Mean=20.6+10.7  N=9 N=9 N=9 
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(e) Group 3a: 

 
Study no 

(Type of 

DM) 

Age (years)  Gender 

(M/F) 

Pack 

Years 

HbA1c 

(%) 

Ang-1 concentration 

(pg ml-1) 

Serum Unstim 

Saliva 

Stimult 

Saliva 

026 (II) 72 F 0 6 35280 47558 46537 

033 (II) 73 M 0 5.9 71941 759# 10655 

037 (II) 59 M 0 6.7 39270 3856 4472 

058 (II) 78 F 0 7.5 92926 98625 99237 

065 (II) 66 M 20 5.2 40152 77757 52220 

069 (I) 71 M 0 7 25824 101846 84322 

070 (II) 55 M 0 7.4 30399 39935 - 

071 (II) 58 M 0 6.5 34114 74688 65421 

072 (II) 72 F 0 7.4 53175 43479 54689 

082 (II) 68 M 0 7.4 - 40595 40391 

088 (II) 65 M 0 8.7 34150 42971 43348 

090 (II) 57 M 0 7.2 40355 70817 59369 

097 (II) 61 M 0 6.8 28863 9184 8131 

        

N=13 Mean=66+7yrs M=10/F=3  Mean=6.9+0.9 N=12 N=13 N=12 

 
 

(f) Group 3b: 

 
Study no 

(Type of 

DM) 

Age (years) Gender 

(M/F) 

Pack 

Years 

HbA1c 

(%) 

Ang-1 concentration 

(pg ml-1) 

Serum Unstim 

Saliva 

Stimult 

Saliva 

005 (I) 45 M 36 8.1 54112 4366 11844 

025 (I) 69 M 71 7.5 21260 60214 127784 

034 (II) 66 M 0 8.7 25617 10632 11189 

035 (II) 61 M 0 9.5 28225 14695 10643 

049 (I) 61 M 0 8.7 48548 - - 

052 (II) 78 M 0 5.8 52794 48471 50455 

053 (II) 55 M 0 6.6 55160 30109 28216 

061 (II) 42 M 20 6.8 29506 33915 49832 

062 (II) 56 M 0 7.6 11913 38108 41438 

066 (II) 76 M 33 8.8 24247 67167 68498 

068 (II) 73 M 0 8.1 23365 15667 4776 

078 (II) 66 M 22 6.6 23420 53767 52129 

081 (II) 64 F 51 7.1 39902 99514 87679 

086 (I) 42 F 7 9.4 35902 60691 72997 

087 (II) 38 F 24 7.5 - 8276 6808 

091 (II) 49 M 0 6.3 19675 7971 6252 

        

N=16 Mean=59+13yrs M=13/F=3  Mean=7.7+1.1 N=15 N=15 N=15 
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Table 2: Raw data and MSF concentrations (ng ml-1) in serum, unstimulated and stimulated saliva (UD – 

undetected).  

 

(a) Group 1a: 

 
Study no Age (years) Gender 

(M/F) 

Pack 

Years 

HbA1c 

(%) 

MSF concentration 

(ng ml-1) 

