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ABSTRACT 

This thesis describes an investigation into the use of software clustering and concept 

analysis techniques for studying the evolution of software. These techniques produce 

representations of software systems by clustering similar entities in the system together. 

The software engineering community has used these techniques for a number of 

different reasons but this is the first study to investigate their uses for evolution. The 

representations produced by software clustering and concept analysis techniques can be 

used to trace changes to a software system over a number of different versions of the 

system. This information can be used by system maintainers to identify worrying 

evolutionary trends or assess a proposed change by comparing it to the effects of an 

earlier, similar change. 

The work described here attempts to establish whether the use of software clustering 

and concept analysis techniques for studying the evolution of software is worth 

pursuing. Four techniques, chosen based on an extensive literature survey of the field, 

have been used to create representations of versions of a test software system. These 

representations have been examined to assess whether any observations about the 

evolution of the system can be drawn from them. The results are positive and it is 

thought that evolution of software systems could be studied by using these techniques. 
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CHAPTER ONE - Introduction 

As software, and the study of software development, becomes increasingly widespread, 

the problems involved in maintaining a software system are becoming more widely 

understood. A large amount of research is now focussed on the difficulties surrounding 

the evolution of software and on the development of techniques to support evolution. 

This thesis describes two types of method, software clustering and concept analysis, 

which could be used to assess the evolution of a software system. 

This introductory chapter defines the problem area and describes the nature of the work 

detailed in the subsequent chapters. The criteria for the success of this work are listed 

and an overview of the rest of this document's structure is provided. 

1.1 Problem 

As the use of computers and computer software becomes increasingly widespread, it is 

becoming more and more important to understand the development of software. In 

particular, it is essential to understand how software that is in use over a long period of 

time changes as it is adapted to suit its users and surroundings. Any change to a system, 

whether during its original development or during its use, can affect the evolution of the 

system in ways that the system's developers and maintainers had never envisaged 

[TAKA96]. This evolution must be understood for the maintainers to plan and execute 

new changes to the system successfully. 

For many years the term Software Maintenance has been used to describe the process of 

altering a system after it has been delivered to a customer. Software Maintenance is 

often under funded and rushed in execution, partly because there is still a perception 

that making such change is easy and the majority of the work is done during the original 

development of the system [TAKA96]. However, recently the term Software Evolution 

has been used to describe the development of software over the whole of its lifetime, 

from the project's inception through the original development until it ceases to be 

maintained [BENN96], This forces the maintainers of the system to consider the history 
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and the future of the system rather than merely attempting to fix a problem in the short 

term, which could cause problems at a later date. 

Therefore, there is a need for methods to study how a software system has evolved to 

assist the maintainers. The types of method presented here, known as software 

clustering and concept analysis methods, could demonstrate how a cohesive module of 

the system has disintegrated over time as changes have been made or how an individual 

function or data structure has become used for other reasons than were originally 

intended. In this way, when a change is required, the maintainers can make a more 

informed decision on how the system must be altered and on the best way to accomplish 

this. 

Software Clustering is the application of Cluster Analysis to software systems. The aim 

of Cluster Analysis is to take an unsorted set of entities and cluster them together based 

on the features they have in common. For example, medical researchers use cluster 

analysis to group diseases based on the symptoms a sufferer exhibits [EVER93]. 

Software Clustering researchers have applied many existing cluster analysis techniques 

to software systems. The entities and features can be any number of quantifiable 

elements in a software system. Common examples of entities are functions, variables 

and data types and features can be any way of describing these entities; for example, 

functions may be described by their use of variables or their calls to other functions 

[WIGG97]. 

Concept Analysis techniques are very similar to Software Clustering techniques and are 

also based on entities and features of a software system. They were also developed 

outside of the software community and have only recently been applied to software. 

Concept Analysis techniques create sets of concepts based on a set of entities; these 

concepts are more formally defined than the sets of clusters created by software 

clustering. 

Software clustering and concept analysis techniques have two main purposes; either as a 

way of suggesting restructurings of software systems, which may lead to some 

reengineering or reuse proposals, or as an aid to program comprehension. This study is 

the first to investigate their use for studying software evolution. 
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1.2 Proposed Work 

This thesis extends the use of software clustering and concept analysis techniques for 

program comprehension by examining different versions of the same software system 

and attempting to discover evolutionary trends over the lifetime of the system. This 

work is being carried out because the techniques may help maintainers to specify 

detrimental trends and apply preventative maintenance to reverse them or to assess the 

likely impact of a proposed change. A number of different techniques have been 

assessed for this purpose. 

In order for these techniques to be used for evolution, it is important that they should be 

stable from version to version; that is, the changes between representations of two 

versions should reflect the amount of change between the two versions. This is 

necessary so that the representations can be compared while still incorporating the 

major changes between versions. A measure called MoJo [TZER99] has been used to 

assess stability; this measure and an algorithm to calculate it is described in Chapter 

Four. A case study has also been performed, examining how a single group of entities 

develops over the lifespan of a system and how the techniques report this development. 

1.3 Criteria For Success 

The following criteria will be used to assess the success of this thesis. They will be 

reviewed in the conclusions in Chapter Seven. 

1. To summarise the history of software clustering and concept analysis 

techniques. 

2. To assess the coverage and stability of a number of software clustering and 

concept analysis techniques. 

3. To use industrial strength software during the analysis of these techniques. 

4. To develop tools to support the analysis of these techniques. 

5. To investigate the feasibility of studying evolution of systems using these 

techniques. 

6. To provide recommendations for the most appropriate techniques to use for the 

purposes of evolution. 



1.4 Document Structure 

The rest of this thesis is structured as follows: 

Chapter Two introduces the background to the work described in the rest of the thesis 

and includes full definitions of Software Evolution, Software Clustering and Concept 

Analysis. 

Chapter Three explains the history of Software Clustering and Concept Analysis 

research, detailing many of the significant techniques that have been developed. 

Chapter Four outlines general work that has attempted to classify and evaluate the 

techniques detailed in Chapter Three and explains how this general assessment work 

motivated the work presented in this thesis. 

Chapter Five describes the analysis that has been carried out for this thesis. A list of the 

techniques that have been studied in detail for this thesis is provided with explanations 

as to why these techniques were chosen. The tools that were developed to support this 

analysis are also discussed. 

Chapter Six contains the results collected during the work described in Chapter Five. 

These results are explained in detail and some preliminary analysis of the results is 

included. 

Chapter Seven presents the conclusions that have been drawn from the results that have 

been collected. There is a discussion on the work achieved based on the criteria for 

success outlined in Section 1.3. Finally, some of the further work that could build on the 

conclusions of this thesis is described. 
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1.5 Conclusion 

This opening chapter has provided an introduction to the problem area and has briefly 

described the work that is reported by this thesis. The criteria for the success of this 

work have been defined and the structure of the rest of the thesis has been outlined. The 

following chapter describes the relevant fields of interest in more detail. 
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CHAPTER TWO - Background and Definitions 

This thesis describes a survey into the use of software clustering and concept analysis 

techniques for software evolution. This chapter outlines the background to the fields of 

software clustering, concept analysis and software evolution and provides basic 

definitions of these terms. 

2.1 Software Evolution 

During the latter decades of the twentieth century, computers became a central part of 

most people's lives. In addition to the computers in the workplace which were common 

from the 1980s, development of mobile technologies and the Internet has meant that 

many leisure activities now involves a computer or a microchip of some kind. As shown 

by the Year 2000 problem, many aspects of society are now dependent on the correct 

functioning of computers [JONE98]. This, by extension, means the software that runs 

these computers must be robust and adaptable to changes in the outside world. 

Therefore, it is increasingly important that the evolution of computer software is 

understood and manageable. 

The need for an understanding of software evolution has been reflected by a change of 

perspective by both industry and academia. There has been a proliferation of new 

conferences and journals, such as the International Workshop on Program 

Comprehension (IEEE), the Working Conference on Reverse Engineering 

(Reengineering Forum & IEEE) and the Journal of Software Maintenance: Research 

and Practice (Wiley), highlighting the need for research into the development of 

existing, rather than new, projects, van Deursen estimates that, since 1990, there have 

been more programmers working on enhancements and repairs than on new projects 

[DEUR99a]. 

There are four basic types of necessary maintenance for a software system, which many 

researchers have focussed on when investigating the continuing development of 

software systems. These types are as follows [LIEN80]: 
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Corrective maintenance: the fixing of defects present in the system 

Adaptive maintenance: the adaptation to changes in the system's environment 

Perfective maintenance: the introduction of enhancements to the system 

Preventative maintenance: an effort to avoid malfunctions or improve maintenance 

Despite the continuing importance of these four types of maintenance, an important 

development during the 1990s was a shift of emphasis from studying software 

maintenance as a separate phase of the software lifecycle to studying software 

evolution, which covers the entire software development process [BENN96]. It is now 

recognised that maintaining software is generally not a case of quick, simple fixes but 

can require significant design and comprehension work for changes to be implemented 

successfully, because software is continually changing and becoming more complex 

[LEHM97]. This substantial work is seen as more than simply maintenance, and is 

instead termed as software evolution. 

The practices needed to control the evolution of software are still in their infancy, 

largely because the nature of this evolution is not well understood. Studies of evolution 

(such as work by Burd [BURD00]) have taken place but there is still much work to be 

done. A possible method of assessing the evolution of a software system is by using 

software clustering. 

2.2 Cluster Analysis and Software Clustering 

This section describes the multi-discipline field of Cluster Analysis and how the field of 

Software Clustering has emerged from this as a field of its own. A definition of 

Software Clustering and the background to this definition is also provided. 

2.2.1 Cluster Analysis 

Cluster analysis is a general term used to describe techniques for uncovering structure 

within complex sets of data. As a research area it is much older than Software 

Engineering; Sneath and Sokal [SNEA73] list papers from the turn of the twentieth 

century, and the field has developed greatly since (Anderberg [ANDE73] claims at least 

600 relevant papers were published between 1960 and 1973). This wealth of 

information is due to the fact that, although traditionally cluster analysis methods have 
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been used for classification of species or medicines, most scientific disciplines and 

many social sciences have used similar clustering techniques. The burst of interest 

during the 1960s can be attributed to the computer, which allowed the implementation 

of previously theoretical algorithms. 

Because cluster analysis does not belong to one particular science and there was no 

central repository for cluster analysis resources, researchers from each discipline tended 

to develop their own clustering techniques rather than learn from the techniques already 

in use. To counter this, since the 1960s, several general textbooks on the subject have 

been produced. 

Sneath and Sokal produced the first summary of clustering techniques in 1963, entitled 

'Principles of Numerical Taxonomy', which was updated in 1973 [SNEA73]. The book 

includes useful information on the history of numerical taxonomy, as well as a large 

selection of early references, mostly from biology. Most of the techniques used for 

cluster analysis today are presented, but many of the terms used in the book are 

unfamiliar and most of the terms used today were yet to be developed when the book 

was written, which means the descriptions are often difficult to read and understand. 

Despite the problems with their descriptions of clustering techniques, still of interest 

today is Sneath and Sokal's identification of some of the advantages of clustering 

techniques. These include: 

• the power to integrate data from a variety of sources, 

• the automation of many parts of the classification process, and 

• the objectivity of many techniques, disregarding preconceptions users may have 

about the dataset. 

For Software Engineering, this means that very detailed descriptions can be used to 

quickly develop classifications that may give the maintainers a fresh perspective on 

their current mental model of the system. 

Anderberg [ANDE73] presented a similar study of the field at the same time as Sneath 

and Sokal's book was published. This study is presented from a general perspective 

rather than the biological approach of'Numerical Taxonomy', and, although it is not as 

comprehensive as Sneath and Sokal's book, the descriptions of techniques and 

development of ideas are well written and preferable for a novice user. Also, it was the 
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first study to approach the issue of which clustering techniques to use for a particular set 

of data, rather than simply describe the techniques in isolation. 

Kaufman and Rousseeuw [KAUF90], like Anderberg, take a general view, preferring to 

concentrate on the types of clustering methods available rather than describe a large 

number of similar methods in detail. The text greatly benefits from the solidification of 

the clustering field since the publication of earlier textbooks and the descriptions are 

consistent and thorough. Each type of method is demonstrated by describing a computer 

program that implements the method, providing a good basis for the practical use of the 

techniques described. 

The most recent general textbook is Everitt's 'Cluster Analysis' [EVER93], first 

published in 1974 but revised in 1980 and 1993. This book, Kaufman and Rousseeuw's 

book, takes a practical approach, describing not only the various clustering techniques 

but also guidelines on how to apply them. Unlike Kaufman and Rousseeuw, many 

different clustering methods are described but unfortunately the descriptions of 

individual techniques are often fairly short. However, the book still provides a valuable, 

current introduction to cluster analysis and provides enough references to allow the user 

to follow up on any useful techniques. 

2.2.2 Software Clustering 

Although cluster analysis has a long history, it was only recently that Software 

Engineering researchers became fully aware of this general cluster analysis work and 

began to apply existing clustering methods to software systems consciously. However, 

researchers have been developing their own clustering methods for many years, usually 

in an attempt to discover the structure of software systems. These techniques can be 

broadly termed software clustering techniques. The area of software clustering research 

wil l now be examined and the term software clustering defined. 

Software clustering is based on structured programming methods. In one of the earliest 

papers on software structure, Parnas [PARN72] discusses the need for software to be 

modularised and suggests some criteria for the division of software into modules. He 

claims that modularised software, where functions are grouped together into small, 

cohesive units, is easier to understand, develop and maintain than unstructured software. 

This is because, i f these modules are designed using appropriate criteria, changes can be 
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made to the design or the implementation of a single module without affecting the rest 

of the code. 

Parnas defines the 'information hiding' criterion for module decomposition, where 

'every module ... is characterised by its knowledge of a design decision which it hides 

from all others'. This idea has been developed and refined by many researchers, 

including Yourdon and Constantine, who identified two important properties of a 

module, cohesion and coupling [YOUR79], Cohesion is the level to which the elements 

of a module are tightly bound together. Coupling is the degree of interdependence 

between modules. Ideally a module will exhibit low coupling and high cohesion. 

Yourdon and Constantine define the highest level of cohesion as functional cohesion, 

where every element of processing is an integral part of, and is essential to, the 

performance of a single function. 

Most modern programming languages and design methods support these concepts and 

so many new software projects, i f well designed, will exhibit the properties of high 

cohesion and low coupling. However, there is a large amount of software, including 

software written in modern languages, which does not exhibit these characteristics 

because of poor design or frequent, unstructured maintenance. This software, and 

indeed any 'critical software that cannot be modified efficiently' [GOLD98] is known 

as legacy software. 

Working with and improving legacy software has become an important part of the 

software lifecycle and can be broadly defined by the term reverse engineering. Reverse 

engineering, as defined by Chikofsky and Cross in their landmark taxonomy of the area, 

is the process of analysing a subject system to 

identify the system's components and their interrelationships and 

- create representations of the system in another form or at a higher level of 

abstraction [CHIK90] 

Software clustering methods are reverse engineering methods; however, they are a little 

more specific than the definition above suggests. In particular, they are usually 

concerned with clustering the system's components together and presenting these 

clusterings as a representation of the system. 
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The clustering process is not architecture recovery, which, as defined by Mendonca and 

Kramer [MEND97], is concerned with higher-level abstractions than most of the 

techniques presented here provide. Object recovery is a better description but is also 

unsuitable, as it leads to confusion with the term object in object-oriented programming 

and the image recognition area object recovery. 

Koschke [KOSCOOa] uses the term component recovery to describe the clustering 

process but, as with object recovery, this suggests a simple representation of the basic 

components of the system and does not naturally imply the grouping of these 

components. Although Koschke does expand the definition of component to include a 

cluster of components, it is felt this is not clear enough from a definition alone to use 

the term; indeed, Koschke never formally defines component recovery although he has 

used the term through a number of papers and his Ph.D. thesis. 

Tzerpos [TZER98] introduces the term Software Botryology to describe the clustering 

of software systems (from the Greek word botrys, meaning a bunch (or cluster) of 

grapes). However, this term is not used again within the paper that introduces it, 

Tzerpos preferring to use the more common software clustering. This is the term that 

will be used throughout this thesis. 

Software clustering is defined in this thesis as the identification of a software system's 

entities and their interrelationships and the grouping of these entities by some relevant 

criteria. There is a wide variety of software clustering methods, but there are basic 

elements common to all methods, established in a number of ways by Lakhotia 

[LAKH97], Wiggerts [WIGG97] and Koschke and Eisenbarth [KOSCOOb], among 

others. The three elements are now described: 

1. The entities that are to be clustered must be identified. An entity can be any 

element of the software system, including functions, variables, types, classes or 

any other identifiable structure. 

2. The clustering criterion must be defined, to establish the nature of the resulting 

clusters. This usually includes which features should be used to describe the 

entities (for example, a function might be described by the global variables it 
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uses or the other functions it calls) and a definition of similarity between 

entities. 

3. There will be a clustering algorithm that performs the clustering and usually 

determines the format of the resulting representation of the system. 

Software clustering techniques aim to present a complete and consistent representation 

of a software system, usually as an aid to some form of software restructuring or 

program comprehension. However, it is often very difficult to cluster some entities in a 

system, either because they are very heavily used and could be placed in any number of 

clusters or because they are hardly used at all and do not belong in any existing clusters. 

There are various ways of dealing with these problems, which are discussed in the next 

chapter, but software clustering techniques will generally make decisions about where 

to position entities which provide a more complete representation of a system but may 

hide some information about the use of the entities in question. 

A very similar field to software clustering is concept analysis. Strictly speaking, the 

field of concept analysis forms part of the field of software clustering according to the 

definition given above. However, the methods and results of concept analysis are 

sufficiently different to software clustering methods and results to warrant the 

discussion of concept analysis as a research area in its own right. 

2.3 Concept Analysis 

A field that has much in common with software clustering is Concept Analysis. Concept 

analysis attempts to define the complete set of logical groups (or concepts) in a set of 

entities. Methods for defining the concepts in a data set have been investigated for over 

sixty years but, as with cluster analysis, it is only recently that these methods have been 

used to uncover structure in legacy systems. The basic difference between software 

clustering and concept analysis is that software clustering is focussed on providing a 

representation of a whole software system whereas concept analysis aims to create the 

whole set of possible concepts within that system, regardless of the representation this 

concept set may provide. 
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A concept is a collection of entities and features such that the features in the concept 

represent the complete set of features that are used to describe the entities in the 

concept. The concepts defined by concept analysis may overlap with each other, which 

makes concept analysis unsuitable for restructuring work unless a partition of entities 

and features can be created from the set of concepts. Researchers have provided ways to 

create partitions from concept sets but these have generally been computationally very 

expensive and have frequently provided a large set of partitions with no way of 

choosing a suitable partition from the set. 

Advocates of concept analysis claim that concepts can be used to overcome many of the 

problems encountered using cluster analysis. However, research has shown that there 

are also significant problems in the use of concept analysis to recover legacy system 

structure. Snelting [SNEL96] and van Deursen and Kuipers [DEUR99b] provide useful 

overviews of concept analysis; the latter paper is particularly interesting because it 

compares concept analysis to software clustering. 

However, sets of concepts can be useful for program comprehension because no 

information is hidden from the user as it can be when using software clustering 

techniques. This may mean it takes more effort to understand a set of concepts than a set 

of clusters but it also means that decisions made on the basis of concept sets will often 

be better informed than decisions that are based on sets of clusters. 

