110 research outputs found

    A formally verified compiler back-end

    Get PDF
    This article describes the development and formal verification (proof of semantic preservation) of a compiler back-end from Cminor (a simple imperative intermediate language) to PowerPC assembly code, using the Coq proof assistant both for programming the compiler and for proving its correctness. Such a verified compiler is useful in the context of formal methods applied to the certification of critical software: the verification of the compiler guarantees that the safety properties proved on the source code hold for the executable compiled code as well

    Patient-orientated longitudinal study of multiple sclerosis in south west England (The South West Impact of Multiple Sclerosis Project, SWIMS) 1: protocol and baseline characteristics of cohort

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is a need for greater understanding of the impact of multiple sclerosis (MS) from the perspective of individuals with the condition. The South West Impact of MS Project (SWIMS) has been designed to improve understanding of disease impact using a patient-centred approach. The purpose is to (1) develop improved measurement instruments for clinical trials, (2) evaluate longitudinal performance of a variety of patient-reported outcome measures, (3) develop prognostic predictors for use in individualising drug treatment for patients, particularly early on in the disease course.</p> <p>Methods</p> <p>This is a patient-centred, prospective, longitudinal study of multiple sclerosis and clinically isolated syndrome (CIS) in south west England. The study area comprises two counties with a population of approximately 1.7 million and an estimated 1,800 cases of MS. Self-completion questionnaires are administered to participants every six months (for people with MS) or 12 months (CIS). Here we present descriptive statistics of the baseline data provided by 967 participants with MS.</p> <p>Results</p> <p>Seventy-five percent of those approached consented to participate. The male:female ratio was 1.00:3.01 (n = 967). Average (standard deviation) age at time of entry to SWIMS was 51.6 (11.5) years (n = 961) and median (interquartile range) time since first symptom was 13.3 (6.8 to 24.5) years (n = 934). Fatigue was the most commonly reported symptom, with 80% of participants experiencing fatigue at baseline. Although medication use for symptom control was common, there was little evidence of effectiveness, particularly for fatigue. Nineteen percent of participants were unable to classify their subtype of MS. When patient-reported subtype was compared to neurologist assessment for a sample of participants (n = 396), agreement in disease sub-type was achieved in 63% of cases. There were 836 relapses, reported by 931 participants, in the twelve months prior to baseline. Twenty-three percent of the relapsing-remitting group and 12% of the total sample were receiving disease-modifying therapy at baseline.</p> <p>Conclusions</p> <p>Demographics of this sample were similar to published data for the UK. Overall, the results broadly reflect clinical experience in confirming high symptom prevalence, with relatively little complete symptom relief. Participants often had difficulty in defining MS relapses and their own MS type.</p

    Field realistic doses of pesticide imidacloprid reduce bumblebee pollen foraging efficiency

    Get PDF
    Bumblebees and other pollinators provide a vital ecosystem service for the agricultural sector. Recent studies however have suggested that exposure to systemic neonicotinoid insecticides in flowering crops has sub-lethal effects on the bumblebee workforce, and hence in reducing queen production. The mechanism behind reduced nest performance, however, remains unclear. Here we use Radio Frequency Identification (RFID) technology to test whether exposure to a low, field realistic dose (0.7 ppb in sugar water and 6 ppb in pollen) of the neonicotinoid imidacloprid, reduces worker foraging efficiency. Whilst the nectar foraging efficiency of bees treated with imidacloprid was not significantly different than that of control bees, treated bees brought back pollen less often than control bees (40 % of trips vs 63 % trips, respectively) and, where pollen was collected, treated bees brought back 31 % less pollen per hour than controls. This study demonstrates that field-realistic doses of these pesticides substantially impacts on foraging ability of bumblebee workers when collecting pollen, and we suggest that this provides a causal mechanism behind reduced queen production in imidacloprid exposed colonies

    Multicolour Single Molecule Imaging in Cells with Near Infra-Red Dyes

    Get PDF
    Background: The autofluorescence background of biological samples impedes the detection of single molecules when imaging. The most common method of reducing the background is to use evanescent field excitation, which is incompatible with imaging beyond the surface of biological samples. An alternative would be to use probes that can be excited in the near infra-red region of the spectrum, where autofluorescence is low. Such probes could also increase the number of labels that can be imaged in multicolour single molecule microscopes. Despite being widely used in ensemble imaging, there is a currently a shortage of information available for selecting appropriate commercial near infra-red dyes for single molecule work. It is therefore important to characterise available near infra-red dyes relevant to multicolour single molecule imaging. Methodology/Principal Findings: A range of commercially available near infra-red dyes compatible with multi-colour imaging was screened to find the brightest and most photostable candidates. Image series of immobilised samples of the brightest dyes (Alexa 700, IRDye 700DX, Alexa 790 and IRDye 800CW) were analysed to obtain the mean intensity of single dye molecules, their photobleaching rates and long period blinking kinetics. Using the optimum dye pair, we have demonstrated for the first time widefield, multi-colour, near infra-red single molecule imaging using a supercontinuum light source in MCF-7 cells