Serum Unstim 

Saliva 

Stimult 

Saliva 

001 33 M 0 - 8152 UD UD 

002 36 M 0  - - - 

004 22 F 0 - 22661 UD UD 

006 27 F 0 - 4496 UD UD 

008 44 F 0 - 3313 UD UD 

009 37 M 0 - 12480 UD UD 

012 32 F 0 - 8770 UD UD 

014 36 M 0 - 4039 UD UD 

015 30 M 0 - 16378 UD UD 

017 26 F 0 - 3071 UD - 

018 22 M 0 - 22077 UD UD 

019 43 M 0 - 1316 1091 UD 

020 67 M 0 - 29142 UD UD 

021 22 M 0 - 6152 UD UD 

027 46 M 0 - 3879 1676 225 

028 70 M 0 - 21435 UD UD 

029 39 M 0 - 23906 UD UD 

030 23 M 0 - 309 UD UD 

032 36 F 0 - 11295 UD UD 

038 57 M 0 - 383 UD UD 

040 37 F 0 - 1270 UD UD 

041 38 F 0 - 21674 - - 

042 45 M 0 - 16634 - - 

043 34 M 0 - 7809 - - 

044 33 M 0 - 6030 - - 

045 40 M 0 - 35267 - - 

046 31 F 0 - 7482 - - 

047 46 F 0 - 8352 - - 

048 48 F 0 - 12543 - - 

050 50 M 0 - 8649 - - 

051 22 M 0 - 7802 UD UD 

055 70 M 0 - UD UD UD 

057 58 M 0 - 2910 UD UD 

063 56 M 0 - UD UD UD 

067 60 F 0 - 1727 1677 UD 

073 73 F 0 - 28851 UD UD 

080 59 F 0 - 26339 UD UD 

099 33 F 0 - 13698 - - 

101 45 F 0 - UD - - 

        

N=39 Mean=41+15yrs M=23/F=16   N=38 N=27 N=26 
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(b) Group 1b: 

 
Study no Age (years) Gender 

(M/F) 

Pack 

Years 

HbA1c 

(%) 

MSF concentration 

(ng ml-1) 

Serum Unstim 

Saliva 

Stimult 

Saliva 

024 23 F 0 - - UD UD 

031 69 M 0 - 1791 352 UD 

036 74 M 0 - 2389 1546 2576 

039 54 F 0 - UD UD UD 

056 66 M 0 - 5222 UD UD 

060 58 M 0 - 845 UD UD 

064 51 M 0 - 2399 UD UD 

074 59 M 0 - 6002 UD UD 

075 44 M 0 - 4937 UD UD 

076 73 F 0 - 24321 UD UD 

079 38 F 0 - 17294 UD UD 

084 66 M 0 - 5598 UD UD 

085 59 M 0 - 26674 UD UD 

092 65 F 0 - 2595 UD - 

        

N=14 Mean=57+14yrs M=9/F=5   N=13 N=14 N=13 

 
 

(c) Group 2a: 

 
Study no Age (years) Gender 

(M/F) 

Pack 

Years 

HbA1c 

(%) 

MSF concentration 

(ng ml-1) 

Serum Unstim 

Saliva 

Stimult 

Saliva 

003 47 F 30 - UD UD UD 

010 24 F 1 - 3259 UD UD 

011 23 M 4 - 2641 UD UD 

022 22 F 3 - 3996 UD UD 

023 33 F 2 - 374 UD UD 

054 63 M 15 - 1835 UD UD 

077 47 F 30 - 24584 UD UD 

095 27 M 11 - UD UD UD 

098 74 M 30 - UD UD UD 

100 48 F 30 - 22139 UD UD 

102 25 F 5 - 2212 - - 

        

N=11 Mean=37+17yrs M=4/F=7 Mean=14.6+13.5  N=11 N=10 N=10 

 

 
(d) Group 2b: 

 
Study no Age (years) Gender 

(M/F) 

Pack 

Years 

HbA1c 

(%) 

MSF concentration 

(ng ml-1) 

Serum Unstim 

Saliva 

Stimult 

Saliva 

007 61 F 40 - 12695 UD UD 

013 33 M 17 - 5921 UD UD 

016 37 F 3 - 813 UD UD 

059 51 M 30 - 13958 UD UD 

083 41 F 25 - 3922 UD UD 

089 47 M 15 - 3461 UD UD 

093 43 M 25 - UD UD UD 

094 44 F 26 - 1927 UD UD 

096 52 M 10 - 12800 75 UD 

        

N=9 Mean=47+10yrs M=5/F=4 Mean=20.6+10.7  N=9 N=9 N=9 
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(e) Group 3a: 

 
Study no 

(Type of 

DM) 

Age (years) Gender 

(M/F) 

Pack 

Years 

HbA1c 

(%) 

MSF concentration 

(ng ml-1) 