2.4 Conclusion 

This chapter has explained the background to the fields of Software Evolution, Software 

Clustering and Concept Analysis and provided the basic definitions of these terms that 

will be used throughout this thesis. The following chapter describes a number of 

software clustering and concept analysis techniques in detail. 

18 



CHAPTER THREE - Techniques 

This chapter outlines the history of software clustering and concept analysis by 

describing in detail many of the relevant techniques that have been developed since the 

early 1980s. The advantages and disadvantages of each technique are also explained. 

The techniques are discussed in the context of the researchers who proposed them to 

demonstrate how the field has developed since the basic need for such techniques was 

identified. 

3.1 Software Clustering Techniques 

3.1.1 Belady and Evangelist! 

Belady and Evangelisti [BELA82] were among the first researchers to recognise the 

need for software clustering techniques for program comprehension. They propose a 

basic method for software clustering and a metric to quantify the complexity of a set of 

clusters. 

The entities in Belady and Evangelisti's clusters are modules (functions) and control 

blocks (data structures). The system is described using a graph, the nodes of which are 

functions and data structures and each edge of which represents a connection between a 

functions and a data structure. Belady and Evangelisti do not describe these connections 

any further and so the precise nature of the connections is unknown. 

Each function is given a unique number, as is each data structure. The entities and their 

relationships are then plotted on a separate graph, with data structures on the X-axis and 

functions on the Y-axis. A point is plotted for every edge between a function and data 

structure. This graph is then partitioned into clusters by attempting to place nodes that 

are close to each other on the graph in the same cluster. 

Two parameters are identified which alter the resulting clusters. A limit is set on the 

maximum number of clusters produced and the maximum number of nodes in a cluster. 

These parameters are established to ensure the clusters that are produced are of a 

manageable size both for comprehension and maintenance. 
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In order to assist the determination of the values of these two parameters, Belady and 

Evangelisti describe a measure of complexity for clusters. This measure is based on the 

connections between nodes, subdividing the set of all connections into intercluster 

connections (edges which connect clusters together) and intracluster connections (edges 

which connect nodes within a cluster): 

Complexity = + 

K E E 

Here, K is the number of clusters in the system, E is the number of connections in the 

system, Eo is the number of intercluster connections in the system and £, is the number 

of intracluster connections. 

While Belady and Evangelisti's [BELA82] clustering method and complexity measure 

have not been empirically tested, their work has been influential. The major flaw with 

the work is in the lack of definition of what a connection between two entities 

constitutes. However, the ideas they present, particularly with regard to complexity and 

intercluster/intracluster connections, have been frequently returned to (for example, the 

work of Anquetil and Lethbridge [ANQU99] or Canfora, Cimitile and Munro 

[CANF96]). 

3.1.2 Hutchens and Basili 

Hutchens and Basili [HUTC85] built on Belady and Evangelisti's work [BELA82] by 

developing a method based on data items shared by functions. They also introduced the 

use of hierarchical clustering algorithms, which have been frequently used in later work. 

Their technique used data bindings to describe and cluster related functions. A data 

binding is relationship between two functions based upon a variable, defined as an 

ordered triple (p,x,q) where p and q are functions and x is a variable. There are four 

levels of data binding: potential, used, actual and control flow. 

A potential data binding (p,x,q) exists i f x is within the static scope of p and q. This 

means that there is a possibility of a data interaction between the two functions via x, 

although this interaction is not necessary for the potential data binding to exist. 
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A used data binding (p,x,q) is a potential data binding where p and q use x for either 

reference or assignment. This does not imply any closer connection between p and q, 

only that they use the variable x in some way. 

An actual data binding (p,x,q) is a used data binding wherep assigns a value to x and q 

references x. There is no consideration of the ordering of these events; the binding exists 

as long as both assignment and reference are executed at some point. 

Finally, a control flow data binding (p,x,q) is an actual data binding where there is a 

possibility that q will be passed control after p has had control. This binding may exist 

even i f q can never execute after p because of the dynamic properties of the program. 

Once the relationships between entities are established, an algorithm must be used to 

cluster these entities together. Hutchens and Basili use an agglomerative hierarchical 

algorithm, which takes a bottom-up approach to clustering [HUTC85, WIGG97]. The 

clustering process begins with a set of clusters, one for each entity in the system, where 

each pair of clusters has a similarity value recording how similar the entities in the 

clusters are. The two most similar entities are clustered together and the similarity 

values between the new cluster and all other clusters are calculated based on the 

previous similarity values of the clustered entities. This process repeats until only one 

cluster remains, containing all the entities in the system. 

0 > 0 0 X 

B 

B 
D 

Figure 3.1: Calculating a new similarity 

Agglomerative hierarchical clustering algorithms differ in the update rule they use to 

calculate similarities between new clusters and existing clusters. In Figure 3.1, the 

clusters A, B and C are linked by similarity values i,j and x. In this example, x is the 

highest similarity value and clusters A and B have been clustered together to form 
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cluster D. A new similarity, k, which determines how similar clusters C and D are, must 

now be calculated based on the values of /' and j. 

Two common update rules are single linkage and complete linkage. Single linkage 

means the new similarity k becomes the largest value of /' and j. Complete linkage 

means k becomes the smallest value of / and j. Hutchens and Basili use a weighted 

average update rule to determine this new similarity. This takes into account the number 

of entities in the two clusters that are being joined together, giving more weight to the 

similarity value that represents the most entities. For example, in Figure 3.1, i f A 

contained ten entities and B contained five, j would be given twice the weight of / when 

the new similarity was calculated. 
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Figure 3.2: Dendrogram example 

The results of hierarchical algorithms are traditionally presented as a dendrogram. This 

is a pictorial representation of the clustering process, showing each clustering which 

was created by the algorithm, from the initial 'one entity, one cluster' clustering to the 

final 'all entities in one cluster' clustering. Figure 3.2 shows a dendrogram where five 

entities (el to e5) are placed in individual clusters (cl to c5). They have been clustered 

together, joining two clusters at a time, until they all belong in the same cluster. 

The example shown in Figure 3.2 is a slight adaptation of a traditional dendrogram. 

Usually, only lines will be drawn to denote the joining of two clusters and the actual 
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clusters will not be printed. However, this makes it difficult to examine a particular 

clustering without backtracking through the dendrogram. In Figure 3.2, each column 

represents a single clustering, which makes it easy to isolate and examine each one. 

While the dendrogram is a good record of the process, and provides some information 

on how strongly entities are clustered together, further work is needed i f a single 

representation of the system structure is required (for example, i f the system was to be 

restructured). With no concrete way to compare one clustering to another, the selection 

of a single, representative clustering from the set of clusterings presented is still a major 

problem in software clustering [WIGG97]. 

Hierarchical algorithms are very popular with software clustering researchers. Hutchens 

and Basili [HUTC85] chose a hierarchic method because they believed that 'systems 

and programs are best viewed as a hierarchy of modules'. This may account for their 

intuitive appeal, but the results gained are often poor, especially considering the 

difficulties regarding the partitioning of dendrograms. 

Part of the problem with Hutchens and Basili's approach is their choice of a 

dissimilarity metric as their clustering criterion. Dissimilarity (or distance) metrics work 

by considering the absence of a descriptive feature to be a mark of similarity. These 

metrics are often used in other disciplines, such as classification of species, where the 

absence of a particular defining feature may well be as significant as the presence of a 

feature in a pair of entities. However, for software clustering, such metrics are 

inappropriate because they do not reflect the nature of software. For example, the fact 

that two functions do not use a certain data item does not suggest any similarity between 

the functions. Dissimilarity metrics have been used by a number of software clustering 

approaches but are now generally considered unsuitable [WIGG97, DAVEOO]. 

3.1.3 Choi and Scacchi 

Choi and Scacchi [CHOI90] define a clustering method based on graph theory that uses 

files as entities, reasoning that programmers usually group related functions into a file. 

This logic is particularly valid for very large software systems when it is often not 

computationally feasible to use functions as entities. The entities are described using a 

resource flow diagram (RFD), which is an undirected graph. The nodes in an RFD are 

the entities (files) and there is an edge between any pair of entities that share resources. 
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For example, i f one entity calls a function or uses a data item belonging to another 

entity, there is an edge between the two entities. In the RFD, however, no record is 

made of the resource shared or the direction of the sharing - only the fact that two 

entities share resources is recorded. 

This RFD is used to create a resource-structure diagram, or RSD, which is a tree 

containing entities and clusters, where entities form the leaves of the tree and clusters 

form the inner nodes of the tree. The children of a cluster node are entities or other 

clusters that belong to the cluster node. This hierarchical structure provides a view of 

the system's architectural design. 

Choi and Scacchi [CHOI90] provide an algorithm for converting an RFD to an RSD, 

which is based on two key properties: minimum coupling and minimum alteration 

distance. Minimum coupling is as defined by Yourdon and Constantine [YOUR79] in 

Section 2.2.2. I f two entities X and Y are modules, and when X is altered Y is affected, 

the alteration distance between X and Y is the length of the path in the RSD that joins X 

to Y. I f Zand / belong to the same subsystem the alteration distance between them is 0. 

In order to localise changes to the system the alteration distances between entities 

should be as low as possible. 

The RSD is a reasonable high-level representation of a system and could provide the 

basis for a restructuring of a software system. However, the information used to 

partition a system and the way the partitioning is performed is very coarse. As with a 

dendrogram representation (which is very similar to an RSD) bad decisions early in the 

process can affect the form of the entire diagram. This is a particular problem because a 

great deal of information about how resources are shared and the importance of various 

resources, which could assist the avoidance of such bad decisions, is not included in the 

analysis. However, as a way of providing a preliminary high-level description of a 

system before some more thorough analysis is performed, Choi and Scacchi's method 

may prove useful. 

3.1.4 Liu and Wilde 

Liu and Wilde [LIU90] propose two different methods for software clustering, both 

based on data structures. Drawing from object-oriented programming, and the belief 
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that one of the greatest maintenance challenges is the understanding of system data, two 

ways of identifying candidate objects are presented. These objects have the form 

Candidate Object = (F,T,D) 

where F is a set of functions, T is a set of types and D is a set of data items. Any of 

these sets can be empty and ideally they wil l be disjoint from the sets in other candidate 

objects (although this is not required). 

The first method proposes candidate objects based on global data items, whereby i f two 

functions use the same global data item they wil l be clustered together. The second 

method uses types instead of global data items. Type x is defined as a sub-type of type_y 

i f x is used to define y; y is then a super-type of x. Functions are clustered together i f 

they both use the same super-type, which may be defined by a use of a sub-type. 

Three problems common to software clustering methods are highlighted by Liu and 

Wilde's work [LIU90]. Liu and Wilde themselves note that these methods often 

produce unsatisfactory 'objects', or clusters, and human intervention may be needed to 

adjust the clusters. Many researchers since have noted that automatic clustering methods 

can be greatly enhanced by alteration of the results by maintainers [SCHW91, 

MANC99, KOSCOOa]. 

Liu and Wilde's work also demonstrates the possibility that overlapping clusters will be 

produced. I f a software system's functions are badly encapsulated (as will usually be the 

case for legacy software, especially the legacy software that clustering methods will be 

used for) there will often be situations where one function could be part of more than 

one cluster or even not fit neatly into any cluster. This can either be dealt with by 

allowing overlapping clusters, where one function can be part of two or more clusters, 

or by allowing only disjoint clusters and forcing functions into one cluster only. The 

former can produce better results but requires intervention from the maintainers of the 

system to specify where functions in more than one cluster should actually be. The latter 

is automatic, but can often require a maintainer to reposition functions that have been 

wrongly clustered. Most approaches use disjoint clusters, but some have attempted to 

deal with the problems with this approach (such as Schwanke's Arch project 

[SCHW91], described in Section 3.1.5). 
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Finally, Liu and Wilde's approaches are typical of many software clustering methods in 

that they focus on a single aspect of a software system rather than incorporating a wider 

picture of the system to perform the clustering. This means that the clusters are often 

unrepresentative of much of the system as they ignore critical information, even i f the 

motivation for the clustering is sound (for example, to expose the data structures of a 

system). Furthermore, such limited approaches are unsuitable for some software i f the 

aspect they exploit is not used in depth by the software. Liu and Wilde point out that 

well written software will not contain many global variables, thus making their first 

approach useless for such software. Incorporating more information is difficult because 

the computational load increases with every extra aspect of the system examined, but 

recent approaches have tended to use multiple system views because single aspect views 

have not usually produced universally good results [ANQU99]. 

Liu and Wilde's work was later developed by Livadas and Johnson (see Section 3.1.7). 

3.1.5 Arch 

Schwanke's Arch project [SCHW91], developed in the early 1990s, has been hugely 

influential for subsequent software clustering researchers. It developed and formalised 

the generic structure of software clustering methods suggested by earlier work and 

proposed a number of innovative developments to build on this structure. Significantly, 

Schwanke highlights the need for human intervention into clustering processes, because 

the domain of a software system has a huge effect on the success of clustering methods 

and many methods produce imperfect results that benefit greatly from adjustment by 

users of the system. 

Schwanke bases his work on Parnas's information hiding principle [PARN72] 

(discussed in Section 2.2.2) and defines an information sharing heuristic for detecting 

when two procedures share a design decision: 

I f two procedures use several of the same unit-names, they are likely to be 

sharing significant design information, and are good candidates for placing 

in the same module. 

26 



The following similarity metric was developed based on this heuristic (refined by 

Girard and Koschke [GIRA99]): 

Sim (A,B) = Common (A,B) + k*Linked(A,B) 

n + Common (A,B) + d * Distinct (A,B) 

Common(A,B) is the size of the set of common features of entities A and B. 

Distinct(A,B) is the size of the set of distinct features, which is the set of features used 

by A but not B and the set of features used by B but not A. Linked (A,B) is 1 i f A calls B 

or B calls A and 0 otherwise, d and k are constants which control the relative importance 

of Linked(A,B) and Distinct(A,B). 

The constant n controls normalisation. I f n is 0, all similarities are normalised between 0 

and 1. This is common to many software clustering techniques because it makes it 

easier to understand and compare similarity values. However, i f n is greater than 0, 

similarities can be any value. This means that a pair of entities that agree on a large 

number of features will be classed as more similar than a pair of entities that agree on a 

small number of features, whereas these pairs may have been given the same similarity 

value i f these values had been normalised. 

Arch was also the first project to use weighted features. Schwanke's hypothesis (based 

on earlier clustering work in other disciplines) was that agreement on rare features is 

more important than agreement on common features [SCHW91]. This is particularly 

interesting for software clustering because the fact that some functions and data items 

are very infrequently used often suggests they perform some specific purpose that 

would be ideal for encapsulation. Therefore Arch estimates the significance of a feature 

by its Shannon information content: 

Weight® = -log(Probability(f)) 

The probability o f / i s the number of procedures that have feature/ divided by the total 

number of procedures. 

Arch supports a basic agglomerative hierarchical clustering algorithm with a single 

linkage update rule and three variations on this algorithm, which go some way to aiding 

the dendrogram partitioning problem. These are batch clustering, where a standard 

dendrogram is produced and 'useless' groups are heuristically removed, interactive, 

radical clustering, where the Arch user is asked for confirmation after each clustering, 

and interactive clustering, which compares a previous classification to the current 
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clustering process. These developments help to prevent one of the common problems in 

hierarchical clustering, where incorrect early decisions can produce useless results. By 

examining these decisions as the process is executed, an attempt can be made to reject 

the errors. 

Schwanke also introduced the idea of maverick analysis. A maverick is an entity that 

has been clustered incorrectly and maverick analysis attempts to relocate these entities. 

It does this by examining an entity's neighbours, which are other entities with which it 

has at least one common feature. I f a majority of its k nearest neighbours are bad 

neighbours (neighbours which do not belong in the same module as the entity) the entity 

is a maverick and needs to be relocated to be with its good neighbours. Schwanke found 

that this analysis coupled with other examinations by system analysts greatly improved 

the clusterings produced by the automatic Arch algorithms, and later used the nearest 

neighbour approach as a clustering method [SCHW94]. 

Patel, Chu and Baxter [PATE92] developed a method of clustering functions according 

to the types they use. The method is actually defined as a way of measuring the 

cohesion of a cluster but it can also be used in an attempt to generate cohesive clusters. 

Similarity between entities is calculated by counting the number of times each non-local 

type in a system is used by the entity. The use of a type T can be: 

- accessing or setting a variable of type T, whether the variable is global or 

local 

- having a parameter of type T 

- using variables or parameters belonging to a subtype of type T 

This approach is not normalised, so entities that use the same type many times are 

considered more similar than entities that only use a type a small number of times. 

For any entity X a vector (xi, X2, ... x„ ... x„.i, xn) is created, where x, is the number of 

times Xuses a type i. For any two entities X and Y, the similarity of X and Y is given by: 

3.1.5 Patel 
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The cohesion of a cluster of entities E={ei, e2, ... em} is the average of the similarity 

measures over distinct pairs of entities in the cluster. This is calculated with the 

Composite Module Cohesion measure: 

Cohesion (E) = — ; I' 
i 

where S = { (i,j) \ i,j e[l,m] & i> j }. This calculation of S ensures that each pair of 

entities is only used once in the calculation, as opposed to using Sim(eu ej and Sim(ej% 

Patel et al's technique is essentially a specialised version of Schwanke's Arch method 

[SCHW91], in that it examines common features of entities. However, the examination 

of types as features of entities is very limited (as Liu and Wilde's work [LIU90] was 

limited) by ignoring a large amount of information about the entities. Although the idea 

that two functions that use the same types wil l have a similar purpose can be a valid 

one, this has not been empirically validated. Schwanke's approach was also subtler in 

it's weighting of features. 

3.1.6 Rigi 

One of the most commonly used reverse engineering tools is Rigi, developed by Muller 

and others [MULL93]. The aim of Rigi is to provide comprehensive techniques for 

discovering, restructuring and analysing software structures. This involves not only 

forming clusters from the entities in the system but also specifying the interfaces 

between the clusters and creating different views of the system for certain target 

audiences. 

The basic representation form used by Rigi is a Resource Flow Graph (RFG), which is 

the same as the Resource Flow Diagram used by Choi and Scacchi [CHOI90] (see 

Section 3.1.3). There is no restriction on what the entities in the graph may be, as there 

was for an RFD. Two sets are identified based on this graph for each entity E: Prv(E), 

which is the set of all syntactic objects provided by E, and Req(E), which is the set of all 

syntactic objects required by E. 

Based on these sets a Composition Dependency Graph (CDG) is created, where nodes 

are subsystems (which can be functions, classes, data types or groups of these entities) 
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and edges are aggregation or composition relationships between the subsystems. 

Entities are not restricted to a single subsystem, which means that multiple hierarchies 

can be represented using one model. The interfaces between two subsystems Xand Fis 

a pair of sets ER(X,Y) and EP(X,Y). ER(XJ) is the set of exact requisitions of X from Y, 

which is the union of Req(X) and PrvfY). EP(X,Y) is the set of exact provisions of Xto 

7, which is the union of Prv(X) and ReqfY). 