    Diet breadth, coexistence and rarity in bumblebees

    Get PDF
    Factors that determine the relative abundance of bumblebee species remain poorly understood, rendering management of rare and declining species difficult. Studies of bumblebee communities in the Americas suggest that there are strong competitive interactions between species with similar length tongues, and that this competition determines the relative abundance of species. In contrast, in Europe it is common to observe several short-tongued species coexisting with little or no evidence for competition shaping community structure. In this study we examine patterns of abundance and distribution in one of the most diverse bumblebee communities in Europe, found in the mountains of southern Poland. We quantify forage use when collecting nectar and pollen for 23 bumblebee species, and examine patterns of co-occurrence and niche overlap to determine whether there is evidence for inter-specific competition. We also test whether rarity can be explained by diet breadth. Up to 16 species were found coexisting within single sites, with species richness peaking in mountain pasture at ~1000m altitude. Results concur with previous studies indicating that the majority of pollen collected by bumblebees is from Fabaceae, but that some bee species (e.g. B. ruderatus) are much more heavily dependent on Fabaceae than others (e.g. B. lucorum). Those species that forage primarily on Fabaceae tended to have long tongues. In common with studies in the UK, diet breadth was correlated with abundance: rarer species tended to visit fewer flower species, after correcting for differences in sample size. No evidence was found for similarity in tongue length or dietary overlap influencing the likelihood of co-occurrence of species. However, the most abundant species (which co-occurred at most sites) occupied distinct dietary niche space. While species with tongues of similar length tended, overall, to have higher dietary niche overlap, among the group of abundant short-tongued species that commonly co-occurred there was marked dietary differentiation which may explain their coexistence

    Differentiation of breast cancer stem cells by knockdown of CD44: promising differentiation therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Breast cancer stem cells (BCSCs) are the source of breast tumors. Compared with other cancer cells, cancer stem cells show high resistance to both chemotherapy and radiotherapy. Targeting of BCSCs is thus a potentially promising and effective strategy for breast cancer treatment. Differentiation therapy represents one type of cancer stem-cell-targeting therapy, aimed at attacking the stemness of cancer stem cells, thus reducing their chemo- and radioresistance. In a previous study, we showed that down-regulation of CD44 sensitized BCSCs to the anti-tumor agent doxorubicin. This study aimed to determine if CD44 knockdown caused BCSCs to differentiate into breast cancer non-stem cells (non-BCSCs).</p> <p>Methods</p> <p>We isolated a breast cancer cell population (CD44<sup>+</sup>CD24<sup>- </sup>cells) from primary cultures of malignant breast tumors. These cells were sorted into four sub-populations based on their expression of CD44 and CD24 surface markers. CD44 knockdown in the BCSC population was achieved using small hairpin RNA lentivirus particles. The differentiated status of CD44 knock-down BCSCs was evaluated on the basis of changes in CD44<sup>+</sup>CD24<sup>- </sup>phenotype, tumorigenesis in NOD/SCID mice, and gene expression in relation to renewal status, metastasis, and cell cycle in comparison with BCSCs and non-BCSCs.</p> <p>Results</p> <p>Knockdown of CD44 caused BCSCs to differentiate into non-BCSCs with lower tumorigenic potential, and altered the cell cycle and expression profiles of some stem cell-related genes, making them more similar to those seen in non-BCSCs.</p> <p>Conclusions</p> <p>Knockdown of CD44 is an effective strategy for attacking the stemness of BCSCs, resulting in a loss of stemness and an increase in susceptibility to chemotherapy or radiation. The results of this study highlight a potential new strategy for breast cancer treatment through the targeting of BCSCs.</p

    Refining transcriptional programs in kidney development by integration of deep RNA-sequencing and array-based spatial profiling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The developing mouse kidney is currently the best-characterized model of organogenesis at a transcriptional level. Detailed spatial maps have been generated for gene expression profiling combined with systematic <it>in situ </it>screening. These studies, however, fall short of capturing the transcriptional complexity arising from each locus due to the limited scope of microarray-based technology, which is largely based on "gene-centric" models.</p> <p>Results</p> <p>To address this, the polyadenylated RNA and microRNA transcriptomes of the 15.5 dpc mouse kidney were profiled using strand-specific RNA-sequencing (RNA-Seq) to a depth sufficient to complement spatial maps from pre-existing microarray datasets. The transcriptional complexity of RNAs arising from mouse RefSeq loci was catalogued; including 3568 alternatively spliced transcripts and 532 uncharacterized alternate 3' UTRs. Antisense expressions for 60% of RefSeq genes was also detected including uncharacterized non-coding transcripts overlapping kidney progenitor markers, Six2 and Sall1, and were validated by section <it>in situ </it>hybridization. Analysis of genes known to be involved in kidney development, particularly during mesenchymal-to-epithelial transition, showed an enrichment of non-coding antisense transcripts extended along protein-coding RNAs.</p> <p>Conclusion</p> <p>The resulting resource further refines the transcriptomic cartography of kidney organogenesis by integrating deep RNA sequencing data with locus-based information from previously published expression atlases. The added resolution of RNA-Seq has provided the basis for a transition from classical gene-centric models of kidney development towards more accurate and detailed "transcript-centric" representations, which highlights the extent of transcriptional complexity of genes that direct complex development events.</p
    corecore