Serum Unstim 

Saliva 

Stimult 

Saliva 

026 (II) 72 F 0 6 19787 UD UD 

033 (II) 73 M 0 5.9 10784 UD UD 

037 (II) 59 M 0 6.7 4274 UD UD 

058 (II) 78 F 0 7.5 56239 UD UD 

065 (II) 66 M 20 5.2 8367 UD UD 

069 (I) 71 M 0 7 54524 UD UD 

070 (II) 55 M 0 7.4 464 UD - 

071 (II) 58 M 0 6.5 3474 UD UD 

072 (II) 72 F 0 7.4 UD UD UD 

082 (II) 68 M 0 7.4 23714 UD UD 

088 (II) 65 M 0 8.7 UD UD UD 

090 (II) 57 M 0 7.2 12237 UD UD 

097 (II) 61 M 0 6.8 34 431 UD 

        

N=13 Mean=66+7yrs M=10/F=3  Mean=6.9+0.9 N=13 N=13 N=12 

 

 
 

(f) Group 3b: 

 
Study no 

(Type of 

DM) 

Age (years) Gender 

(M/F) 

Pack 

Years 

HbA1c 

(%) 

MSF concentration 

(ng ml-1) 

Serum Unstim 

Saliva 

Stimult 

Saliva 

005 (I) 45 M 36 8.1 2211 UD UD 

025 (I) 69 M 71 7.5 24544 UD 58 

034 (II) 66 M 0 8.7 UD 255 UD 

035 (II) 61 M 0 9.5 23012 616 456 

049 (I) 61 M 0 8.7 6372 - - 

052 (II) 78 M 0 5.8 918 UD UD 

053 (II) 55 M 0 6.6 5087 UD UD 

061 (II) 42 M 20 6.8 13721 UD UD 

062 (II) 56 M 0 7.6 20106 1329 UD 

066 (II) 76 M 33 8.8 UD UD UD 

068 (II) 73 M 0 8.1 1612 UD UD 

078 (II) 66 M 22 6.6 8039 414 UD 

081 (II) 64 F 51 7.1 UD 7 UD 

086 (I) 42 F 7 9.4 1270 UD UD 

087 (II) 38 F 24 7.5 - UD UD 

091 (II) 49 M 0 6.3 6806 UD UD 

        

N=16 Mean=59+13yrs M=13/F=3  Mean=7.7+1.1 N=15 N=15 N=15 
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Table 3: Raw data and VEGF concentrations (pg ml-1) in serum, unstimulated and stimulated saliva (UD – 

undetected). 

 

(a) Group 1a: 

 
Study no Age (years) Gender 

(M/F) 

Pack 

Years 

HbA1c 

(%) 

VEGF concentration 

(pg ml-1) 

Serum Unstim 

Saliva 

Stimult 

Saliva 

001 33 M 0 - 493 234 480 

002 36 M 0 - - - - 

004 22 F 0 - - 68 93 

006 27 F 0 - 392 88 294 

008 44 F 0 - 140 692 728 

009 37 M 0 - 193 426 272 

012 32 F 0 - 160 448 309 

014 36 M 0 - 239 80 133 

015 30 M 0 - 319 256 188 

017 26 F 0 - UD 140 - 

018 22 M 0 - 357 140 475 

019 43 M 0 - 192 450 496 

020 67 M 0 - 126 1481 843 

021 22 M 0 - 195 188 239 

027 46 M 0 - UD 313 500 

028 70 M 0 - 822 632 783 

029 39 M 0 - 800 516 641 

030 23 M 0 - UD 239 431 

032 36 F 0 - UD 746 780 

038 57 M 0 - 263 280 270 

040 37 F 0 - 145 277 584 

041 38 F 0 - 4332 - - 

042 45 M 0 - 207 - - 

043 34 M 0 - 545 - - 

044 33 M 0 - 182 - - 

045 40 M 0 - 408 - - 

046 31 F 0 - 345 - - 

047 46 F 0 - 324 - - 

048 48 F 0 - 219 - - 

050 50 M 0 - 144 - - 

051 22 M 0 - 140 236 365 

055 70 M 0 - UD 512 427 

057 58 M 0 - UD 461 551 

063 56 M 0 - 140 267 245 

067 60 F 0 - 3505 651 586 

073 73 F 0 - 545 377 470 

080 59 F 0 - 132 681 912 

099 33 F 0 - 271 - - 

101 45 F 0 - 0 - - 

        