Once these subsystems and subsystem interfaces are in place, their quality is assessed 

using a number of measures. Firstly, the interconnection strength IS(X, Y) assesses how 

strongly coupled two subsystemsXand Fare. This is defined as: 

IS(X,Y) = \ER(X,Y)\ + \EP(X,Y)\ 

Thresholds can be established and altered by the user of Rigi to establish what level of 

coupling is acceptable. Rigi also uses a measure to determine the common providers 

(clients) and required subsystems (suppliers) of a set of subsystems, in the hope that 

some of this set could be merged to reduce the interfaces between subsystems. For a set 

of subsystems M in an RFG G=(E,C), the common client subset CS(M) and the 

common supplier subset SS(M) are defined as follows: 

CS(M) = p| {e e E \< x,e >e E) 
x<zM 

SS(M)=f]{eeE\<e,x>eE} 

Rigi has become popular among software clustering researchers because it allows the 

user to incorporate their own clustering algorithms into the tool, while providing 

excellent visualisation methods and the basic metrics described above [MULL93, 

KOSCOOa]. However, it is unlikely that the average software maintainer will have the 

desire or time to adapt and use a tool in this way. 

3.1.7 Livadas and Johnson 

Livadas and Johnson [LIVA94] developed the earlier work of Liu and Wilde [LIU90] 

(see Section 3.1.4). They construct a framework for clustering, whereby a set of primary 

clusters is created automatically and a set of secondary clusters is created by the user 

refining the primary clusters. Three types of primary cluster identification methods are 

described: global-based, type-based and receiver-based. The first two approaches are 
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developments of Liu and Wilde's methods; Livadas and Johnson designed the receiver-

based approach. 

The global-based approach, as described by Liu and Wilde, clustered functions that used 

the same global variables. Livadas and Johnson describe two types of variable use that 

can be considered global but are not included by Liu and Wilde's method. Firstly, i f a 

language permits nested procedures (as Pascal does, for example) any variables defined 

by a procedure P are considered global by any procedures nested within P. Secondly, i f 

a global variable is passed as a parameter to a function, that function can be considered 

to use the variable. Livadas and Johnson also define the global-static approach for C 

code, whereby static variables are considered global and included in the analysis. 

Livadas and Johnson demarcate the type-based approach into three separate approaches; 

clustering based on the types of a function's parameters (parameter-type), clustering 

based on the types of a function's return value {return-value-type) and clustering based 

on the types of global and static variables used by the function (global-type). 

The receiver-based approach was provoked by the difficulty in assigning a function to a 

cluster when the variables and parameters it uses are spread over a number of clusters. 

Therefore, a receiver-parameter-type is defined as the type of a parameter of a function 

F that is modified in at least one execution path of F. By clustering according to 

receiver types, the chance of clustering functions with the types that they are most 

concerned with is increased. A receiver-global-type is also defined, allowing global 

variables (and static variables in C) to be used as receivers. 

Once these primary cluster identification methods have been run, the secondary 

methods can be used to collate and refine the results. Livadas and Johnson define a 

number of secondary methods, mostly based on relational database queries. For 

example, the union method combines the results of primary methods; the selection 

method only runs on a subset of functions and the deletion method allows the user to 

delete dependencies that do not reflect the true nature of the system. Liu and Wilde's 

supertype structure is also used to refine primary clusters that contain many types; by 

removing subtypes and leaving only the supertype, the cluster can be more clearly 

defined. 
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These refinements provide a more comprehensive approach to software clustering, 

especially by allowing the user to combine different views of a system. However, once 

again, the authors did not empirically test the approach and no real justification is given 

for the use of the methods they define. Furthermore, constructs such as pointers are not 

included by the approach. Although further work on Livadas and Johnson's 

representation methods, which include pointers, has been published, this has never been 

extended to the clustering methods they developed. 

3.1.8 Yeh 

Yeh, Harris and Rubenstein [YEH95] created an analysis tool, OBAD, which attempted 

to uncover abstract data types (ADTs) and objects in a software system written in a 

procedural language. An abstract data type is defined as 'one or more related data 

representations whose internal structure (private area) is hidden to all but a small group 

of procedures, i.e., the procedures that implement that abstract data type'. An object is 

defined as 'an entity which has some persistent state (only directly accessible to that 

entity) and a behaviour that is governed by that state and by the messages the object 

receives'. This means that objects are instances of abstract data types. 

Abstract data types are based around record types of a system and their internal fields 

and objects are based around global and other external variables. OBAD recovers ADTs 

and objects by building abstract syntax trees (ASTs) to represent the system. For ADTs, 

the nodes of the tree are record types and functions that use these record types and the 

edges are references by the functions to internal fields of record types. For objects, the 

nodes of the tree are functions and external variables and the edges are references by the 

functions to external variables. These approaches can be combined to create entities 

made up of record types, global variables and functions. 

Yeh et al [YEH95] list a number of problems with this approach, notably that OBAD 

often extracts ADTs and objects from library code which is not part of the main 

software system and also that the entities created when using the combined approach are 

often very large. Unfortunately, no solutions are offered to these problems other than to 

recommend that the users of OBAD examine and alter the resulting ADTs and objects 

themselves. 
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Also, OBAD does not attempt to partition a system; it only extracts as many ADTs and 

objects as it can find, which means the users of OBAD will have to collate this 

information to gain a full picture of the system. This could potentially take a long time, 

especially since legacy systems will have very convoluted and probably very large 

ADTs and objects. 

OBAD doesn't take into account non-record entities (such as pointers, arrays and 

strings) either, although Girard and Koschke [GIRAOO] describe ways to incorporate 

internal access to these entities. For example, a function which uses any index subscript 

of an array or any dereference of a pointer could be grouped with that array or pointer. 

3.1.9 Canfora 

Canfora, Cimitile and Munro [CANF96] developed a software clustering technique that 

uses a new metric, similar to Belady and Evangelisti's complexity measure, to assess 

the quality of a set of clusters. Their method is unique because, rather than attempting to 

simply reconfigure the clusters the method creates, the algorithm used actually alters the 

functions in the system to create more cohesive clusters. 

The system is represented using a variable-reference graph. A variable-reference graph 

is a directed bipartite graph where the nodes are functions and global variables and the 

edges represent uses of global variables by functions; these edges are directed from 

function to global variable. Canfora et al propose that, ideally, this graph should have 

the form of a set of isolated sub-graphs, each of which consists of a single global 

variable node and one or more function nodes that use the global variable. 

However, this is very rarely the case, as noted by Livadas and Johnson [LIVA94], 

because functions often use a wide range of global variables, especially in heavily 

maintained legacy systems. In particular, Canfora et al establish two types of 

undesirable links between functions and global variables: coincidental connections, 

which are the result of a function having two distinct purposes that use different global 

variables, and spurious connections, which occur when a function has a single purpose 

but the data structures supporting that function are badly designed. 

Canfora et al [CANF96] propose an algorithm that refines a system's initial variable-

reference graph by breaking bad connections until the graph has the form described 
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above. This algorithm uses Canfora et al's Internal Connectivity (IC) metric, which is 

defined as follows. 

For each node n in the graph, where N is the set of global variables and functions that 

make up the nodes of the graph and E is the set of edges that join them, two sets are 

defined: 

preSetQi) = {y\ysN A(y,n)eE) 

postSet(n) = {y\yeN A(n,y)eE) 

I f n is a function, preSet(n) will be empty and postSet(n) wil l consist only of global 

variables. I f n is a global variable, preSet(n) wil l consist only of functions and 

postSet(n) wil l be empty. Following the definition of these sets, a set of subgraphs is 

created, one for each function in the graph. A subgraph of a function / is the set of 

variables/uses and the set of functions that use those variables, described as follows: 

V ( f ) = postSet(f) 

F(J) = (J { f > \ f i G preSetid) ApostSet(Jt) c postSei(f)} 
d£ postSet(f) 

Based on these sets, the internal connectivity index of the subgraph of function / is 

defined as the ratio between external and internal edges of the subgraph of / : 

Z # ( / \fizpreSet{d)APostSet(fi)cpostSet{f)} 
TC( f \ = d € P ° s ' S e l < - f ' ) 

^#preSet(d) 
d^postSet(f) 

This index is used to calculate the array AIC, which contains an entry for each function. 

AIC(f) is the difference between IC(f) and the IC value for all subgraphs merged 

together: 

A / C ( / ) = / C ( / ) - T m\postSet(fi) = {d}} 
dzpo^eKf) #preSet(d) 

The AIC value of a function is used to assess the cohesiveness of the function and the 

elements it is connected to. I f the AIC value is high, the subgraph of the function is 

clustered into a single node. I f it is low, the function is sliced into a number of separate 

functions, one for each global variable it uses. Each of the new functions will represent 

the old function's use of a single global variable. The threshold for AIC that determines 

whether a function should be clustered or sliced is specified by the user of the system; 
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Canfora et al suggest this is assisted by assessing the cohesiveness of a subset of the 

whole system before using the algorithm [CANF96]. 

As stated earlier, this calculation of the AIC array and the subsequent clustering of 

cohesive functions and slicing of incoherent functions continues until the variable-

reference graph is a collection of isolated subgraphs containing one global variable and 

the functions that use it. 

This approach was tested on very small software systems (<10KLOC) but shows 

promise based on these tests. It successfully identifies functions with low cohesion and 

attempts to adjust the system to improve this cohesion and avoids the bad decisions 

made during other techniques' clustering processes by continually assessing the state of 

the system graph. However, as with many other techniques, the process may need some 

adjustment by the user in order to produce good decompositions of the system. The 

major flaw with the method is that, although slicing functions to improve cohesion is 

possible for a reuse or reengineering approach, it is completely unacceptable for a 

program comprehension approach, where the system must remain intact. Further work 

on this method has been done to overcome this flaw [CANFOO] (see Section 3.1.13.3). 

3.1.10 Cimitile & Visaggio 

Software clustering methods have been used for reuse reengineering, which attempts to 

create reuse components by extracting cohesive clusters from legacy code. One of these 

approaches is Cimitile and Visaggio's dominance tree analysis [CIMI95]. This method 

is based on functional abstractions of a system. 

Cimitile and Visaggio use aggregation, which links several functions together i f they 

have a combined purpose (as opposed to Canfora et al's isolation, where functions with 

multiple purposes were sliced into separate functions with a single purpose [CANF96]). 

This is done by creating a graph of the system, where nodes are functions and the 

directed edges are all the calls from one function to another, and converting this call 

graph to a dominance tree. 

Cimitile and Visaggio define the dominance relation between functions as follows: 

I f px and py are two nodes in a call directed graph, then px dominates py i f px is 

in all paths in the graph from the start node s to py. 
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The start node s dominates all other nodes and so is the root of the dominance tree. By 

constructing a dominance tree, it is possible to see how the system's functionality is 

implemented by the functions in the system and how these functions can be clustered. 

Once the dominance tree has been created, the user can select subtrees of this tree to 

form clusters (or reuse candidates) of the system. 

There are two different types of dominance relation: direct dominance and strong 

dominance (also called strong direct dominance), px directly dominates py if, for all 

nodes which dominate py, they also dominate px. This means every node in the call 

graph wil l have a unique direct dominator (apart from s) and, i f px directly dominates 

py, there will be an edge (px,py) in the dominance tree. 

px strongly dominates py i f px directly dominates py and px is the only node in the call 

graph calling py. It can be inferred from this that i f px only directly dominates py, other 

nodes call py but these nodes are not as dominant over py as px is. 

The major drawback of this approach is that cycles cannot be represented in the 

dominance tree because each node in the cycle must dominate every other node. 

Therefore, these cycles are collapsed into a single cluster before the dominance tree is 

created. I f there are large cycles in the system, which can commonly occur in legacy 

systems, there is a large loss of information to the clustering process. 

In Cimitile and Visaggio's original description of the dominance relation [CIMI95], 

only the call structure of the system is examined and the data structures of the system 

are not considered in any way. This is out of step with most software clustering 

methods, which advocate an object oriented approach to clustering, and the results 

achieved using dominance trees in this way have not been particularly promising 

(Cimitile and Visaggio's experiments resulted in only 42% of the source code being 

covered by clusters found using the dominance tree). However, the approach has been 

extended to include data structures by Koschke [KOSCOOa], which has produced more 

detailed results. 

3.1.11 Bunch 

Bunch ([MANC98], [MANC99], [DOVA99]) is a tool developed by Mancoridis and 

others that implements a graph-based software clustering technique. Bunch uses a 

36 



Module Dependency Graph (MDG) to represent the software system to be analysed. 

The nodes in an MDG can be any entity in the system including classes and functions 

but are usually files. An MDG has directed edges that represent the relationships 

between entities; these relationships can be anything that can be extracted from the 

source code [MANC98]. 

Using files as entities allows large systems to be analysed more efficiently than using 

functions as entities. Descriptions of files can be much richer than descriptions of 

individual functions because they form a larger, more complex code sample. However, 

it assumes that the functions and data items in a file are located correctly, as there is no 

way to change the contents of the files themselves, only the way the files are clustered 

together. This is often a necessary assumption because using functions as entities in a 

very large system is not computationally realistic. 

Bunch attempts to partition the MDG meaningfully using a genetic algorithm, which is 

an alternative to more common hill-climbing algorithms. During the execution of a hill-

climbing algorithm, it is possible to reach a local optimum, where there is no clear 

superior next step in the process. Genetic algorithms overcome this by randomly 

altering the input data to the algorithm insignificantly, which resolves the conflict 

between two identical clusters [DOVA99]. 

The metric used to run the genetic algorithm is based on inter-connectivity and intra-

connectivity indexes, similar to those developed by Belady and Evangelisti [BELA82] 

(see Section 3.1.1) and Canfora [CANF96] (see Section 3.1.9). However, Bunch's 

metric is coarser than previous definitions because it does not count the number of 

dependencies between modules; this means that i f module A has one link to module B 

and one hundred links to module C, B and C are considered equally similar to A. The 

authors claim they are redefining inter-connectivity and intra-connectivity to take 

account of these weightings [MANC99]. 

Bunch provides a useful approach to software clustering and the authors have achieved 

good results with their method [MANC99], although it has not been compared to more 

traditional hierarchical algorithms and so the value of using a genetic algorithm is 

unknown. Also, the use of Bunch may be restricted to a certain size of software system; 

small systems wil l usually not contain enough files for the process to be worthwhile and 
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the computational intensity of genetic algorithms could possibly make the method 

inadvisable for very large systems. 

3.1.12 Tzerpos & Holt 

Tzerpos and Holt's research has focussed on more general assessment of software 

clustering techniques rather than the proposal of their own techniques; this general work 

is discussed in more detail in Section 4.2. However, based on their general work, they 

have proposed a new software clustering technique known as ACDC [TZEROOb]. 

Tzerpos and Holt have noted that many software clustering researchers are focussed on 

improving the performance and accuracy of software clustering techniques, sometimes 

at the expense of the comprehension of the representations these techniques produce 

[TZEROOa], The ACDC algorithm, therefore, is focussed on improving the 

comprehension of the results of such a method. Three features of a comprehension-

driven clustering process are described: 

• Effective cluster naming, clusters should be named according to their contents rather 

than by some arbitrary numeric scheme. 

• Bounded cluster cardinality, very cohesive clusters are no good i f they are very 

large and difficult to understand. Therefore, clusters should be limited to an easily 

comprehensible size. 

• Pattern-driven approach, certain patterns often occur when humans create 

decompositions of legacy systems and so decompositions containing these patterns 

are easier to comprehend. 

A list of possible patterns is provided, including a source file pattern, where all elements 

of a source file are placed in one cluster, and directory pattern, where all elements from 

a subtree of the directory structure are placed in one cluster. 

The ACDC algorithm has two stages: skeleton construction and orphan adoption. 

Skeleton construction examines the occurrence of different patterns in the source code 

and creates clusters as the patterns are uncovered. The clusters are named based on the 

filenames of the files they originate from. 
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Orphan adoption [TZER97] attempts to place any entities that have not been clustered 

using skeleton construction and reassign any entities where there is slim justification for 

their current clustering. Once the set of orphans have been identified, an algorithm is 

used to incorporate orphans into the skeleton clustering of the system. The algorithm is 

based on a range of formal and informal criteria and each orphan is placed with 

whichever cluster depends upon it most according to these criteria. 

Tzerpos and Holt achieved better results with ACDC than most other software 

clustering algorithms; this is particularly notable because, unlike many software 

clustering methods, ACDC has been tested on large software systems such as Linux. 

However, these results were achieved by comparing the clusterings ACDC produced 

with the expert clusterings of the maintainers. As ACDC is largely based on the 

programmer's interpretation of the software's structure (through file naming and 

directory construction) these better results are to be expected. 

It is felt that, in terms of program comprehension, one of the main aims of software 

clustering techniques should be to discover the actual structure of the system from a 

low level in order to uncover flaws in the programmers' current mental model. While 

ACDC can be used as an input to this process, it is felt that it is not sufficient to rely on 

it as a software clustering method. 

3.1.13 Bauhaus 

The Bauhaus group, led by Koschke and Girard, have proposed a number of new 

software clustering techniques as part of their evaluation of software clustering, which 

is described in detail in Section 4.3. Koschke and Girard's software clustering 

techniques are based on their ability to extract three basic kinds of low-level 

components: 

• ADT- abstract data type : an abstraction of a type which encapsulates all the 

type's valid operations and hides the details of the implementation of those 

operations by providing access to instances of such a type exclusively 

through a well-defined set of operations 

« ADO - abstract data object: a group of global variables together with the 

functions that access them 

o HC - hybrid components: cross-breedings of ADTs and ADOs containing 

functions, variables and types. 
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The main distinction between an ADT and an ADO is that there can be many instances 

of an ADT but only one instance of an ADO in a software system. Koschke and Girard 

consider these as the smallest components that are significant at the architectural level 

[GIRAOO]. The term related subprograms (RS) is also defined as a set of subprograms 

that together perform a logical function and so have functional cohesion. The four new 

techniques defined by Koschke and Girard are now described. 

3.1.13.1 Same Module Heuristic 

The Same Module heuristic, an original approach by Koschke and Girard [GIRAOO, 

KOSCOOa], creates ADOs and ADTs by grouping functions with types or global 

variables that belong to the same module or file as the functions. This is similar to the 

basis of Tzerpos and Holt's ACDC algorithm [TZEROOb] (see Section 3.1.12). The 

heuristic assumes that the programmers of the software system have generally used 

good information hiding principles throughout the evolution of the system, which is 

often not the case. 

3.1.13.2 Same Expression Heuristic 

Koschke [KOSCOOa] also proposed the Same Expression Heuristic, which considers 

variables or parts of types that are used in the same expressions. Koschke proposes 

clustering entities with variables or types that they use i f those variables or types appear 

in the same expressions. These expressions can either be statements within a function or 

parameters in the call to a function. Clusters that are produced using this approach that 

only contain one entity are disallowed. 

3.1.13.3 Revisited Delta I C Approach 

Canfora, Czeranski and Koschke [CANFOO] extended the Delta IC approach developed 

by Canfora et al [CANF96] (see Section 3.1.9) to make it appropriate for program 

comprehension rather than restructuring by disallowing the slicing of functions with a 

low AIC value. The approach is also extended to cover types and cohesion. 