N=39 Mean=41+15yrs M=23/F=16   N=37 N=27 N=26 
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(b) Group 1b: 

 
Study no Age (years) Gender 

(M/F) 

Pack 

Years 

HbA1c 

(%) 

VEGF concentration 

(pg ml-1) 

Serum Unstim 

Saliva 

Stimult 

Saliva 

024 23 F 0 - - 12 375 

031 69 M 0 - 221 1268 946 

036 74 M 0 - 472 1501 891 

039 54 F 0 - 125 1199 826 

056 66 M 0 - UD 1433 943 

060 58 M 0 - UD 356 411 

064 51 M 0 - UD 701 747 

074 59 M 0 - 387 521 592 

075 44 M 0 - 217 903 468 

076 73 F 0 - UD 549 773 

079 38 F 0 - 1284 212 656 

084 66 M 0 - 332 500 943 

085 59 M 0 - 2045 2059 879 

092 65 F 0 - - 524 - 

        

N=14 Mean=57+14yrs M=9/F=5   N=12 N=14 N=13 

 
 

(c) Group 2a: 

 
Study no Age (years) Gender 

(M/F) 

Pack 

Years 

HbA1c 

(%) 

VEGF concentration 

(pg ml-1) 

Serum Unstim 

Saliva 

Stimult 

Saliva 

003 47 F 30 - 627 644 19 

010 24 F 1 - UD 166 200 

011 23 M 4 - 193 658 1078 

022 22 F 3 - 213 167 393 

023 33 F 2 - 223 270 688 

054 63 M 15 - 145 280 4540 

077 47 F 30 - UD 224 303 

095 27 M 11 - UD 215 UD 

098 74 M 30 - 243 177 465 

100 48 F 30 - UD - - 

102 25 F 5 - UD - - 

        

N=11 Mean=37+17yrs M=4/F=7 Mean=14.6+13.5  N=11 N=9 N=9 

 

 
(d) Group 2b: 

 
Study no Age (years) Gender 

(M/F) 

Pack 

Years 

HbA1c 

(%) 

VEGF concentration 

(pg ml-1) 

Serum Unstim 

Saliva 

Stimult 

Saliva 

007 61 F 40 - 482 279 518 

013 33 M 17 - 262 601 562 

016 37 F 3 - UD 779 991 

059 51 M 30 - 164 599 363 

083 41 F 25 - UD 239 447 

089 47 M 15 - 8264 686 478 

093 43 M 25 - 243 138 262 

094 44 F 26 - 195 218 203 

096 52 M 10 - UD 786 507 

        

N=9 Mean=47+10yrs M=5/F=4 Mean=20.6+10.7  N=9 N=9 N=9 
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(e) Group 3a: 

 
Study no 

(Type of 

DM) 

Age (years) Gender 

(M/F) 

Pack 

Years 

HbA1c 

(%) 

VEGF concentration 

(pg ml-1) 

Serum Unstim 

Saliva 

Stimult 

Saliva 

026 (II) 72 F 0 6 184 1132 957 

033 (II) 73 M 0 5.9 812 689 737 

037 (II) 59 M 0 6.7 409 623 519 

058 (II) 78 F 0 7.5 4518 904 1405 

065 (II) 66 M 20 5.2 UD 508 UD 

069 (I) 71 M 0 7 492 557 778 

070 (II) 55 M 0 7.4 174 437 - 

071 (II) 58 M 0 6.5 UD 520 UD 

072 (II) 72 F 0 7.4 400 943 1122 

082 (II) 68 M 0 7.4 - 704 361 

088 (II) 65 M 0 8.7 UD 354 352 

090 (II) 57 M 0 7.2 177 283 263 

097 (II) 61 M 0 6.8 140 1723 832 

        

N=13 Mean=66+7yrs M=10/F=3  Mean=6.9+0.9 N=12 N=13 N=12 

 

 
 

(f) Group 3b: 

 
Study no 

(Type of 

DM) 

Age (years) Gender 

(M/F) 

Pack 

Years 

HbA1c 

(%) 

VEGF concentration 

(pg ml-1) 

Serum Unstim 

Saliva 

Stimult 

Saliva 

005 (I) 45 M 36 8.1 UD 728 930 

025 (I) 69 M 71 7.5 UD 1013 930 

034 (II) 66 M 0 8.7 UD 1999 1801 

035 (II) 61 M 0 9.5 UD 880 762 

049 (I) 61 M 0 8.7 419 - - 

052 (II) 78 M 0 5.8 164 473 888 

053 (II) 55 M 0 6.6 729 910 885 

061 (II) 42 M 20 6.8 UD 227 491 

062 (II) 56 M 0 7.6 UD 407 359 

066 (II) 76 M 33 8.8 221 822 849 

068 (II) 73 M 0 8.1 150 414 551 

078 (II) 66 M 22 6.6 130 673 765 

081 (II) 64 F 51 7.1 403 744 761 

086 (I) 42 F 7 9.4 125 248 379 

087 (II) 38 F 24 7.5 - 1497 901 

091 (II) 49 M 0 6.3 UD 458 421 

        

N=16 Mean=59+13yrs M=13/F=3  Mean=7.7+1.1 N=15 N=15 N=15 
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Table 4: Raw data and endostatin concentrations (pg ml-1) in serum, unstimulated and stimulated saliva. 

 

(a) Group 1a: 
 

Study no Age (years) Gender 

(M/F) 

Pack 

Years 

HbA1c 

(%) 

Endostatin concentration 

(pg ml-1) 

Serum Unstim 

Saliva 

Stimult 

Saliva 

001 33 M 0 - 29781 

 

 

0 

0 

0 

0 

0 

0 

002 36 M 0 - - - 0 

004 22 F 0 - 47020 - 0 

006 27 F 0 - 33015 - 0 

008 44 M 0 - 69550 - 530 

009 37 M 0 - 36720 - 0 

012 32 F 0 - 72293 - 0 

014 36 M 0 - 76732 - 0 

015 30 M 0 - 80038 - 0 

017 26 F 0 - 64046 - 0 

018 22 M 0 - 79998 - 0 

019 43 M 0 - 76880 - 0 

020 67 M 0 - 43781 - 0 

021 22 M 0 - 72362 - 0 

027 46 M 0 - 74007 - 0 

028 70 M 0 - 54140 0 0 

029 39 M 0 - 60260 - 0 

030 23 M 0 - 46420 - 0 

032 36 F 0 - 37720 - 530 

038 57 M 0 - 65122 - 0 

040 37 F 0 - 33505 - 0 

041 38 F 0 - 45040 - - 

042 45 M 0 - 77740 - - 

043 34 M 0 - 55840 - - 

044 33 M 0 - 44860 - - 

045 40 M 0 - 49180 - - 

046 31 F 0 - 47600 - - 

047 46 F 0 - 65520 - - 

048 48 F 0 - 67300 - - 

050 50 M 0 - 50440 - - 

051 22 M 0 - 75561 - 0 

055 70 M 0 - 36665 - 0 

057 58 M 0 - 35004 - 0 

063 56 M 0 - 76322 - 0 

067 60 F 0 - 31898 - 0 

073 73 F 0 - 79893 - 0 

080 59 F 0 - 32462 0 0 

099 33 F 0 - 57657 - - 

101 45 F 0 - 36204 - - 

        

N=39 Mean=41+15yrs M=23/F=16   N=38  N=28 
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(b) Group 1b: 
 

Study no Age Gender 

(M/F) 

Pack 

Years 

HbA1c 

(%) 

Endostatin concentration 

(pg ml-1) 

Serum Unstim 

Saliva 

Stimult 

Saliva 

024 23 F 0 - - - 0 

031 69 M 0 - 76831 - 776 

036 74 M 0 - 57873 - 1124 

039 54 F 0 - 38126 - 0 

056 66 M 0 - 48440 0 0 

060 58 M 0 - 39136 - 0 

064 51 M 0 - 42400 - 0 

074 59 M 0 - 79432 - 0 

075 44 M 0 - 52789 - 0 

076 73 F 0 - 32492 - 290 

079 38 F 0 - 39700 - 0 

084 66 M 0 - 62880 - 0 

085 59 M 0 - 46240 - 1492 

092 65 F 0 - - - - 

        