To avoid the slicing of poorly constructed functions, the revised approach to Delta IC 

allows overlapping candidates to remain in the representation while the clustering 

process is being executed. These overlapping candidates are then merged depending on 

the level of overlap between them. 
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The original Delta IC approach extracts ADOs only; the revised approach is extended to 

extract ADTs as well. ADOs hide global variables that are only manipulated by 

functions in the ADO. ADTs hide the underlying data structure of a type but leave the 

type itself open. This data structure can be uncovered by considering abstract and non-

abstract usage. 

Non-abstract usage of a global variable G can be either use of G by a function outside of 

the cluster G belongs to or use of G by a function inside the cluster. Abstract usage is 

non-direct usage whereby a function uses G by calling an accessor routine of G. A non-

abstract usage of a type is a direct access to an element of an instance of the type. For 

example, accessing a field of a record, an index subscript of an array, or dereferencing a 

pointer can all be considered as non-abstract usages. An abstract use of a type is 

manipulation of the type by a function through an accessor routine of the type. 

It is desirable to recluster functions when there are non-abstract usages of types and 

global variables by functions that are outside of the cluster the types or variables belong 

to. This can be done by redefining preSet and postSet from their original definitions by 

Canfora [CANF96] for a component S and a function belonging to S, e: 

preSet(S, e) <=> reference(S, e) v (type(S, e) A non - abstract(S, e)) 

preSet(e) = {S\preSet(S,e)} 

postSet(e)={e\postSet(S, e)} 

Here, reference(S,e) is the set of global variable references by e, type(S,e) is the set of 

type references by e and non-abstract(S,e) is the set of non-abstract usages of data items 

by e. 

Koschke and Girard found that this revised approach does provide more appropriate 

clusters than the original Delta IC approach (described in Section 3.1.9) and will allow 

Delta IC to be used to program comprehension rather than restructuring; however, the 

user still has to define the Delta IC threshold, which can be time-consuming to establish 

and which wil l be different for each software system. 

3.1.13.4 Similarity Clustering 

The culmination of Koschke and Girard's work on automatic software clustering 

methods is a technique called Similarity Clustering ([GIRA99], [KOSCOOa]), which is 

based on Schwanke's Arch approach [SCHW91]. Similarity Clustering develops the 
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metric presented by Schwanke and incorporates a wide range of descriptive features of a 

software system, many of which can be weighted and adjusted as the user sees fit. 

Similarity Clustering uses a basic hierarchical algorithm, resulting in a dendrogram. 

Firstly, the similarity between each pair of entities is calculated based on a number of 

criteria. The clustering can then take place, with the similarity values between two 

clusters Xand Ycalculated using the following equation: 

GSim(X,Y) = ^ ^ 
size(X) x size(Y) 

The similarity value between a pair of entities A and B is calculated using the following 

overall equation: 

In Koschke and Girard's original definition of Similarity Clustering [GIRA99], 

similarity values were normalised to have a value between 0 and 1. However, the later 

definition in Koschke's thesis [KOSCOOa] does not normalise similarities. This is 

perhaps due to the fact that non-normalised values allow the number of times a feature 

occurs between two entities to contribute to the similarity value. The three parameters 

X], X2 and x3 govern the relevance of the three main parts of the equation. These parts, 

Simindirect(A,B), Simdirect(A,B) and Siminformai(A,B), are now defined. 

Direct relations, represented by Sintdirect(A,B), are relations concerning A and B alone, 

represented by connections between A and B. These are defined by the following: 

Simdirecl(A,B) = W(Link(A,B)) 

where Link(A,B) represents the set direct links between A and B. The W signifies that 

the links in this set will be weighted; the precise method of weighting is described after 

the definition of Simindirect(A,B). 

Indirect relations, represented by Simindirect(A,B), are relations between A and B via some 

third party. These are defined by the following: 

s . m ( A B ) = / „ x W{Commoneq{A,B)) + W{Commonne(A,B)) 

indirect K ^ x W{Commoneq + w{Commorim {A, B)) + d- W(Distinct(A, B)) 

Here, Commoneq(A,B) and Common„e(A,B) represent the common features of A and B. 

Commoneq(A,B) is the set of equivalent features of A and B, where A and B's common 
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neighbours are used in the same way. For example, i f A and B both return a value of the 

same type, they use this type feature in an equivalent fashion. Commonne(A,B) is the set 

of non-equivalent features of A and B, where A and B's common neighbours are used 

in different ways. This means i f A returns a value of a certain type and B takes a 

variable of this type as a parameter, this type feature will be part of Common„e(A,B). Ieq 

determines the influence of equivalent features, which should be higher than the 

influence of non-equivalent features because a common use of a common neighbour is 

more significant than just a common neighbour that is related in different ways 

[KOSCOOa]. 

Distinct(A,B) represents distinct features and d represents the influence these features 

have. The inclusion of distinct features as a mark of similarity is not necessarily 

desirable, but its use can avoid finding two entities similar which share one common 

feature but are otherwise different, which may happen i f only common features are 

considered. 

The weighting of features uses Shannon information content, as Schwanke's Arch 

approach did [SCHW91]. The weight of a set of features (as used above) is defined as: 

W(X) = ^weight (x) 
X£X 

The weight of an individual feature is calculated using a combined weight strategy. This 

involves taking into account the probability of the class of feature occurring within the 

particular software system being analysed. It also takes into account the number of 

features that describe the current entity. This is computationally expensive but provides 

a greater depth of description than any other software clustering technique. 

Similarity Clustering also uses informal features in a more detailed way than any other 

software clustering technique [GIRA99]. Although it does not consider comments 

describing an entity to be features of the system, names of identifiers are considered 

valid features. These are included both as whole words and as common parts of words. 

Filenames used are also considered. Siminformai(A,B) is defined as follows: 

SimM ormal (A,B) = Simwords (A,B) + Simsuffix (A,B) + Simfilename (A,B) 

Simwords(A,B) is the set of common words of A and B. These words are taken from the 

names of identifiers within A and B. These identifiers are separated when underscores 
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are encountered (for example, listinsert counts as two words) or capital letters are used 

(Listlnsert would also be separated into two). 

Similar information is contained by the set Simsufflx(A,B), which is defined by the 

following: 

c- rvv\ prefix(X,Y) +postfix(X,Y) , v . , v 
S i m s u f f i x ( X , Y ) = — when X * Y; 1 when X=Y 

^ \ + prefix(X,Y) + posifix(X,Y) 

Here, prefix(X,Y) and postfix(X,Y) are the lengths of the common pre- and postfix of 

their two arguments i f the length is longer than three characters; otherwise they are zero. 

Simfiiename(A,B) uses SimSUfflx(A,B) to match common bodies of filenames. For example, 

list.c and list.h may be grouped together based on the common prefix list. 

Simfilename{XJ) = Sim^ffix(filename{X),filename(Y)) 

The similarity metric used for Similarity Clustering is clearly the most complex metric 

devised for software clustering and is computationally expensive. There are also a large 

number of parameters that must be altered by the user depending on the software system 

being analysed and the purpose of the analysis in order to use the metric successfully. 

Koschke provides a number of iterative methods for defining these parameters 

[KOSCOOa], such as using a Simulated Annealing algorithm to refine an assumed 

parameter value, and also suggest some practical edge weightings that can be refined 

depending on the system being analysed. 

3.2 Concept Analysis Techniques 

This section describes in detail the basic method used to perform concept analysis and 

the representation that is often used to display sets of concepts, the concept lattice. The 

work done by individual researchers to improve the results provided by the basic 

concept analysis method is then discussed. 

Concept analysis requires a description of the system based on entities and features. As 

with cluster analysis, the descriptions frequently use functions as entities and use of 

global variables, user-defined types and other functions as features [SIFF97]. Most 

current approaches, which have been tested on COBOL systems, only use global 
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variables to describe the system, but there is no reason why any of the features used by 

the software clustering techniques that have been described in this chapter couldn't be 

used for concept analysis. 

Concept analysis descriptions are usually binary relations [LIND97], which are only 

able to record the presence or absence of a feature; the strength of a feature's presence 

(such as the number of times a global variable is used) cannot be included in the 

description. This weakens the quality of the description, especially for software where 

the repeated use of a variable or type strongly suggests that that variable or type should 

be clustered with the function using it. 

f l f2 fi f4 f5 
el X X 
e2 X X X X 
e3 X X 
e4 X 
e5 X X 

Table 3.1: Example binary relation for concept analysis 

Table 3.1 shows an example description of a software system containing five entities 

(eJ-e5) and five features (/J-f5). I f an entity uses a feature, an X is added in the 

appropriate place in the table. The table is, formally, a relation T czExF where E is the 

set of entities and F is the set of features. From this relation, concepts can be defined. A 

concept is a collection of entities and features such that the entities in the concept share 

the features in the concept. This can be defined specifically by considering the sets E 

andi\ 

For a subset of entities A belonging to E, the set of common features of A is defined as: 

a(A) = {fGF\\/eeE:(e,f)eT} 

For a subset of features B belonging to F, the set of common entities of B is defined as: 

T(B) = {eeE\VfcF:(e,f)eT} 

A concept is a pair of sets (A,B) of entities and features such that B = a{A) and 

A = t(B). The set of entities A is known as the extent of the concept and the set of 

features B is known as the intent of the concept. 
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top ( { d , 62, 63, e4, e 5}, </>) 
Co ({ei, e2, e3, e 5}, { f 2 } ) 
Cj ({62, e 4}, { f 3 } ) 
c2 ({e 2 , e 5}, { f 2 , f 5 } ) 
C3 ( { e i , e 3 } , ( f i , f 2 » 
C4 ({e 2 }, { f 2 , f 3 , f 4 , f 5 } ) 
bottom 

Table 3.2: Example set of concepts 

Table 3.2 shows the set of concepts that is created by analysing the binary relation in 

Table 3.1. This set of concepts can be represented using a concept lattice (see Figure 

3.3), also known as a Galois lattice [SAHR99], which has a hierarchical structure 

similar to a dendrogram. Unlike a dendrogram, however, overlapping concepts can be 

represented in the lattice, meaning that no (possibly incorrect) decisions need to be 

made as to which entities and features fit with which concepts. 

top 

c3 c2 

0 f5 

HIED e5 

bottom 

Figure 3.3: Concept lattice example 

Each node in the lattice represents a concept (cO to c4 in Figure 3.3). There are special 

concepts at the top and bottom of the lattice. The top node represents a concept 

46 



containing all entities but no features. The bottom node represents a concept containing 

no nodes but all features. The lattice is constructed so that, as the paths of the lattice 

progress downward, the extent of each concept node becomes smaller and the intent of 

each concept node becomes larger [DEUR99b]. 

Because each concept can have many elements, the nodes are labelled with a feature (fl 

to f5 in Figure 3 .3) i f it represents the largest concept with that feature in its intent and 

with an entity {el to e5 in Figure 3.3) i f it represents the smallest concept with that 

entity in its extent. This labelling strategy means that the lattice can be used to observe 

both which features are used by an entity and which entities share these features by 

traversing the lattice. It is also easy to identify disjoint sets of entities and features that 

could possibly form a module by isolating a set of concepts which form a path from the 

top node to the bottom node in the lattice. 

However, the concept lattice still has the same problem as the dendrogram and other 

system representations, in that further analysis is required to produce a high level 

abstraction of the system. Although concepts themselves can be used to form abstract 

data objects, this is not ideal to create a complete abstraction because concepts can 

overlap; also, each concept may be too small or too large to form a suitable ADO. 

Concept analysis researchers have proposed various different ways of dealing with this 

problem. 

Lindig and Snelting [LIND97], claimed that, i f a concept lattice for a system is 

horizontally decomposable, the system could be modularised. A lattice is horizontally 

decomposable i f it consists solely of independent substructures that are connected only 

via the top and bottom nodes. 

This is very unlikely for a legacy system and so Lindig and Snelting also describe a 

method for dealing with interference. Two sets of entities are said to be coupled i f they 

use the same features, and two sets of features are said to interfere i f they are used by 

the same entities. Interferences must be dealt with in order to create suitable modules. A 

small number of interferences is permissible because the entities they affect can be 

placed in the same module. It may also be possible to perform some simple program 

transformations in order to destroy the interference, for example by defining an accessor 

function for a variable rather than accessing the variable directly. 
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However, i f there are a very large number of interferences or the system itself is very 

large (or both, as is common for legacy systems) it is often not possible to deal with the 

interferences sufficiently in order to produce a horizontal decomposition of the lattice. It 

is also very difficult to comprehend such a lattice because of the large number of 

connections between concepts. In fact, the reverse engineering project where Lindig and 

Snelting attempted to use concept analysis had to be abandoned because the concept 

lattice proved too convoluted to provide any usable results [LIND97]. 

Siff and Reps [SIFF97] attempt to formalise the partitioning problem by defining a 

concept partition. A concept partition contains no overlapping concepts and is 

equivalent to a collection of modules such that every function in the program is 

associated with exactly one module. Two special partitions are defined; the atomic 

partition, which is where there is only one function in each module, and the trivial 

partition, where all functions are placed in the same module. These are equivalent to the 

first and last partitions in a dendrogram. 

Siff and Reps claim that it is possible to discover all concept partitions in a concept 

lattice and that an atomic partition is a good starting point for discovering a good 

modularisation of the system. However, not all lattices will contain an atomic partition 

depending on how the concepts overlap so this may not be possible. 

Unfortunately, Siff and Reps do not propose a method for choosing a good partition 

from the set of all partitions, the lack of which is still a problem for using dendrograms 

as well. This is a very significant problem, especially because the case study performed 

by Siff and Reps on a code sample of just one thousand lines produced 153 partitions of 

the concept lattice. 

For actual industrial sized legacy systems it is thought that some automatic refinement 

of the concept lattice or the set of concept partitions must be included into the concept 

analysis process i f it is to be usable. Canfora et al [CANF99] propose some simple 

refinements of the concept lattice, such as isolating highly connected functions or 

sublattices only connected to the rest of the lattice by the top and bottom nodes, but it is 

thought that the remaining lattice will still be very difficult to comprehend and partition. 
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In conclusion, the concept lattice suffers the same major problems as the dendrogram, in 

that they are both difficult to partition and understand both manually and automatically. 

The concept lattice has the distinct advantage that all possible concepts are included in 

the lattice and no modularisation decisions are made during its construction, unlike the 

dendrogram where bad decisions early in the clustering process terminally affects the 

rest of the process. However, the creation of the concept lattice is computationally 

expensive and it is unknown whether concept analysis techniques will scale up 

successfully to industrial legacy systems as opposed to the small case studies current 

concept analysis researchers have relied on. 

3.3 Conclusion 

Such a mass of different techniques, each with their own frame of reference and style, 

makes it very difficult to attempt a coherent assessment of software clustering and 

concept analysis techniques on any general terms. Luckily, in recent years, some 

general work has emerged that attempts to analyse, compare and classify these 

techniques. This work is described in the following chapter. 
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CHAPTER FOUR - Software Clustering Assessment 

With the ever-increasing number of software clustering techniques, more general work 

has emerged in the field, either attempting to compare and classify existing techniques 

or to solve common problems of clustering methods. This work is concerned with 

software clustering techniques only; concept analysis techniques have not yet been 

considered in a general context. This chapter describes some of the work that has 

attempted to assess the field of software clustering. 

4.1 General Surveys 

Lakhotia [LAKH97] provided the first major survey of software clustering methods and 

also created a framework for classification. Various terminology, notation and symbols 

are defined to describe the inputs, outputs and processing of SCTs (subsystem 

classification techniques). This framework is used to reformulate many different SCTs, 

including some of the ones described in Chapter Three. The stated aim for the 

framework is to allow comparison of SCTs to ease the selection of an SCT for a 

particular purpose and to allow 'mixing and matching' of SCT elements to experiment 

with and create new SCTs. 

Unfortunately, Lakhotia does not attempt any comparison of the SCTs that have been 

reformulated and, so far, no one else has used the framework to do so. This is possibly 

because the developed framework is difficult to understand, due to its use of many 

unfamiliar acronyms and symbols. Furthermore, because of the variety of software 

clustering techniques, it is still necessary to describe the techniques in a fair amount of 

detail even within the framework, and the terminology tends to make these descriptions 

more difficult to understand than the original authors' descriptions. 

A more successful approach is taken by Wiggerts [WIGG97], who presents his 

approach to software clustering algorithms from the field of cluster analysis rather than 

reverse engineering. This view throws new light on many existing methods by looking 

at them conceptually rather than tied to a particular software paradigm or architecture. 

Although other researchers had already used methods developed in other disciplines, 

50 



Wiggerts was the first to highlight the link between traditional cluster analysis and 

software clustering. He defined the terms entity and feature as they are used here and 

specified three questions which must be answered to apply cluster analysis, which 

roughly correspond to the identification of entities, clustering criterion and clustering 

algorithm described in Section 2.2.2: 

What are the entities to be clustered? 

- When are two entities to be found similar? 

- What algorithm do we apply? 

A basic classification of features, similarity metrics and clustering algorithms is also 

included, many of which had not been applied to software clustering when Wiggerts 

presented his work and some of which have still not been used in a reverse engineering 

context. 

Wiggerts's work was developed by Anquetil and Lethbridge [ANQU99], who attempted 

to use a number of the methods Wiggerts described for reverse engineering purposes. 

Only metric-based, hierarchical approaches were assessed, which limits the usefulness 

of the survey. However, there is a good description of the possible features that can be 

used to describe the possible entities of a system. 

In particular, Anquetil and Lethbridge make a good case for the use of informal 

information such as identifiers or comments in the code for clustering, i f used in 

conjunction with more formal features. They note the need to combine features to 

construct a useful view of the system, but claim that there is much redundancy between 

formal features (for example, reference to a global variable implies there is a reference 

to the type of that variable) and the low-level nature of formal features makes it difficult 

to extract abstract concepts. Informal information can be used to better recognise the 

semantics of a system and, by doing so, decrease the redundancy of the system 

representation by more strongly identifying syntactically similar entities. 
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4.2 Tzerpos & Holt 

Tzerpos and Holt were among the first researchers to propose methods to assess the 

representations produced by software clustering techniques, as well as providing a 

general framework for software clustering techniques. Their work is now described. 

4.2.1 Framework and Comparison 

Possibly the most useful survey of software clustering methods is 'Software 

Botryology' (see Section 2.2.2) by Tzerpos and Holt [TZER98]. This provides a 

succinct description of some of the major software clustering approaches and a 

framework for a generalised software clustering technique, which is described (adapted) 

as follows: 

1. Data collection - relevant information is extracted from source code 

2. Initial screening - the data is massaged to suit the purpose of the technique 

(for example, removal of library functions) 

3. Representation - an appropriate similarity measure is chosen 

4. Clustering strategy - a clustering algorithm is chosen and any parameters 

needed to run the algorithm are set 

5. Validation - the resulting clusters are validated, usually by the maintainer 

6. Interpretation - the results are compared with other studies in an attempt to 

improve the clusters and clustering process 

Tzerpos and Holt also list some of the major research issues with software clustering 

techniques, including which features, similarity measures and clustering algorithms are 

appropriate for software clustering and also the need to test software clustering methods 

on large systems and dynamic systems. Many of the problems they list have been solved 

to some extent by the work of Koschke and Girard (see Section 4.3). However, Tzerpos 

and Holt have done much interesting further work on the use of software clustering 

methods over a period of time, rather than as a single instance preventative maintenance 

measure. 

Tzerpos and Holt's subsequent work has focussed on ways to compare software 

clustering algorithms and their results, which has led to the definition of MoJo, a 

distance measure which can be used to compare two clusterings of a software system 

[TZER99]. Three reasons are given for the definition of the Mo Jo metric. Firstly, many 
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existing software clustering methods incorporate parameters that are used to fine-tune 

the results of the method; MoJo can be used to assess the influence of these parameters 

Secondly, where an expert clustering of the system exists, MoJo can be used to assess 

the results of software clustering methods against it. Finally, the stability of software 

clustering algorithms can be assessed by using MoJo on clusterings of different versions 

of a system. 

Tzerpos and Holt have used MoJo in further work on the stability of software clustering 

algorithms [TZEROOa]. Working from the point of view that software clustering is more 

appropriate for program comprehension than restructuring, it is thought that the results 

produced by software clustering algorithms should keep the same basic structure i f only 

a small amount of the system is changed, because this aids the comprehension of the 

clustering results. 

Therefore, Tzerpos and Holt tested a number of hierarchical algorithms on various 

systems to assess their stability using MoJo. This work suggests that MoJo is 

appropriate for assessing stability but that a wider range of algorithms need to be tested 

to claim this with any certainty. As MoJo has been used to test a number of algorithms 

for this thesis, a full description of the algorithm used to calculate MoJo is now 

provided. 

4.2.2 MoJo Description 

MoJo is a comparison between two clusterings of a software system; more specifically, 

it represents the distance between two partitions of the same set of entities. This 

distance is the minimum number of operations needed to transform one partition into 

the other. Two operations are allowed: move and join. Each operation has a weight of 1. 

The smaller the number of move and join operations required to transform one partition 

into the other, the more similar the partitions are. 

A move operation consists of moving an entity from one cluster to another. This 

includes moving an entity to a new cluster; creating the new cluster incurs no additional 

cost. 

A join operation joins two clusters together. Because there is only one way to join two 

clusters together, the operation has a weight of 1. 
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Because there are many ways to split a cluster in two (as the entities can be moved with 

different orders), splitting a cluster into two separate clusters must be considered a 

series of move operations. 

This difference between splitting and joining means that the minimum number of 

operations (mno) needed to transform a partition A into a partition B is not necessarily 

the same as the minimum number of operations needed to transform B into A. Tzerpos 

and Holt therefore define MoJo(A,B), where A and B are two partitions of the same set 

of entities S, as: 

MoJo(A,B) = min ( mno(A,B), mno(B,A)) 

The set S must consist of distinct clusters of equal stature. For example, i f a dendrogram 

has been produced by the clustering method, S must consist of a single partition of the 

dendrogram and cannot include clusters from other partitions. 

Because there are many different ways to transform one partition into another, it can be 

very time-consuming to calculate the minimum number of operations needed to perform 

the transformation, especially for large sets of entities. Therefore Tzerpos and Holt 

propose a heuristic algorithm that calculates an approximation of the value of MoJo 

[TZER99]. 

Tzerpos and Holt claim that a MoJo value calculated for representations of two slightly 

different software systems produced by a clustering algorithm should be roughly the 

same as the amount of change between the software systems themselves. In Tzerpos and 

Holt's original experiments with the MoJo distance metric, a MoJo value was calculated 

between a code sample and that same code sample with 1% of the system altered. This 

experiment was repeated 100 times. Tzerpos and Holt found that the MoJo value 

calculated was less than 1% of the total size of the system in over 80% of the 

experiments, which suggests that MoJo values broadly correlate with the amount of 

change in the system the MoJo values are calculated on. 

4.2.3 MoJo Algorithm 

The following strategy is used to calculate an approximation of the minimum number of 

operations needed to transform a cluster partition A into a cluster partition B 

(mno(A,B)). Let Ah ! < / < / , be the clusters of partition A and Bh 1 <j < m, be the 
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clusters of partition B. In order to limit the number of moves to be performed, it is 

necessary to keep as many entities in each cluster in partition A as possible. Therefore, 

each cluster Bj in partition B is assigned a centre cluster from partition A. 

The centre cluster of a cluster Bj (denoted CQ) is the cluster At that contains more 

entities from Bj than any other cluster in A. Essentially, CQ is the most similar cluster 

in partition A to Bj. The aim of the algorithm is to convert each CQ into Bj. 

A simple strategy to accomplish this would be to move each entity that is in Bj and not 

in CQ from its current cluster in A to CQ. However, it is possible that, by joining 

certain clusters together, some of these moves could be avoided. Therefore, there are 

two main steps to the algorithm; calculate the set of centre clusters and look for 

profitable joins. These steps are now described. 

4.2.3.1 Calculating centre clusters 

To calculate the set of centre clusters, it is first necessary to tag the entities in partition 

A with their corresponding entities in partition B. Each entity e in partition A is 

assigned a tag 7}, \<j<m, such that 7} = Bj, where Bj is the cluster that entity e 

belongs to in partition B. A,{Tj) is now defined as the set of entities in cluster^, which 

are tagged 7}, and therefore can also be found in cluster Bj. This tagging means that it is 

only necessary to consider the tags in the clusters of partition A to calculate MoJo. 

Centre clusters can now be assigned to each cluster Bj. CQ is a cluster A( in A such that 

A, ;(T})| > \Ak (T} )|,1 < k < I. It is possible that more than one cluster could fit this 

description; i f this is the case, one of these suitable clusters is chosen arbitrarily. 

Because the aim is to transform each centre cluster CQ into cluster Bj, it is essential that 

each cluster At is centre cluster to only one cluster Bj. I f there is a situation where one 

cluster Az is centre cluster for two clusters Bx and By in partition B so that CCX = CCy = 

Az, action must be taken to ensure that Bx and By in partition B have different centre 

clusters. There are two ways to do this. 

Firstly, it may be possible to find other suitable centre clusters for Bx or By. Because 

CCX = CCy = Az, Az must contain the largest sets Aj(Tx) and A,{Ty) for any cluster A,. 

Therefore, the clusters in partition A containing the second largest sets A,(TX) and Aj(Ty) 
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are the next candidates for replacing Az as CCX or CCy. These clusters can be established 

by repeating the following procedure until all clusters in partition B have unique centre 

clusters or until no suitable changes can be made. 

Before the procedure begins, sets 0^,1 < k < /ware defined, initially empty, to act as 

markers. These sets ensure no cluster ,4, is considered more than once. 

I f there remain clusters Bx or By in partition B such that CCX = CCy = Az for some cluster 

Az in partition A, the following values are defined: 

* ,=K (T ; ) I K=\A*(Ty)\ 

x2 = \Af(Tx)\, such that \Af(Tx)\ >\A,(Tx)\,l < i < k,i * z,i e 

y2 = \Ag(Ty)\, such that \Ag(Ty)\ >\Aj(Typ <j< k j * z,i <L O y 

xi and yj are the sizes of sets of entities shared by Bx & Az and By & Az respectively. 

These sets are the largest such sets for all ^(T^l^i <k. X2 and y2 are the second 

largest of these sets, excluding entities that have already been considered, which are 

contained in the sets O v and <D„. 
x y 

I f both X2 = 0 and y2 = 0, Bx and By share no similarity with any other cluster Az. 

Therefore, no other cluster Az can be considered to be the centre cluster of either Bx or 

By 

I f only X2 = 0, then only By has any similarity to another cluster Az. This cluster, Ag, is 

made the centre cluster of By (CCy = Ag) and z is added to O v to ensure that it is not 

considered again. 

I f only y2 = 0, then only Bx has any similarity to another cluster Az. This cluster, A/, is 

made the centre cluster of Bx (CCX = Aj) and z is added to <S>X to ensure it is not 

considered again. 

I f both x2 > 0 and ̂ 2 > 0, then both v4/and Ag may be suitable alternatives for Ax. I f xj + 

y2>yi+ X2, CCy = Ag and z is added to O y . Otherwise, CCX = ̂ 4/and z is added to O x . 
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This is because it is important to minimise the moves and joins necessary, so the 

candidate centre cluster that causes the smallest change will be the new centre cluster, 

The above procedure now repeats until as many centre clusters are made unique as 

possible. However, there is still a chance that there could still be situations where CCX = 

CCy = Az, even after this procedure has been completed. For example, it wil l always 

happen i f there are less clusters in partition A than in partition B. Therefore, these 

persistent centre clusters must be split into two, such that one of the new clusters 

contains the entities tagged Tx, such that ^ • It is necessary that the 

smaller of the two sets is taken because the split takes the form of a series of move 

operations that must be added to the total value of mno(A,B). 

4.2.3.2 Seeking profitable joins 

As stated before, once the central clusters are established, it is possible to move every 

entity tagged 7} into CQ. However, because joining two clusters has a weight of 1, the 

same as moving an entity from one cluster to another, it may be more efficient for some 

pairs of clusters to join them together and move a smaller number of entities than would 

have been moved without the join. 

For two clusters Aj and Aj, where At is a centre cluster CCX, the completed join would 

involve joining the clusters and then moving all entities not tagged with x into the 

appropriate clusters. There are two cases to consider in order to establish whether this is 

worthwhile. 

I f Aj is not a centre cluster, it is profitable to join Aj and Aj providing Ai(Tx) > 1, because 

i f this join is not made, it will cost at least A)(Tx)\ to move the set Aj(Tx) into Aj. 

I f Aj is a centre cluster CCy, then the following values must be calculated to establish 

whether the join is profitable or not: 

A = \CCX\ 

a=\CCx(Tx)\ 

r = \ccy(Ty)\ 

r = cc. 

P = \CCy{Tx)\ 

S = \CCx{Ty)\ 
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Firstly, it is important that B>8. I f CCX and CCy are not joined, these values represent 

the number of moves between CCX and CCy that will have to take place. However, even 

i f the join does take place, the set CCx{Ty) will have to be moved back into CCy. 

Therefore, i f B < 8, more entities will be moved than necessary, so the figures must be 

recalculated with At as CCy and Aj as CCX. 

A-a is the number of entities that are not in Bx and therefore do not belong in CCX, as 

T-y is the number of entities that do not belong in CCy. Therefore, to transform CCX 

into Bx and CCy and By using move operations alone will incur a cost of A-a + T-y. 

Profitably joining CCX and CCy wil l incur a cost of 1 for the actual join, followed by a 

cost of A-a for the entities in CCX that are not in Bx, plus a cost of T- /? fo r all the 

entities that were originally in CCy that now need to be moved back into CCy or moved 

elsewhere. This means such a join is profitable only if: 

A-a+T-y>\+A-a+T-p 

-y>\-B 

B>l + y 

Therefore, i f B>\ + y the join is profitable and the two clusters At and Aj are joined to 

form a new cluster Ak at cost 1. When the move operations are performed later, each of 

the entities marked Ty wil l be moved back into Aj and everything else moved to the 

appropriate clusters; the cost should still be less than i f the set A}{TX) had been moved, 

one by one. 

All possible pairs of clusters must be examined to see i f joining them would be 

profitable. In order to maximise performance, the clusters C in partition A are ordered 

by the sets C(Tj) such that i f C=CQ, i * j . The process of checking for joins then 

begins with the two clusters with the largest such sets. Note that i f two clusters are 

joined, this process must restart with the order revised, as the set of clusters or the 

entities' tags wil l have changed. 

Once all profitable joins have been performed, the remaining entities tagged 7} must be 

moved into CCj, increasing the value of mno(A,B). The whole process must then be 

repeated for mno(B,A) and the smaller of the two values is taken as the approximation of 

MoJo(A,B). 
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The MoJo algorithm has been adapted for this thesis. The adaptations and the reasons 

for their implementation are discussed in Section 5.4. 

4.3 Bauhaus 

In recent years, the most comprehensive work in software clustering has come from the 

Bauhaus research group, in particular Koschke and Girard. Their work has taken up the 

challenges presented by Wiggerts [WIGG97], Lakhotia [LAKH97] and Tzerpos and 

Holt [TZER98] through extensive surveys and adaptations of previous clustering 

methods, including detailed reworkings of Schwanke's Arch approach [SCHW91] and 

Canfora et al's Delta IC approach [CANF96]. The adaptations of Arch and Delta IC, as 

well as two new approaches, are discussed in Section 3.1.13. The current section 

describes the classification and comparison of software clustering techniques performed 

by Koschke and Girard and draws some observations based on this work that have led 

to the survey described in the remainder of this thesis. 

In order to complete the assessment work presented in this section, the Bauhaus team 

have implemented a tool suite known as Bauhaus Rigi. This suite, which is an extended 

version of the Rigi editor [MULL93] discussed in Section 3.1.6, provides a complete 

process for component recovery. Almost all of the software clustering and concept 

analysis techniques described in Chapter Three have been implemented as part of 

Bauhaus Rigi. Any ANSI C code can be used as input to the Bauhaus parser, which 

produces base graphical representations of the entities in the code. Any or all of the 

implemented techniques can then be used to analyse the system and the results of these 

techniques can be examined and manipulated individually or combined as appropriate. 

This tool suite has also been used to assess the techniques examined for this thesis; 

more information can be found on these techniques in Section 5.2. 

4.3.1 Classification 

Based on his study of a wide range of software clustering techniques, Koschke provides 

a basic classification of what he terms 'structured component recovery techniques' 

[KOSCOOa]. He defines four main branches of technique that are based on structural 

information such as calling structures and type usage and renames many existing 

techniques. The branches are: 
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• Connection-based approaches, which cluster entities based on a specific set of 

direct relationships between entities to be grouped. Liu and Wilde's work 

[LIU90] (Section 3.1.4), renamed as Part Type by Koschke, Same Module 

[GIRAOO] and Same Expression [KOSCOOa] (both Section 3.1.13) are examples 

of this type of technique. 

« Metric-based approaches, which cluster entities based on a metric using an 

iterative clustering approach. Similarity Clustering [GIRA99] (Section 3.1.13) is 

a metric-based approach and Koschke also classifies Delta IC [CANF96, 

CANFOO] (Sections 3.1.9 and 3.1.13) as metric-based with some reservations, as 

the Delta IC metric only forms part of that technique's clustering process. 

• Graph-based approaches, where clusters are derived from a graph by means of 

graph-theoretic analyses. These differ from connection-based approaches 

because a whole graph must be considered, rather than only direct relationships 

between entities. Cimitile and Visaggio's Dominance Analysis approach 

[CIMI95] (Section 3.1.10) is a graph-based approach. 

• Concept-based approaches, where concept analysis is used to create a concept 

lattice based on a binary relation derived from a software system. This includes 

the work described in Section 3.2 by Lindig & Snelting [LIND97] and Siff & 

Reps [SIFF97]. 

This classification has been used to select the techniques analysed for this thesis. 

4.3.2 Comparison 

In order to compare existing software clustering techniques, Koschke and Eisenbarth 

defined an evaluation framework [KOSCOOb], taking their lead from the ideas of 

Lakhotia [LAKH97] (see Section 4.1). This framework relies on the comparison of 

candidate clusters to established reference clusters, identified as benchmarks by 

experienced software engineers. The framework was used to assess a wide range of 

software clustering techniques including Part Type, Same Module, Same Expression, 

Arch, Similarity Clustering and Delta IC, among others. 

A foundation of this approach is the recognition that, although a set of clusters may not 

be a perfect representation of the system, they may be good enough for a desired 

purpose. Therefore, two relationships are defined: an affinity relationship, which 

establishes to what extent two clusters overlap, and a partial subset relationship, which 
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determines whether a cluster is similar to only part of another cluster. The relationships 

for two clusters C and R are described as follows: 

Affinity : C ~p R i f and only i f overlap(C,R) > p 

\elements{C) n elements{Ri 
Partial subset: C cz R i f and only i f • , : > p 

\elements(C)\ 

where 

\elements{C) n elements{R)\ 
overlap(C,R) = \ 

\elements(C) ^jelements(R)\ 

Elements(X) denotes the set of base entities used by cluster X. The threshold value p 

allows the user to define how similar they wish the two clusters to be. A value of 1 

would mean the two clusters are identical. Koschke and Eisenbarth suggest a value of 

0.7 as a fair default value, meaning the clusters must share three out of four entities to 

be considered affine [KOSCOOb]. Three types of matches are described for a candidate 

cluster C and a reference cluster R: 

• 1-1 

• n~l 

• l ~ n 

true when C « R (candidate is close to reference) 

true when C c R (candidate is too detailed) 

true when RcpC (candidate is too large) 

These matchings are used to calculate the detection quality of a software clustering 

technique. This quality is based on a number of values: 

• Number of false positives and true negatives 

• Average accuracies and level of granularity 

• Recall rate 

The number of false positives is the number of candidate clusters that cannot be 

associated with any reference cluster. The number of true negatives is the reverse of 

this: the number of reference clusters that cannot be associated with any candidate 

cluster. There should be no false positives or true negatives in a resulting representation 

and, i f any of them remain after automatic analysis, the user of the system must remove 

them. 
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The level of granularity is assessed by examining the number of 1~1, n~l and l~n 

matches. A representation at an appropriate granularity level should have only 1-1 

matches. 

An accuracy factor is associated with each match in order to indicate the quality of 

imperfect matches of candidate and reference clusters. The average accuracies are 

calculated based on the overlapping of clusters, taking into account the size and 

matching type of the clusters. These accuracy values can then be used to calculate the 

recall rate of a technique, where GOOD is the set of resulting 1-1 matches, OK is the 

set of resulting l~n and n~l matches and true negatives is the set of true negatives 

uncovered by the technique: 

^ accuracy (a, b)+ ^accuracy'(a, b) 
Recall = < - a ' b ^ G O O D {a,b)eOK 

|G00£>| + \OK\ + \true _negatives\ 

Four medium-sized (30-40 KLOC) software systems written in C were used as a 

reference corpus. The reference components were created by three expert software 

engineers, who then reviewed the resulting component sets and selected the most 

appropriate components. The experts identified ADOs, ADTs and hybrid components in 

the systems but not related subprograms [KOSCOOb]. 

A number of assumptions were made in order to perform the comparison. The 

techniques chosen often produce clusters with three elements or less; because such 

clusters are very rare in the expert clusterings, they are filtered out of the candidate 

clusterings. Clusters with more than 75 elements were also excluded. The semi

automatic elements of approaches such as Delta IC and Similarity Clustering were 

ignored, so no calibration of the parameters took place; only a reasonable estimate was 

used. 

The results acquired by Koschke and Girard by performing this evaluation are now 

discussed and some observations based on these results that led to the work presented in 

the remainder of this thesis are provided. 
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4.3.3 Results and Observations 

The results of the evaluation [GIRAOO, KOSCOOa] show that current automatic 

techniques do not even approach the success of human analysis. In most cases, the recall 

rate of the methods was between only 20 and 40 percent and the number of false 

positives and true negatives was high. However, when the false positives of the 

resulting candidates were analysed, it emerged that over 40 percent of them could be 

considered correct positives that had been overlooked in the manual analysis. Also, 

some common patterns emerged within the remaining false positives that could be used 

to filter out inaccurately defined components. For example, variables that are defined as 

global but are actually treated as local constants should not be considered a base for an 

ADO. 

The system being analysed affected the results achieved greatly. Some of the poor 

results are due to the fact that the analysed system has an incredibly convoluted 

structure and only a certain amount of this structure can be organised meaningfully 

through automatic analysis or otherwise. This observation might suggest that the basis 

for performing automatic software clustering is flawed from the outset, as the 

techniques are precisely aimed at such convoluted systems. However, the following 

observations of the evaluation method itself suggest that the investigation of these 

techniques is not so futile. 