N=14 Mean=57+14yrs M=9/F=5   N=12  N=12 

 

 
(c) Group 2a: 
 

Study no Age Gender 

(M/F) 

Pack 

Years 

HbA1c 

(%) 

Endostatin concentration 

(pg ml-1) 

Serum Unstim 

Saliva 

Stimult 

Saliva 

003 47 F 30 - 21329 - 0 

010 24 F 1 - 23980 - 0 

011 23 M 4 - 27401 - 0 

022 22 F 3 - 28750 0 0 

023 33 F 2 - 57060 - 0 

054 63 M 15 - 38340 - 0 

077 47 F 30 - 30744 - 0 

095 27 M 11 - 37403 - 0 

098 74 M 30 - 54867 - 0 

100 48 F 30 - 29414 - - 

102 25 F 5 - 10744 - - 

        

N=11 Mean=37+17yrs M=4/F=7 Mean=14.6+13.5  N=11  N=9 

 

 

 

(d) Group 2b: 

 
Study no Age Gender 

(M/F) 

Pack 

Years 

HbA1c 

(%) 

Endostatin concentration 

(pg ml-1) 

Serum Unstim 

Saliva 

Stimult 

Saliva 

007 61 F 40 - 38806 - 0 

013 33 M 17 - 24345 - 0 

016 37 F 3 - 27696 - 0 

059 51 M 30 - 52780 0 0 

083 41 F 25 - 21777 - 0 

089 47 M 15 - 23961 - 0 

093 43 M 25 - 39395 - 0 

094 44 F 26 - 56603 - 0 

096 52 M 10 - 38356 - 0 

        

N=9 Mean=47+10yrs M=5/F=4 Mean=20.6+10.7  N=9  N=9 
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(e) Group 3a: 
 

Study no 

(Type of 

DM) 

Age Gender 

(M/F) 

Pack 

Years 

HbA1c 

(%) 

Endostatin concentration 

(pg ml-1) 

Serum Unstim 

Saliva 

Stimult 

Saliva 

026 (II) 72 F 0 6 59040 - 0 

033 (II) 73 M 0 5.9 79240 - 5200 

037 (II) 59 M 0 6.7 55320 - 0 

058 (II) 78 F 0 7.5 63000 - 3023 

065 (II) 66 M 20 5.2 57960 - 0 

069 (I) 71 M 0 7 37030 - 0 

070 (II) 55 M 0 7.4 38065 - 0 

071 (II) 58 M 0 6.5 38157 0 0 

072 (II) 72 F 0 7.4 73300 - 1197 

082 (II) 68 M 0 7.4 - 0 0 

088 (II) 65 M 0 8.7 59140 - 0 

090 (II) 57 M 0 7.2 73689 - 0 

097 (II) 61 M 0 6.8 53135 - 0 

        

N=13 Mean=66+7yrs M=10/F=3  Mean=6.9+0.9 N=12  N=13 

 
 

(f) Group 3b: 

 
Study no 

(Type of 

DM) 

Age Gender 

(M/F) 

Pack 

Years 

HbA1c 

(%) 

Endostatin concentration 

(pg ml-1) 

Serum Unstim 

Saliva 

Stimult 

Saliva 

005 (I) 45 M 36 8.1 31591 - 0 

025 (I) 69 M 71 7.5 45316 - 0 

034 (II) 66 M 0 8.7 38479 - 0 

035 (II) 61 M 0 9.5 41664 - 778 

049 (I) 61 M 0 8.7 64186 - - 

052 (II)  78 M 0 5.8 50118 0 0 

053 (II) 55 M 0 6.6 53903 - 431 

061 (II) 42 M 20 6.8 24076 - 0 

062 (II) 56 M 0 7.6 34014 0 0 

066 (II) 76 M 33 8.8 45567 - 0 

068 (II) 73 M 0 8.1 66424 - 0 

078 (II) 66 M 22 6.6 70074 - 0 

081 (II) 64 F 51 7.1 30067 - 0 

086 (I) 42 F 7 9.4 37311 - 0 

087 (II) 38 F 24 7.5 - - 0 

091 (II) 49 M 0 6.3 63545 - 0 

        

N=16 Mean=59+13yrs M=13/F=3  Mean=7.7+1.1 N=15  N=15 
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Appendix 4 

Periotron 8000 calibration protocol 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



391 
 

Periotron 8000 Calibration  

 

Introduction 

A Periotron model 8000 machine (1995) (Oraflow Incorporated, Plainview, New York, 

USA) was used to measure the minute volumes of GCF harvested on the PerioPapers 

(Proflow Incorporated, Amityville, New York, USA).  A single batch of PerioPapers was 

used throughout the study to ensure consistency (batch number 6178).  The Periotron works 

by measuring electrical capacitance across the PerioPaper, which is placed between the jaws 

of the machine.  The jaws have an opposing electric charge which polarises the molecules on 

the papers leading to a reduced electrical potential difference and an increased capacitance 

between the jaws (Ciantar and Caruana, 1998).  The capacitance of a wet PerioPaper 

increases in proportion to the volume of the fluid it, which is reflected in the Periotron reading 

(Periotron Units), and the relationship has been shown not to be linear but is best described 

by a fourth order polynomial (Chapple et al., 1999).  Thus, the machine has to be calibrated 

in order to convert the digit output from the machine (Periotron units) into volumes of GCF 

(microlitres) by producing a standardised calibration curve.   

 

Periotron Calibration 

The method used was based on the protocol described by Preshaw et al.(1996).  Prior to use 

the Periotron 8000 must be switched on for ten minutes, making sure it is set to the “Perio” 

setting required for GCF recording.  This model of Periotron is also designed to record 

volumes of saliva obtained from minor salivary glands when switched to the “Sialo” setting.  

Ideally GCF should be used as the standard calibration fluid but it is impractical to collect it 

in sufficient quantities, so serum or distilled water is usually used for calibration.  Evidence 

has shown that serum is the most accurate as it has similar characteristics to GCF (Chapple 

et al., 1999).  A standardised stock of serum was produced, the blood being taken from 

myself, using the same protocol used for the serum collection in the study (Chapple et al., 

1997) (Chapter 2.1.8).  This was stored in the -20oC freezer prior to use.  A 1 in 5 dilution of 

the serum in sterile distilled water was used for the calibration to reduce the clogging of the 

Hamilton syringes (Hamilton Company, Reno, Nevada, USA) (Personal communication: Dr 

Gareth Brook).  Chapple et al. (1999) showed that this dilution of serum had little effect on 
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the accuracy of the GCF volume determination above 0.1µl.  This paper also showed that the 

Periotron 8000 was accurate over time and only required recalibration every few months. 

Blunt-ended positive pressure displacement Hamilton 7000 syringes, sizes 1µl (gauge 22) 

and 2µl (gauge 23), were used to place accurate volumes of the diluted serum onto 

PerioPapers prior to reading in the Periotron.  The PerioPaper was held parallel to the floor 

and the serum was expelled from the syringes at 90o onto the centre of the white part of the 

PerioPapers in one movement.  Each PerioPaper was immediately placed between the jaws 

of the Periotron to within 0.5mm of the orange area with the PerioPaper being perpendicular 

to the main body of the machine.  Exact positioning of the PerioPaper needs to be consistent 

to reduce variations in the readings (van der Bijl et al., 1986).  Immediate reading of the 

PerioPapers has been shown to be important as evaporation, particularly with small volumes 

of fluids, can lead to significant sampling errors (Garnick et al., 1979).  Tozum, et al. (2004) 

found no significant fluid losses due to evaporation with transfer times of 5 seconds and 10 

seconds compared to the baseline test volumes.  Transfer times in the order of 30 seconds 

resulted in significant reductions in Periotron readings and subsequent volume readings were 

detected.  Other potential environmental sources of error include room temperature and 

humidity (Tozum, et al. (2004).  These environmental factors have been shown to result in 

an error range between 5% to 11% in earlier models of the Periotron (Garnick et al., 1979, 

Offenbacher et al., 1984).    