It was found that Same Module recalled more ADOs and ADTs than any other 

technique for all but one system (although the margin was small) [KOSCOOa]. This may 

seem strange for such a simple heuristic, compared to the complexities and subtleties of 

Delta IC and Arch. However, Same Module only uncovers the structure defined by the 

programmers of the system when the file structure was created. When the reference 

corpus was created, the expert software engineers would have seen this file structure 

and incorporated this representation into their mental model of the system. Also, any 

variable or function names will have been incorporated into this model. 

Even i f an attempt is made to ignore any semantic information, it is thought that it must 

have some impact on any manual analysis. This information is not necessarily correct, 

as the programmers may have been incorrect to place a set of functions in the same file 

or to name variables and functions according to a certain scheme, but is likely to mirror 

the results of the Same Module heuristic more closely than other methods. This problem 
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is especially evident in legacy systems, where any attempted structure placed on files or 

naming conventions will almost certainly have been broken by prolonged maintenance 

of the system. 

Therefore, it is still believed that there is a place for automatic software clustering 

techniques, especially ones that rely on the actual, rather than perceived, structure of the 

system. However, the results are still poor, even accounting for the flaws in the 

evaluation method, and this suggests that proposing full restructurings of the system, let 

alone reuse candidates, is out of the question. 

In light of this, the work presented in this thesis focuses on the use of software 

clustering techniques to study the evolution of software, where the use of the techniques 

involves program comprehension, not restructuring. The representations created by 

these methods provide the maintainers with a fresh picture of the system that may 

challenge their existing mental model of the system and help them to approach 

maintenance in a more productive manner. This outcome is suggested by the fact that 

many of the false positives uncovered by the techniques actually turned out to be correct 

positives. Also, it took around 20 to 35 hours (the best part of a working week) to 

produce a set of components manually [GIRA00]; automatic techniques rarely take 

more than a matter of minutes to produce their results. Even though further analysis will 

certainly be required, the wealth of useful information that automatic techniques could 

provide cannot be ignored. 

It is thought that software clustering techniques may be able to uncover evolutionary 

patterns. By their nature, these methods are good at extracting the cohesive components 

of a system and less definitive when the components of a system are very disjointed. 

Therefore, they could be used to track the degeneration of originally cohesive 

components due to prolonged maintenance. This information could then be used to not 

only make existing components more cohesive but also to pinpoint and reverse 

undesirable trends in the maintenance of the system. 
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4.4 Conclusion 

This chapter has explored some general research concerning software clustering and 

concept analysis techniques. The motivation for the work carried out for this thesis has 

also been explained. The fol lowing chapter describes this work in more detail. 
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CHAPTER R V E - Analysis 

This chapter describes the work undertaken to assess whether software clustering and 

concept analysis techniques can be used to assist software evolution. The methods of 

assessment and the techniques that were tested are listed and justified and the test 

software system is described. The use and adaptations o f the MoJo distance metric for 

the current analysis are explained in detail. Finally, some o f the tools developed to 

support the production and analysis o f results are described. 

5.1 Methods of Analysis 

The work described here attempts to determine whether software clustering and concept 

analysis techniques can have any application in the context o f software evolution. 

Because such analysis has not previously been undertaken, the aim is simply to confirm 

that such an application is possible and to make suitable recommendations for future 

work should such an application be desired, rather than to propose a well-defined 

process for doing so. 

As described in Section 4.3.3, it is theorised that the techniques analysed here w i l l 

provide results that can be used to demonstrate the changing evolutionary nature o f a 

software system. The techniques w i l l be run on consecutive versions o f a software 

system and each w i l l provide a representation o f each version o f the system. A 

maintainer o f the system could examine the results to see how the use o f a function, data 

type, variable or any other entity has changed over the development o f the system. The 

change in structure o f a module o f the system could also be followed. This information 

could be used to assess the degree o f legacy tendencies o f the system and perhaps 

suggest the nature o f some necessary preventative maintenance. 

For this to be possible, the results must exhibit a number o f properties. Firstly, each 

view o f the system must contain as many entities (such as functions, variables and 

types) as possible in order to present as complete a representation as possible. This is 

essential i f these views are to be used to inform a maintenance decision. Unfortunately, 

as explained in Chapter Four, no clustering technique includes complete knowledge o f a 
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system. Therefore, it is important to assess whether the techniques tested include 

enough information to make them even partially useful to a maintainer. 

Secondly, i f the views acquired for different versions o f a software system are to be 

compared, these views must remain relatively stable. I f a large percentage o f the view 

changes when there is only a small change from version to version, it w i l l be almost 

impossible to detect any evolutionary trends over the development o f the system and 

diff icul t to fol low the progress o f a single entity. 

Therefore, both the coverage and the stability o f the software clustering and concept 

analysis techniques assessed w i l l be examined. The coverage o f each technique w i l l be 

established by comparing the number o f entities o f various types covered by the 

techniques as percentages o f the total number o f entities in the system. The stability o f 

each technique w i l l be assessed using the MoJo distance metric, explained in fu l l in 

Section 4.2.2. 

To add to this experimental evidence, a case study focussing on one particular group of 

functions in the system, representing around ten percent o f the total number o f 

functions, has been carried out. Section 5.3 describes the nature o f this case study. It is 

hoped that this study w i l l demonstrate how these techniques may be used in a 

maintenance situation and highlight some key issues concerning the appropriateness o f 

these techniques. 

The techniques that were assessed for this project are now discussed. 

5.2 Chosen Techniques 

Koschke's classification o f component recovery techniques [KOSCOOa], outlined in 

Section 4.3.1, defines four types o f technique: connection-based, metric-based, graph-

based and concept-based. Based on this classification, one technique o f each type has 

been assessed. This is not to suggest that one technique w i l l be completely 

representative o f the whole class o f techniques; however, it is thought that a sufficient 

number o f general observations about the nature of each class w i l l be possible to make 

this a worthwhile strategy. 
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The chosen software clustering techniques, using Koschke's names where applicable, 

are: 

i) Part Type (connection-based), the second o f L i u and Wilde's clustering 

methods described in Section 3.1.4 [LIU90] 

i i ) Dominance Analysis (graph-based) by Cimitile and Visaggio, described in 

Section 3.1.10 [CIMI95] 

i i i ) Similarity Clustering (metric-based), the Bauhaus group's method described 

in Section 3.1.13.4 [KOSCOOa] 

iv) Concept Analysis (concept-based) by Lindig and Snelting, which follows the 

standard concept analysis procedure described in Section 3.2 [LIND97] 

These techniques have been implemented as part o f Bauhaus Rigi, the tool suite 

described in Section 4.3. The four techniques listed above were chosen because they 

provided the best, most understandable results in Bauhaus Rigi for the techniques in 

their class. Some manipulation was required to generate the results used in the form of a 

set o f single level clusters, each containing a set o f entities. Part Type is the only 

method where the raw results were in this form. 

The Dominance Analysis results took the form o f the dominance tree described in 

Section 3.1.10; however, as Koschke's implementation was used to produce the trees, 

variables and types were included in the analysis as well as functions. This tree was 

clustered by placing each first-level branch o f the tree into a cluster (so that everything 

connected to the root o f the tree belongs to a cluster). 

As explained in Section 3.1.13.4, Similarity Clustering can be manipulated using a 

number o f parameters. The default parameters were used for the current analyses, on the 

assumption that the average maintainer, working under pressure, would use the default 

parameters rather than spend a considerable amount o f time refining the input to the 

process. Only one change was made; by default, informal information (such as 

comments and entity names) is not included in the clustering process. For this analysis, 

informal information was included, but formal information was given five times the 

weight o f informal information. 
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The preliminary result o f Similarity Clustering is a dendrogram, as described in Section 

3.1.2. Bauhaus Rigi allows the user to partition dendrograms at a particular cut-off 

point, which represents a particular similarity value. After a number o f experiments, a 

value o f 0.2 was chosen for this analysis, meaning that no more clustering was 

performed after the greatest similarity between any pair o f clusters dropped below 0.2. 

Although Linding and Snelting's basic concept analysis approach was used, no attempt 

was made to partition the concept lattice this approach created because, as suggested in 

Section 3.2, there were too many interferences in the lattices to create a suitable 

partition. Therefore, the sets o f concepts produced for each version were used as 

representations. 

5.3 Analysed Software 

This section describes the software system that the techniques described in Section 5.2 

produced representations for. The part o f the system used for the case study mentioned 

in Section 5.1 is also described. This system is still available and so all specific details 

about the system have been changed to protect its commercial identity. 

5.3.1 System description 

The system forms the database component o f a larger industrial product. There are 

currently four versions o f the system available, each composed o f various C files. The 

largest file contains all the functionality o f the system and the remaining files define 

some o f the types used by this main source fi le . The system interacts with various 

library functions and some files f rom other parts o f the product (again, mostly to import 

data types). The system is therefore complex enough to provide difficulties for the 

clustering techniques being assessed but is also small enough to allow manual 

examination and comparison o f the results. 

The whole product has a convoluted history. The first version was developed in 

mainland Europe and was an adaptation o f an earlier, similar system. This version is 

designed to run on the OS/2 platform. Many o f the comments and some o f the entity 

names are not in English. The second version was also developed in mainland Europe 

and, along with numerous other enhancements, the code was adapted to run on the 

69 



Windows N T platform as well as OS/2. After the second version was shipped, the 

development o f the product was transferred to England. 

The third version o f the database component shows little change as development was 

focussed on other components o f the product; the changes that were made are mostly 

bug fixes or adaptations to comply with changes in other components. The fourth and 

current version, however, shows a large amount o f change; some major enhancements 

were implemented but most importantly some preventative maintenance was carried out 

on the component. As well as some structural refinement and clarification, the 

comments and entity names were translated into English. 

Table 5.1 provides some statistical information about the system described above. 

Within Table 5.1, System Entities are entities in other components o f the whole product 

that are used by the database component. Library entities are entities f rom the standard 

C libraries that are used by the database component. The table clearly shows the 

development activity between Versions One and Two and Versions Three and Four, 

especially when compared to the very slight change between Versions Two and Three. 

Version One Version Two Version Three Version Four 

Lines O f Code 12,349 18,186 18,423 21,917 

Functions 113 133 134 145 

Variables 195 215 216 245 

Constants 2 0 0 0 

Types 101 83 86 98 

System Entities 6 63 63 59 

Library Entities 72 86 86 90 

Table 5.] L: Software system details 

5.3.2 Case study 

A large number o f explanatory comments are provided at the start o f the main source 

file for each version. These comments include a list o f the functions in the code, 

grouped by the common functionality they implement in the view o f the programmers. 

One o f these groups has been chosen to be the focus o f a case study. This group w i l l be 

tracked through the views o f the four versions generated by the four techniques, as it 
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might be by maintainers o f a system i f they wanted to make a change to one or more o f 

the functions in the group. 

The identified group of functions f rom the database component manage the files that 

contain the information in the database. The functions form an A D T centred on the data 

type D A T A B A S E F I L E ; a variable o f this type is created for each data file and each one 

contains information about the number o f records in the file, how often the file has been 

accessed and other similar details. In the commented list o f functions, this group 

remains unchanged throughout the four versions, suggesting either that the maintainers 

o f the system believe this common functionality remains encapsulated and has not been 

altered or simply that this documented list has not been updated. 

There are twelve functions in the case study group: calcchecksum, datafileclose, 

datafilecreate, datafileopen, headerwrite, recordadd, recordcheck, recorddelete, 

recordread, recordmark, recordnew and recordwrite. recordadd, recordcheck, 

recorddelete, recordread, recordmark, recordnew and recordwrite are concerned with 

the files in the database; datafileclose, datafilecreate, datafileopen and headerwrite are 

concerned with the files themselves, calcchecksum calculates a checksum for each file 

so that it can be ensured that the files have been written to correctly. 

A f u l l discussion o f how this group o f functions is treated by the four assessed 

techniques and the implications o f this treatment for the techniques and the code itself 

can be found in Section 6.3. 

5.4 MoJo Adaptations 

As explained in Section 5.1, the stability o f each o f the analysed techniques must be 

assessed to establish i f they can ever be used to examine evolution o f software. The 

MoJo distance metric for software clusterings, developed by Tzerpos and Holt 

[TZER99] and described in Section 4.2.2, has been used to assess the stability o f the 

analysed techniques. However, some adaptations o f the metric are necessary for its use 

during this project. These adaptations and the reasons behind them are now explained. 
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MoJo is designed for use on two partitions o f the same set of entities with no entity 

appearing more than once in each partition. However, the partitions that have been used 

as input for clustering techniques are based on different versions o f a software system 

and w i l l therefore contain different entities. Furthermore, the set o f concepts produced 

by Concept Analysis includes multiple copies o f entities, as each entity may appear in 

more than one concept. It is necessary to deal wi th both o f these problems in order to 

make the MoJo values meaningful. 

The problem o f having two unequal partitions is dealt with by simply ignoring entities 

that do not appear in both partitions when calculating MoJo. The number o f entities that 

only appear in the first partition and the number o f entities that only appear in the 

second partition w i l l be totalled and be compared to the MoJo results acquired. I t is still 

valid to calculate MoJo for the entities that the two partitions share because it is still 

desirable that this set o f entities should remain stable despite the introduction o f new 

entities. The number o f extra entities in both partitions can be used in part to judge 

whether the MoJo value shows that the clustering technique is suitably stable. For 

example, a high MoJo value might be explained by the fact that there were a large 

number o f new entities introduced between two versions. 

Calculating MoJo values for sets o f concepts is more diff icul t . Each entity in each set 

may appear in more than one concept. I f this is the case, it is impossible to tell which 

entity in the first concept set corresponds to which entity in the second concept set with 

any degree o f certainty because there w i l l be more than one possible match. This means 

it is not possible to tag the entities in the first set o f concepts and so the set o f centre 

clusters (in fact, centre concepts) can not be calculated using the method described in 

Section 4.2.3.1. 

Therefore, the set o f centre concepts is discovered by calculating the similarities o f each 

concept in concept set A to each concept in concept set B . Concept B/s centre concept 

is the concept At that is most similar to Bj. 

Each similarity is calculated by counting the number o f entities in A, that are also in Bj 

and the number o f entities in Bs that are also in At. These values are converted into 

percentages o f the size o f At and Bj respectively and an average is taken o f the two 

percentages. This average is taken as the similarity between Aj and Bj. 
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Once all the similarities have been calculated, they are sorted for each concept, 

beginning with the greatest similarity. Centre concepts are then assigned by finding the 

concept Aj and the concept Bj with the greatest similarity and making A, B/s centre 

concept. This procedure repeats until all concepts in partition B have centre concepts. 

The number o f moves necessary to convert each centre concept into the corresponding 

concept in partition B can now be calculated. A check for profitable joins was done 

manually when the MoJo results for this thesis were generated based on these numbers 

o f moves, but none were found to be necessary. 

As with the other clustering methods, the MoJo values for the concept sets were only 

calculated for the set o f common entities between the two partitions. Similarly, the 

number o f unconsidered entities is also recorded. Once again, however, arriving at this 

figure is more complicated than it was for the other techniques. There are four values to 

calculate; the first and second are the number o f occurrences o f entities that only appear 

in concept set A and the number o f occurrences o f entities that only appear in concept 

set B . The second two values represent the number o f extra occurrences o f entities that 

appear in both concept set A and concept set B . The third value represents extra 

occurrences in partition A and the fourth value represents extra occurrences in partition 

B. 

Because the MoJo values for different clustering methods w i l l be compared to each 

other, as well as to statistics about the way the code itself changes f rom version to 

version, each value must be presented as a percentage o f the entities considered by each 

clustering method for each version. For example, it is unreasonable to compare MoJo 

values for Part Type with values for concept sets because each set o f concepts has 

roughly ten times the number o f entities contained in a Part Type partition. Therefore, 

the MoJo values have been divided by the size o f the partition the MoJo value was 

calculated on and multiplied by 100 to provide a percentage o f that size. 

5.5 Tool Support 

Some tools were required to complete the analysis described in this chapter. The tools 

were mostly used to extract information f rom the Bauhaus Rigi results. The algorithm to 

73 



calculate the MoJo distance metric was also implemented, both in its original form, 

described in Section 4.3.3, and with the alterations described in Section 5.4. Because a 

large amount o f the work involved in the analysis was text manipulation, these tools 

were implemented using Perl. 

Bauhaus Rigi, the software suite described in Section 4.3 that was used to execute the 

chosen software clustering and concept analysis techniques, can output its 

representations as text files. A l l representations are presented as a graph with entities as 

nodes and connections between entities as edges. The text f i le produced contains a list 

o f node facts, one for each entity in the graph, followed by a list o f edge facts, one for 

each o f the connections between the nodes. Each node fact contains the name, type and 

location (the file the node belongs to) o f the node it represents. Each edge fact contains 

the type o f the edge it represents and the names of the two nodes the edge connects. 

A representation o f the basic software system is used as input for the software clustering 

and concept analysis techniques. The output produced by each technique is a 

representation where new nodes are created, one for each cluster or concept, and the 

only edges are ones connecting entities to these cluster or concept nodes. Sixteen such 

representations were produced by running each o f the four techniques described in 

Section 5.2 on each o f the four versions described in Section 5.3.1. Figure 5.1 shows the 

use o f Bauhaus Rigi for a single version o f the software system. 

Input 
version 

of 
software • 
system 
(C code 
source 
files) 

Figure 5.1 Use of Bauhaus Rigi 

A tool called count was developed to count the number o f each type o f entities and 

connections there were in each representation. The tool calculates the number o f lines 

containing the name o f each type o f entity and connection. For the entity types, the tool 

also records the location o f the entity to determine whether the entity was part o f the test 

component, part o f the whole software system or contained in the standard libraries. 

This tool was used to generate the results contained in Figure 6.1 and Tables 6.1 to 6.4. 

BAUHAUS RIGI 
Run techniques 
on input system 

Output resulting 
representations 

as text files 

Base system view 

Part Type view 

• Dominance Analysis view 

Similarity Clustering view 

Concept Analysis view 
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The MoJo algorithm, described in Section 4.3.3, and the adaptations described in 

Section 5.4 were implemented f rom scratch for this thesis. Because the MoJo metric is 

only concerned with the system itself, a basic filter tool was written to remove the 

library and system entities and all connections to these entities f rom the representations. 

Two tools were created to implement the MoJo algorithm. The first tool was used for 

Similarity Clustering, Part Type and Dominance Analysis and implements both the 

basic algorithm described in Section 4.3.3 and the adaptations necessary to deal wi th 

different sets o f entities described in Section 5 .4. The second tool was used for Concept 

Analysis and implements the MoJo calculation method for Concept Analysis described 

in Section 5.4. These implementations generated the results shown in Tables 6.3, 6.4 

and 6.5. 

Finally, a tool called printgroup is used to print out the sets o f clusters or concepts f rom 

each representation so that these sets could be analysed for the case study described in 

Section 5.3.2. This tool was used to assist the generation o f Tables 6.7 to 6.10. 

The use o f the tools described here on each system view to create the data in Chapters 

Five and Six is shown in Figure 5.2. MoJo in this figure represents both the MoJo 

implementation for software clustering and the implementation for concept analysis. 