 

It is also important to ensure that no metal objects, such as rings or watches, are in close 

proximity to the Periotron, as this has a marked effect on the Periotron readings. The final 

Periotron reading is displayed on the LED screen after 16 seconds.  The Periotron was 

recalibrated to zero between readings using a blank PerioPaper.  It is important that clean dry 

college tweezers were used to move the PerioPapers, using only the orange part of the papers, 

as any moisture contamination can affect the readings.  Periotron readings were recorded for 

volumes of serum in 0.02µl increments between 0.02µl and 1µl.  Each volume was pipetted 

five times and the Periotron readings were averaged for each volume, any outliers were 

rejected and the reading repeated.  Triplicates readings for each 0.02µl increment were 

recorded for the volumes between 1µl and 2µl.  Due to the minute volumes used, care was 

taken to prevent air bubble formation in the Hamilton syringes, which would greatly affect 
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the accuracy, when measuring the diluted serum.  A good way to prevent air bubble formation 

was to draw too much fluid into the syringe and forcefully expel the volume and repeat this 

multiple times prior to drawing up the desired volume.   Any additional droplets of serum at 

the tip of the syringe were removed by wiping the syringe tip against a dry side of the 

Universal container holding the diluted serum.  The readings were carried out immediately 

after pipetting to prevent evaporation of the small volumes of fluid used (Tozum et al., 2004).  

These potential errors have a greater percentage effect on the Periotron readings at small 

volumes, and so, it has been proposed that the accuracy limit of the Periotron should be 

regarded as around 0.1μl.  The manufacturer states that each machine should read about 100 

Periotron units for 0.5µl of serum, but the actual readings will vary between individual 

machines.  A single Periotron 8000 machine was used throughout this study and was 

calibrated at the start of the study, and every 3 to 4 months subsequently.   

 

A calibration curve for the Periotron was produced by plotting the Periotron readings (units) 

against the volumes of diluted serum (µl) and plotting a fourth order polynomial grid line 

(Chapple et al., 1999).  The mathematical formula of this gridline was then used to calculate 

the GCF volumes of the clinical study samples using an Excel spreadsheet.  

 
Figure 1: Examples of Periotron 8000 calibration curves from the clinical study. 

(a) 
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(b) 
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Appendix 5 

Haematoxylin and Eosin (H and E) staining protocol 
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The slides used for the immunohistochemistry studies were sectioned from formalin-fixed 

paraffin-embedded tissue blocks.  One slide from each tissue block was stained with H and 

E to allow the histology of each sample to be studied and then compared to complimentary 

slides stained with various antibodies e.g. anti-vWF and anti-CD105 antibodies.   A standard 

protocol was used (NHS Tayside Oral Pathology Service). 

 

The slides were placed into a metal slide rack and immersed sequentially into staining troughs 

for set times as outlined below.  The sections were initially dewaxed and rehydrated prior to 

staining.  The dewaxing stage involved using xylene, so a metal slide rack was used as xylene 

damages plastic.  The staining protocol was as follows: 

 

1) Dewaxing and rehydration stage 

Xylene (BDH)    5 minutes x 2 

100% Ethanol    2 minutes 

95% Ethanol    2 minutes 

Distilled Water   2 minutes 

 

2) H and E Staining stage 

Haematoxylin (Mayers)  5 minutes 

Distilled Water   2 minutes 

Blueing agent (Thermo Shandon) 4 minutes 

Distilled Water   2 minutes 

Eosin (aqueous) (Thermo Shandon) 3 minutes 

Distilled Water   2 minutes 

  96% Ethanol    11/2 minutes 

100% Ethanol     1 minute 

100% Ethanol    11/2 minutes 

Xylene (BDH)    3 minutes 

 

The slides were remounted using DPX microscopy mountant (BDH Laboratory Supplies) 

and glass cover slips were applied and the slides were dried at 37oC for 3-4 hours.   
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Haematoxylin and Eosin stains most cells and organelles in a standard staining pattern.  

Haematoxylin stains negatively charged nucleic acids, DNA and RNA, blue (basophilic).  

Eosin stains positively charged structures such as most organelles (except ribosomes), muscle 

cells, fibrin and keratin bright red (eosinophilic).  Eosin also stains collagen pink and red 

blood cells orange/red (Wheater et al., 1987). 

 

 

 

 