Tab e 5.1 
i s * 

Count Figure 6.1 

Table 6.1 Tab e 6.2 >- Figure 6.2 

Tab e 6.3 
^* Input Table 6.4 • MoJo • Filter View 

Table 6.6 Table 6.5 

Table 6.7 

Tab e 6.8 
Printgroup 

Tab e 6.9 

Table 6.10 

Figure 5.2: Tool support for analysis 
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5.6 Conclusion 

This chapter has explained the analysis performed to assess whether software clustering 

and concept analysis techniques may prove useful for the purpose o f studying software 

evolution. The methods for analysing the coverage and stability o f these techniques 

have been described and the case study performed on a single group o f functions has 

been outlined. The tools used to generate the results o f this analysis have also been 

described. The fol lowing chapter explains the results achieved by these methods and 

case study. 
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CHAPTER SIX = Results 

This chapter details and analyses the results acquired after the work described in 

Chapter Five was completed. The performance o f the software clustering and concept 

analysis techniques that were tested is explored in detail in terms o f the coverage and 

stability o f each technique. A discussion o f the case study outlined in Section 5.3 .2 is 

also included. 

6.1 Coverage 

As explained in Section 5.1, it is important that the representations provided by the 

software clustering and concept analysis techniques examined cover as much o f the 

system as possible, in order to allow a maintainer o f the system to make an informed 

decision. This section demonstrates the coverage achieved by using Similarity 

Clustering, Dominance Analysis, Concept Analysis and Part Type to create views o f the 

software system described in Section 5.3. 

The graphs contained in Figure 6.1 show the percentage o f functions, variables, types, 

system entities and library entities contained in the representations created by the four 

techniques. I t may help to refer to Table 5.1 in Section 5.3 .1 to put these percentages in 

perspective (definitions o f system entities and library entities can also be found in that 

section). 

I t is immediately apparent that some techniques achieve much better coverage than 

others. However, a few o f the lower levels o f coverage are due to other reasons than an 

actual failure o f the technique. These reasons w i l l become clear as each graph is 

discussed. 

Similarity Clustering clearly provides the best overall coverage. The noticeably lower 

percentage o f coverage for System Entities in Version One is due to that fact that there 

are only six System Entities used by that version, o f which Similarity Clustering covers 

four; the remaining versions have ten times that number o f System Entities and 

Similarity Clustering covers those to a more than satisfactory level. Similarity 

Clustering covers all o f the functions in all four versions. However, it should be noted 
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that this coverage is only representative o f a single partition o f the dendrogram 

produced by Similarity Clustering, and as this partition was taken from the latter stages 

o f the clustering process a reasonable level o f coverage should be expected. 

Similarity Cluster ing Coverage 

• Version 1 • Version 2 DVersion 3 DVersion 4 
100 

Functions Variables Types 

Entities 

System 
Entities 

Library 
Entities 

Dominance A n a l y s i s Coverage 

• Version 1 • Version 2 • Version 3 • Version 4 

Functions Variables Types System Library 
Entities Entities 

Entities 

Concept A n a l y s i s Coverage Part T y p e Coverage 

• Version 1 • Version 2 • Version 3 •Ve rs ion 4 • Version 1 BVersion 2 DVersion 3 • Version 4 

Functions Variables Types 

Entities 

System 
Entities 

Library 
Entities 

Functions Variables Types 

Entities 

System 
Entities 

Library 
Entities 

Figure 6.1: Coverage graphs 

Dominance Analysis also provides good overall coverage. It suffers slightly when 

considering types; the poor coverage o f System Entities might result from the fact that 

almost all o f the System Entities used are types. However, the results shown here are 

quite misleading; in Koschke's implementation o f Dominance Analysis, when an entity 

is not dominated by any other entity it is placed at the top o f the dominance tree. This 

means the entity has strictly been covered, but has not actually been clustered with any 

other entities, which might explain the high levels o f coverage shown here. 

The absence of coverage for types (and therefore System Entities) by Concept Analysis 

is because the binary relation used as input for the Concept Analyser was based on 
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functions and variables alone. It would be easy to provide a relation for functions and 

types; however, because o f the nature o f a binary relation, it would be slightly harder to 

create suitable input including functions, variables and types. Nevertheless, the graph 

shows the Concept Analysis technique's decent coverage o f functions and variables and 

there is no reason why using types would not produce similar levels o f coverage. 

Part Type provides the only dissatisfactory coverage. Unlike Concept Analysis and 

types, Part Type's failure to cover variables is a property o f the technique itself, rather 

than its input. It might be possible to accept this i f the coverage for other types o f entity 

was better. Unfortunately, as shown by the graph, there is extremely poor coverage o f 

both functions and types and practically no coverage o f outside entities. This 

information means that Part Type is o f no real use on its own; however, it may have a 

use as a means o f confirming or questioning clusters presented by other techniques. 

6.2 Stability 

Section 5.1 outlines why it is important that software clustering and concept analysis 

should be as stable as possible i f they are used to study the evolution o f a software 

system. The MoJo distance metric developed by Tzerpos and Holt and described in 

Sections 4.2.3 and 5.4 has been used to test the stability o f the four techniques tested. 

MoJo values have been calculated between Versions One and Two, Versions Two and 

Three and Versions Three and Four for each o f the four techniques. 

Tzerpos and Holt 's work, described in Section 4.2.2, suggests that the MoJo values 

calculated here, when presented as a percentage o f the total size o f the versions the 

values have been calculated on, should be slightly less than, or at least match, the 

percentage change o f the system's attributes f rom one version to the next i f the 

technique being tested is to be considered stable. This would mean a technique has 

taken the changes in the system into account without drastically altering the 

representation it produces, thus aiding the comprehension o f the representations. 
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Version One Version Two Version Three Version Four 

Entities 411 431 436 488 

Connections 2535 3191 3183 3640 

Table 6.1: Entities and connections be onging to software system 

Table 6.1 shows the number o f entities and connections in each version o f the software 

system used to test the techniques. A breakdown of the number o f different types o f 

entities can be seen in Table 5.1. The number o f connections is the sum o f various types 

o f connection between entities in the system, such as the uses o f a variable or the call o f 

a function. 

V1 -> V2 V2 -> V 3 V 3 -> V4 

Entities 4.87 1.16 11.93 

Connections 25.88 0.25 14.36 

Table 6.2: Percentage change of entities and connections 

Table 6.2 shows the percentage change in number o f entities and connections f rom one 

version to the next, based on the figures in Table 6.1. These figures roughly show the 

development o f the system. It can be seen that there was an increase in complexity f rom 

Version One to Version Two, with the increase in the number o f connections being over 

five times larger than the increase in the number o f entities. There was only a small 

increase in size and complexity between Versions Two and Three. The effects o f the 

preventative maintenance between Versions Three and Four can be seen in this table, 

where, although there has been a large increase in the number o f entities, the increase in 

the number o f connections is less than between Versions One and Two and more in line 

with the increase in the number o f entities. 

Version One Version Two Version Three Version Four 

Similarity 402 463 466 513 

Part Type 62 74 76 79 

Dominance 376 430 434 484 

Concept 899 1109 1132 1354 

Table 6.3: Version sizes for MoJo calculation 
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Table 6.3 shows the size of each representation used to calculate MoJo values. Note that 

the concept sets are substantially bigger than the other representations because they can 

include multiple instances of the same entity. 

A=V1, B=V2 A=V2, B=V3 A=V3, B=V4 

In A not B In B not A In A not B In B not A In A not B In B not A 

Similarity 79 140 2 5 41 88 

Part Type 1 13 0 2 3 6 

Dominance 59 113 0 4 35 85 

Concept 

Extra 

82 250 52 86 48 192 

Concept 

Only 

43 169 0 6 193 343 

Table 6.4: Entities omitted for MoJo calculation 

As reported in Section 5.4, MoJo can only be calculated on entities that exist in both of 

the representations being considered. Table 6.4 shows the number of entities that only 

existed in one version but not in the other for each pair of versions. Once again, the sets 

of concepts are special cases; Concept Only is the number of entities that only appear in 

one version but not the other, whereas Concept Extra is the number of extra instances of 

entities that exist in both versions. It should be noted that these are actual figures, not 

percentages; they should be considered in the context of the version sizes shown in 

Table 6.3. 

A=V1, B=V2 A=V2, B=V3 A=V3, B=V4 

mno(A,B) mno(B.A) mno(A.B) mno(B,A) mno(A.B) mno(B,A) 

Similarity 103 84 24 37 65 71 

Part Type 2 21 0 0 0 0 

Dominance 18 17 2 2 9 10 

Concept 102 108 63 83 63 73 

Table 6.5: MoJo results (MoJo(A,B) highlighted) 

Table 6.5 shows the actual MoJo values calculated by the heuristic MoJo algorithm. As 

described in Section 4.3.3, the MoJo value for two representations A and B is the 
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minimum of the two values mno(A,B) and mno(B,A). In Table 6.5, the minimum of the 

two values for each pair of values is highlighted, showing each of the values of MoJo 

V1 and V2 V2 and V3 V3 and V4 

Similarity 19.42 5.17 13.28 

Part Type 2.94 0 0 

Dominance 4.22 0.46 1.96 

Concept 10.16 5.62 5.07 

Table 6.6: MoJo results as a percentage o 'version size 

In order to compare the MoJo values in Table 6.5 to each other and to the information in 

Table 6.2, they must be related to the size of the versions they were calculated for. The 

results in Table 6.6 are the MoJo values from Table 6.5 as a percentage of the average 

of the size of the two versions they were based on. 
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V1->V2 V2->V3 V3->V4 

Version Transition 

Figure 6.2: System changes and MoJo values as percentage of system size 

Figure 6.2 contains both the MoJo results shown in Table 6.6 and the system statistics 

from Table 6.2. It should be noted that the discrepancies in this graph are not as severe 

as they may first appear, because the values given are percentages but the scale of the 
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graph only allows for figures of up to thirty percent in order to make the smaller values 

clear. 

The graph in Figure 6.2 shows that all techniques are stable when compared to the 

percentage change of connections. However, this is not necessarily desirable i f the 

techniques ignore significant changes in the system. For example, Part Type's 

representation of shared entities does not change from Version Two to Version Four, 

despite fifteen percent of the system's connections changing. While the representation is 

stable, the aim is for techniques to provide stable representations that take changes to 

the system into account. Inevitably there is a trade-off between stability and inclusion of 

changes, but taking no changes into account makes the representations almost 

meaningless. 

The representations produced by Dominance Analysis suffer from the same problem to 

a lesser extent. However, as discussed in Section 6.1, the version sizes for Dominance 

Analysis are unfair because entities are included that have not necessarily been 

clustered. Therefore, the actual percentage change may be higher than displayed here 

and the results may be more useful than they appear. 

The concept sets produced by Concept Analysis seem to be stable enough to allow 

useful comparison for maintenance purposes. While the MoJo values do not approach 

the percentage of connection changes, they are sufficiently large to suggest that these 

changes have been taken into account to some extent but the concept sets have still 

remained similar enough to allow easy comparison. The only undesirable result is the 

high MoJo value for the transition from Version Two to Version Three. This value 

suggests that Concept Analysis can be affected greatly by small changes and may imply 

that these changes are more important than they actually are. 

The results for Similarity Clustering also suffer from this problem, which is usually 

encountered with hierarchical agglomerative clustering algorithms. Because of the 

sequential nature of the process, early decisions inevitably affect the rest of the 

decisions made. Therefore, i f decisions are made differently for two different versions 

early in the clustering process, the entire dendrograms for these systems wil l be altered. 

This may also contribute to the high MoJo values for the transitions from Versions One 

to Two and Versions Three to Four. However, the values are still lower than the 
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percentage change of connections, suggesting that Similarity Clustering is the technique 

most likely to take important changes into account while still producing fairly stable 

representations. 

6.3 Case Study 

This section describes how the four software clustering and concept analysis techniques 

tested treat the group of functions described in Section 5.3.2. Each function in the group 

was searched for throughout the representations created by the techniques and the 

clusters or concepts containing any of the functions were recorded. The tables below 

show the size of each recorded cluster and the number of functions from the group that 

are also in each cluster for each of the four versions. 

It should be reiterated here that, although the authors of the software system defined this 

group of functions, this does not guarantee that this group does in fact encapsulate an 

element of functionality. The fact that the group was not changed over four versions of 

the system suggests a lack of document maintenance more than a lack of changes to the 

use of the group. I f techniques do not pick out the group successfully, that does not 

necessarily mean they are incorrect; it may mean they have uncovered some extra 

connections between the group of functions and the rest of the system, which is 

precisely why a maintainer may want to use the techniques in the first place. 

6.3.1 Part Type Case Study 

PART TYPE Cluster One Cluster Two PART TYPE 

Group Size Group Size 

Version One 2 17 10 12 

Version Two 2 47 10 12 

Version Three 2 47 10 12 

Version Four 2 47 10 12 

Table 6.7: Part Type Case Study results 

Table 6.7 shows where functions from the case study group are found in Part Type's 

representations. For example, in Version One, they appear in two clusters. The first 
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cluster contains two of the group's functions as part of a total of seventeen entities; the 

second cluster has twelve entities, ten of which are in the case study group. 

It is clear that this second cluster effectively represents the group as a whole. Part Type 

has picked out this group because it centres on the data type DATABASEFILE. The 

two functions not in this group are calcchecksum and datafilecreate, which Part Type 

has chosen to cluster with a similar type, DATATNDEXFILE. 

It can also clearly be seen how static the Part Type representation is, as already 

suggested in Section 6.2. The two clusters do not change at all from Version Two to 

Version Four. This may be partly because Part Type does not consider variables or 

variable usage but even based on functions and types alone some amount of change 

would be expected. The fact that Part Type has identified the case study group of 

functions suggests that the group must be very cohesive, given Part Type's poor 

coverage. This may mean that Part Type can be used to check the results provided by 

other software clustering and concept analysis techniques, but the fact that it fails to 

consider large amounts of the information available means that relying on Part Type 

alone is not recommended. 

6.3.2 Dominance Analysis Case Study 

The results for Dominance Analysis, shown in Table 6.8, are even less promising than 

the results for Part Type. As mentioned elsewhere, all entities that are not dominated by 

any other entity or are part of a cycle are placed in a single cluster. The results show that 

at least ten of the functions in the case study group form part of this cluster (Cluster One 

in Table 6.8), which contains a vast majority of all the entities in the system. 

DOMINANCE Cluster One Cluster Two Cluster Three DOMINANCE 

Group Size Group Size Group Size 

Version One 11 273 1 19 

Version Two 10 314 1 22 1 2 

Version Three 10 316 1 22 1 2 

Version Four 10 356 1 25 1 2 

Table 6.8: Dominance Analysis Case Study results 
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This is not surprising because Dominance Analysis clusters functions with a common 

functional purpose, rather than ones with a data structure in common. For example, 

recordadd is included in Cluster Two, which contains a group of functions that are used 

to process requests sent to the system, which often leads to the adding of a record to the 

database, calcchecksum is the function contained in Cluster Three. 

It is perhaps a little unfair to test Dominance Analysis against this group of functions 

because of these crossed purposes. There is still a possibility that Dominance Analysis 

could be useful i f the maintainers were attempting to change or add to the functionality 

of the system, rather than examining the use of a data type or variable. 

6.3.3 Similarity Clustering Case Study 

SIMILARITY Cluster One Cluster Two Cluster Three SIMILARITY 

Group Size Group Size Group Size 

Version One 9 129 3 76 

Version Two 3 162 8 14 1 14 

Version Three 11 176 1 14 

Version Four 3 158 8 24 1 42 

Table 6.9: Similarity C ustering Case Study results 

At first glance, the results for Similarity Clustering, shown in Table 6.9, appear to 

demonstrate the same problem as the Dominance Analysis results, with Cluster One 

seemingly being too big for any conclusions about its contents to be accurate. However, 

while the size of this cluster is large, it should be remembered that the entities contained 

in it are functions, variables and types, and that when it is broken down into these three 

parts it may become easier to comprehend. 

The fact that in Version One and Version Three the majority of the case study group is 

found in this large cluster demonstrates one of the problems with partitioning a 

dendrogram. Ideally, it would be possible to present a single representation of the 

system by taking a single partition from the dendrogram, as has been done here. 

However, from examinations of the rest of the dendrograms produced, the case study 

group was actually clustered together very early on in the clustering process and then 

clustered with many other groups of functions. 
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This suggests that, as mentioned earlier when discussing Part Type's case study results, 

the case study group of functions is highly cohesive. Unfortunately, this cannot be seen 

from the single partition taken from the dendrogram. It is possible that an earlier 

partition could be taken which would show this cohesion but this would mean the 

exclusion of the entities that had not been clustered at that point of the process. 

The instability of Similarity Clustering can also be seen from Table 6.9. In particular, 

the second clusters for Versions Two and Four (which contain eight of the case study 

group's functions) do not feature in Version Three; this cluster has been joined with the 

large cluster (Cluster One). It is worth noting that the large cluster for Version Three is 

fourteen entities larger than the large cluster for Version Two, exactly the size of 

Cluster Two in Version Two, suggesting that this is the only change to the large cluster 

and that this change been caused by a small change between Versions Two and Three, 

highlighting the sensitivity of Similarity Clustering. 

However, Cluster Two in Versions Two and Four does contain the majority of the case 

study group, despite the merging of Clusters One and Two in Version Three. The three 

entities in Cluster One for Versions Two and Four are recordcheck, datafileclose and 

datafilecreate. Once again, the rogue function found in Cluster Three for Versions Two 

and Four and Cluster Two for Version Three is calcchecksum. 

6.3.4 Concept Analysis Case Study 

The Concept Analysis results, shown in Table 6.10 are considerably more complex than 

the results for the other techniques. The concept lattices produced by Concept Analysis 

proved to be too complicated to partition automatically and so the actual set of concepts 

must be used. This means that the entities from the case study group can appear in more 

than once concept, which means many more concepts are affected than for other 

techniques. Therefore, some abbreviations have been used to keep the table to an 

acceptable size. V I to V4 represent Versions One to Four, CI to C9 represent Concepts 

One to Nine, G represents Group and S represents Size. 

Concept Analysis isolates the case study group quite accurately; Concept One, with nine 

group functions in a cluster of thirteen entities, remains constant throughout the four 

versions. The three functions not featured in this cluster are recordadd, datafileclose 
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and calcchecksum. The one or two entities featured in the rest of the clusters are usually 

the data file functions, particularly datqfilecreale, grouped with other file manipulation 

functions not in the case study group. 

C1 C2 C3 C4 C5 C6 C7 C8 C9 

G S G S G S G S G S G S G S G S G S 

V1 9 13 2 37 3 29 1 36 1 25 1 22 1 13 1 5 

V2 9 13 2 46 2 42 1 40 1 25 1 26 1 7 

V3 9 13 2 154 2 42 1 61 1 40 1 20 1 19 1 15 1 7 

V4 9 13 2 167 2 59 1 58 1 41 1 23 1 18 1 7 

Table 6.10: Concept Analysis Case Study results 

These scattered references suggest a problem with the use of Concept Analysis. Here, 

where a group of functions is being considered, it is fairly easy to pick out Concept One 

as most representative of the group and trace the evolution of that group by following 

that concept. However, i f only a single function was being searched for, it would be 

very difficult to understand how that function affected the system and which entities 

have an impact on that function i f the function appeared in a large number of sizable 

concepts. 

It would be possible to assess the general pattern of use for this function; for example, i f 

it only appeared in one concept for Version One but ten for Version Four, then it is 

almost certain that the usage of this function and its interconnectivity with the rest of the 

system has increased dramatically. However, it is unlikely that any more specific 

information could be gleaned from a set of concepts without comparison with other 

system representations. 

6.3.5 Case Study Conclusions 

By examining the representations of the four versions created by the four techniques, a 

number of conclusions about the code can be drawn. Firstly, the case study group is 

highly cohesive, because much of it has been isolated by at least three of the techniques. 

Secondly, calcchecksum has not appeared with the other functions in the group in any 

representation, suggesting that this function does not belong in the case study group and 

was included erroneously by the authors of the system. 
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Thirdly, and most importantly in the context of evolution, while the case study group 

has remained cohesive the use of this group has increased over the four versions; this 

can be seen by the increase in the size of the clusters the group is found in, and the 

increase in the number of clusters or concepts functions in the group appear in. 

Therefore, it could be suggested that a useful preventative maintenance task would be to 

try and encapsulate this group a little more so that i f a change needed to be made to one 

of the functions in the group it would affect as little of the rest of the system as possible. 

It should be noted that it would be impossible to assert the observations above by 

examining only the results of a single technique; none of the techniques are accurate 

enough on their own to be certain of the results they produce. Therefore, it is strongly 

recommended that i f these techniques are to be used to study evolution (and the results 

in this section suggest that this could be done productively) more than one technique 

should be used and the representations they produce compared before any conclusions 

are drawn. 

6.4 Conclusion 

This chapter has described the results achieved by carrying out the work outlined in 

Chapter Five. The coverage and stability of the four software clustering and concept 

analysis techniques has been tested and a number of observations have been made based 

on the representation of the case study function group described in Section 5.3.2. The 

following chapter draws some conclusions based on these results. 
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CHAPTER SEVEN - Conclusions 

This final chapter summarises the work described in the rest of this thesis. The thesis 

has examined the possibility of using software clustering and concept analysis 

techniques to examine the evolution of software. The literature survey has reviewed a 

wide range of software clustering and concept analysis techniques and general work on 

the techniques. An analysis concerning the possibility of using software clustering and 

concept analysis techniques to study the evolution of software has been carried out on 

an industrial software system. The analysis contained some experimental analysis and a 

case study. Various small tools were developed to support this analysis and collect the 

results that were described in the previous chapter. 

The following conclusions are based on the criteria for success listed in Section 1.5. 

Firstly, the history of software clustering and concept analysis that informed the work is 

outlined in Section 7.1. The work performed and the results of this work are explained 

in Sections 7.2 and 7.3. A summary discussion of the criteria for success is provided in 

Section 7.4. Finally, in Section 7.5, some recommendations for further work are made. 

7.1 History 

There have been a great number of software clustering and concept analysis techniques 

developed since the early 1980s. These techniques attempt to represent a software 

system as groups of similar or connected entities, in the hope that these representations 

wil l provide a better understanding of the software system. The field has developed 

from and been based on the existing multi-discipline field of cluster analysis. Over the 

years, researchers have attempted to use these techniques for a wide range of purposes, 

from program comprehension to reengineering to reuse. To satisfy Criteria 1, a full 

discussion of the development of the field can be found in Chapters Two and Three. 

In recent years various researchers have attempted to summarise and classify the 

existing software clustering and concept analysis techniques. This work is explored in 

Chapter Four. One of the most thorough approaches is by the Bauhaus team, 

particularly through the work of Rainer Koschke. Koschke provides a succinct 
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taxonomy of these techniques in his doctoral thesis [KOSCOOa], proposing four main 

categories of such techniques: connection-based, metric-based, graph-based and 

concept-based. 

Currently, software clustering and concept analysis techniques do not provide the 

robustness or completeness required i f the representations they produce are to be used to 

reengineer a system or propose reuse candidates. Perhaps unsurprisingly, most 

techniques can cluster the cohesive elements of a software system well but struggle to 

cope with entities that are very frequently used or dissimilar to the rest of the system's 

entities. However, it is possible that this property could be advantageous for purposes 

that do not require full representations of a software system. 

This thesis has attempted a preliminary exploration into whether these techniques can 

be used to study the evolution of a software system. It is possible that by analysing 

suitable representations of different versions of a system, evolutionary trends could be 

uncovered and undesirable developments could be halted by applying preventative 

maintenance. This kind of application is likely to focus on a small group of entities 

rather than the whole system and so the representations produced by software clustering 

and concept analysis techniques may be useful for this purpose. As demanded by 

Criteria 5, the work described in Section 7.2 attempted to establish i f this theory is 

worth pursuing. 

7.2 Work Performed 

Four techniques were tested, one for each of the categories established by Koschke 

[KOSCOOa]. These were Part Type (connection-based), Similarity Clustering (metric-

based), Dominance Analysis (graph-based) and an implementation of Concept Analysis 

by Lindig [LIND97] based on functions and variables. The clustering suite Bauhaus 

Rigi was used to run the techniques. Each technique was executed using an industrial 

software system as input, as demanded by Criteria 3. This software system has four 

versions and representations were created for each version by each technique. 

These representations were then assessed to establish the coverage and stability of each 

technique, as stated in Criteria 2. Coverage is the amount of entities that were 
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considered by the technique during the clustering process. It is important that a high 

degree of coverage is attained in order to validate the representations produced; i f a 

large number of entities is omitted and does not inform the clustering process any 

observations about the representations are likely to be flawed. 

Each technique must also be stable; this means they must change in line with changes 

from version to version. Some clustering techniques are prone to alter wildly with only 

a slight change in the input system. The stability of the assessed techniques was tested 

using a distance metric called MoJo, developed by Tzerpos and Holt [TZER99]. A 

heuristic algorithm used to calculate MoJo was implemented for this thesis; this 

implementation adapted the algorithm to take into account two inputs of different sizes 

and multiple entities of the same name. This implementation and other tools that were 

developed to aid the manipulation of results produced by Bauhaus Rigi satisfy Criteria 

4. 

A case study was also completed for this thesis. A group of functions known to be 

considered cohesive by the authors of the tested software system was traced throughout 

the representations created by the assessed techniques. This study was undertaken in the 

hope that some observations could be made about the nature of the techniques and the 

software system, which in turn may lead to some general observations about the 

possibility of studying software evolution using the techniques. Further information on 

the work performed for this thesis can be found in Chapter Five. 

7.3 Results Analysis 

The results of testing the four techniques Part Type, Dominance Analysis, Concept 

Analysis and Similarity Clustering are now discussed. The analysis for each technique, 

detailed in Chapter Six, is explained and some more general conclusions on the use of 

software clustering and concept analysis techniques for the study of software evolution 

can then be drawn. 

Part Type, the connection-based approach developed by Liu and Wilde [LIU90] and 

explained in Section 3.1.4, is one of the earlier software clustering approaches. It is 

typical of connection-based approaches (and, in fact, many early software clustering 

92 



approaches) in that it only considers a single set of relationships in the system, in this 

case the use of types by functions. 

The results show that Part Type produces reasonable clusters based on the information it 

uses and that it can pick out the important functions related to a type. However, the 

information base used by Part Type is extremely small; only types that are directly used 

by functions are included. I f a function uses a variable of a certain type but does not use 

the type itself, Part Type will include neither the function nor the type in its 

representation of the system. 

As shown in the coverage analysis of Part Type, for the test system, this meant that less 

than half of the functions and under a quarter of the types in the system were included 

for all four versions. As Part Type does not include any variables either, this makes it 

very difficult to use the results with any degree of certainty. This observation is 

validated because Part Type's representation remains the same (completely stable) from 

Version Two to Version Four, despite large changes to the system. 

Unfortunately, these problems are likely to affect most connection-based approaches 

because they usually focus on one type of connection alone. Also, basing the results on 

a number of different connections is likely to cause a number of conflicts because each 

connection wil l generally produce different clusters. However, this is not to say that 

connection-based approaches are completely useless. It is thought that they can be very 

useful as a confirmation tool, to validate a clustering suggested by another technique. 

This is particularly appropriate because connection-based approaches are typically very 

fast and easy to execute, due to their natural simplicity. 

Dominance Analysis, the graph-based approach developed by Cimitile and Visaggio 

[CIMI95] and described in Section 3.1.10, seems to have good coverage and stability 

from the results in Chapter Six. However, as explained elsewhere, because Dominance 

Analysis is based a specific relation it fails to cluster a large number of entities in the 

system, although it does include these entities in its representation. The dominance 

relations it does define tend to only concern one or two entities, with only a few groups 

containing a sizeable number of entities. 
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The case study shows that this makes it very difficult to draw any reasonable 

conclusions from the representations Dominance Analysis produces, but also suggests 

that this is because Dominance Analysis is based on functional connections rather than 

data structures. It is also only likely to work with any success on well-structured 

systems because it picks out the local functions to other functions; i f a function A is 

strongly dominated by a function B that means that only function B uses function A. A 

frequently altered system is likely to have few of these local functions left. However, 

this may mean that Dominance Analysis will be perfect for tracking the evolution of 

system where a well-defined, cohesive set of functions has dissipated over time. 

The Concept Analysis approach used here is based on the work of Lindig [LIND97] and 

described in Section 3.2. It has produced promising results, despite creating sets of 

concepts that proved too difficult to partition. It covers the majority of the functions and 

variables in the system and is stable enough to take the representations it produces 

seriously. As mentioned in Chapter Six, the omission of types is a problem with the 

input to the analysis, not the analysis itself, which could be adapted to take into account 

any number of features. 

Concept Analysis also managed to isolate the majority of the case study group 

consistently, while also suggesting how the use of the group may have changed over the 

development of the four versions of the test system. Unfortunately, it would take a 

reasonable amount of manual analysis by the maintainer of the set of concepts and the 

code itself to make these changes clear, because the set of concepts contains 

overlapping and sometimes contrasting juxtapositions of entities. Cross-examination 

with the results from Part Type, for example, may help to confirm observations drawn 

from the sets of concepts. 

The most promising results were produced by Similarity Clustering, the metric-based 

approach designed by Koschke [KOSCOOa] based on earlier work by Schwanke 

[SCHW91] and described in Section 3.1.13.4. This approach is the most thorough and 

complicated software clustering method available, which means that it takes some time 

to produce its representations. It has the best coverage of all tested techniques and has 

levels of stability closest to the actual change in the system, suggesting it takes the 

changes made from version to version into account while still retaining continuity in its 

representations. 
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Unfortunately, it is possible that Similarity Clustering, because it considers so much 

information, produces representations that may be too complicated to be understood 

easily. This is demonstrated by the changes in the representation of the case study group 

of functions, where clusters disappear and reappear again due to small changes that 

Similarity Clustering is perhaps over-sensitive to. There is also a major problem (as 

with all hierarchical agglomerative algorithms) with the partitioning of the dendrogram 

produced by Similarity Clustering; in fact, as with Concept Analysis, it is recommended 

that the actual dendrogram be studied for the purposes of evolution rather than 

partitioning the dendrogram. While this provides a large amount of information for the 

maintainers of a system to examine, with a clear aim in mind it should be easy to select 

the relevant parts of the dendrogram for each version and trace the development of the 

part of the system being studied. 

Metric-based approaches such as Similarity Clustering are more versatile than other 

types of approaches, because any information about the system can be used as input 

provided that input can be represented numerically. The amount and importance of 

information in the input to the approach can be changed with ease without the user 

having to alter the rest of the clustering process. This is also true of Concept Analysis, 

but the binary relation used as input for Concept Analysis is less flexible than the metric 

used for Similarity Clustering. 

In conclusion, and to provide the recommendations required by Criteria 6, while the 

results for Dominance Analysis and Part Type were disappointing, the representations 

produced by Concept Analysis and Similarity Clustering suggests that there is a use for 

these techniques to study software evolution. Changes to a group of functions can be 

traced using these approaches and the overall evolution of a software system can be 

examined from a number of different angles with ease. As many software systems have 

incomplete or non-existent documentation, even the statistical data about how the 

number of entities changes from version to version may prove useful to maintainers. 

However, the use of these techniques can only be recommended i f more than one 

technique is used, because at present the results from a single technique can not be 

trusted sufficiently to be relied on. This could prove to be a problem because of the 

nature of the maintenance of a software system. I f these approaches were to be used to 

assess the impact of a corrective or adaptive maintenance change there is likely to be a 
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need for this change to be made very quickly. There may not be time to produce and 

compare a large number of representations. The same is true to a lesser extent of 

preventative and perfective maintenance. 

Although more accurate and more immediate representations are needed, it is becoming 

easier and easier to produce these representations, even as the techniques themselves 

become increasingly complicated. This will only improve as further work is done into 

the uses of software clustering. As suggested above, i f a maintainer has a clear aim in 

mind when using these techniques, the analysis of the representations produced may 

give the maintainer a different impression of the system or confirm already held 

suspicions about the system within a matter of minutes. Therefore, it is believed that 

these techniques could give the maintainer a significant advantage when further 

evolution of the system takes place. 

7.4 Review of Success Criteria 

The criteria for success stated in Section 1.3 have been referred to throughout this 

chapter. The following is a summary discussion of these criteria. 

1. To summarise the history of software clustering and concept analysis 

techniques. 

Chapter Two discusses the overall development of the fields of software 

clustering and concept analysis. Many of the techniques that have been created 

during this development are explained in detail in Chapter Three. Chapter Four 

is concerned with work that has attempted to classify and evaluate these 

techniques. These chapters are summarised in Section 7.1. 

2. To assess the coverage and stability of a number of software clustering and 

concept analysis techniques. 

Chapter Five describes the analysis performed for this thesis, including an 

assessment of coverage and stability. The methods of analysis are outlined in 

Section 5.1. The MoJo metric and algorithm used to calculate stability are 

described in Sections 4.2.2 and 4.2.3; some new adaptations to the MoJo 

algorithm are explained in Section 5.4. The results acquired during this analysis 
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are detailed and discussed in Sections 6.1 and 6.2. A small case study has also 

been performed to illuminate the coverage and stability results; this case study is 

described in Section 5.3.2 and the results of the case study are discussed in 

Section 6.3. The assessment is summarised in Section 7.2 and the results of the 

assessment are used to draw conclusions in Section 7.3. 

3. To use industrial strength software during the analysis of these techniques. 

A single industrial software system served as input for the assessed software 

clustering and concept analysis techniques. This system is described in Section 

5.3. 

4. To develop tools to support the analysis of these techniques. 

A number of tools were developed to execute the MoJo algorithm and process 

the representations produced by the assessed software clustering and concept 

analysis techniques. The tools are described in Section 5.5 and the architecture 

formed by the tools and the other analysis software used during the assessment 

is visualised in Section 5.6. 

5. To investigate the feasibility of studying evolution of systems using these 

techniques. 

Discussions throughout Chapter Six and in Section 7.3 form an investigation 

into the feasibility of studying evolution of systems using software clustering 

and concept analysis techniques. Based on these discussions, it is certainly 

possible to examine system evolution using these techniques. However, at 

present, this examination should be limited to small-scale assessment of single 

entities or groups of entities rather than whole system evolution. The techniques 

are not currently sufficiently developed to be relied upon but may prove useful 

as a clarification tool as part of some larger evolution analysis. 

6. To provide recommendations for the most appropriate techniques to use for the 

purposes of evolution. 

Similarity Clustering provided the best overall results of the four techniques 

assessed for this thesis; Concept Analysis also provided good quality results. 

Part Type and Dominance Analysis provided poor results under the assessment 

criteria used for the analysis. However, the case study discussed in Section 6.3 
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shows that no results from a single technique can be relied upon and it is 

necessary to compare the results of different techniques to draw any 

observations. Therefore, a possible use for the techniques is to propose basic 

overall representations using Similarity Clustering or Concept Analysis and 

confirm connections between entities suggested by these representations using 

more specific connection-based techniques like Part Type. While this will mean 

more work for the maintainer, the techniques are very easy and quick to execute 

and so this extra comparison work should not prohibit the use of software 

clustering and concept analysis techniques for the study of evolution. 

7.5 Further Work 

This thesis has only undertaken a preliminary investigation of the use of software 

clustering and concept analysis techniques to study the evolution of software systems. 

This section outlines some of the further work that could lead from the investigation 

described in this thesis, both in the immediate future and afterward. 

Only four software clustering and concept analysis techniques have been explored in 

this thesis. There are many more techniques that could have been assessed under the 

same evaluation criteria, including many of the techniques described in Chapter Three. 

Also, the techniques that have been analysed should be evaluated further; for example, 

the parameters for Similarity Clustering were not explored and these parameters can 

dramatically affect the representations that this technique produces. 

The test software system used for this thesis is not particularly large and has only four 

versions; many software clustering techniques have difficulty coping with large systems 

and so an investigation on a grander scale could provide some interesting results. Also, 

examining a system that has intermediate versions between main releases, which would 

suggest smaller changes between versions, may make it easier to compare the 

representations produced by the assessed techniques. 

It would be extremely valuable to execute a real-life survey of the use of these 

techniques. Actual system maintainers could be provided with clustering tools and 

encouraged to use the representations produced when maintaining their software, either 

98 



in a controlled environment with well-chosen example changes or in the workplace with 

whatever changes or maintenance tasks occur over a time period. This type of study 

could provide information not only on the ability of existing techniques but point to 

what maintainers may desire in a clustering method designed specifically to track the 

evolution of software. 

The tools developed to support the analysis described here (listed in Section 5.5) are 

informal and would not be suitable for real maintenance use. Therefore, it would be 

useful to develop a software suite that would enable the application of software 

clustering and concept analysis techniques to study evolution for actual maintenance. 

This suite should focus on small-scale use of the techniques; for example, it should be 

designed to allow a maintainer to track the changes in use of a single entity or small 

group of entities efficiently without being concerned with a picture of the whole system. 

As maintenance teams are often under pressure to make changes to a system quickly 

and efficiently, the evolution software suite must be similarly quick and efficient and 

focussed on maintainers' needs i f it is to be adopted for use by any real maintenance 

unit. 

One of the major problems with software clustering and concept analysis techniques is 

that, at present, they only consider the syntactic elements of a system and cannot 

include any semantic, domain knowledge about a system. However, this is a problem 

with the input to the techniques rather than the techniques themselves. I f it were made 

possible to suitably code this semantic information as descriptive features of entities, it 

could act as input to software clustering and concept analysis techniques, either alone or 

in conjunction with syntactic information 

With further development of software clustering and concept analysis techniques and 

further assessment of these techniques on many more software systems, it may be 

possible to use the techniques to study or propose more general theories of software 

evolution. As maintainers of systems can confirm or deny suspicions about particular 

software systems by examining suitable representations produced by software clustering 

and concept analysis techniques, software evolution researchers could assess more 

general observations about the evolution of software using these techniques. The results 

acquired over time may even suggest possible general trends of evolution that had not 

previously been considered. 

99 



7.6 Conclusion 

This chapter has summarised the work carried out for this thesis and evaluated how 

successful this work has been based on the criteria for success outlined in Section 1.5. It 

is concluded that the work has been worthwhile because it has demonstrated that there 

is a very good case to be made for the use of software clustering and concept analysis 

techniques when studying the evolution of software systems. 
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