172 research outputs found
Rotifers in the Schelde estuary (Belgium): a test of taxonomic relevance
To investigate the reaction of the zooplankton community to improving water quality in the Schelde estuary, we studied the relationship between rotifer species distribution and environmental factors, and the feasibility of using a coarser level of taxonomic resolution. Fifty-two taxa, belonging to 26 genera, were identified, including 22 taxa new for the Schelde. Brachionus calyciflorus, Keratella cochlearis and B. angularis were the most abundant species. The highest diversity and abundances were observed in the freshwater reach. Redundancy analyses (RDA) showed that the main environmental factors explaining rotifer distribution were chlorinity and seasonal factors (discharge levels, cyclopoid abundance). Analysis carried out with data at the species and the genus level gave similar ordination plots, but the positioning of a genus relative to environmental factors did not always adequately represent the associations between the various species within the genus and environmental factors. Similar patterns in space and time were observed using taxonomic richness and diversity indices for analyses at species or genus level. Thus, in the context of the restoration of the Schelde estuary, the identification of rotifer species is very informative, but not essential for detecting important ecological associations
Contrasting patterns of population structure and gene flow facilitate exploration of connectivity in two widely distributed temperate octocorals
This is the final version of the article. Available from Springer Nature via the DOI in this record.Connectivity is an important component of metapopulation dynamics in marine systems and can influence population persistence, migration rates and conservation decisions associated with Marine Protected Areas (MPAs). In this study, we compared the genetic diversity, gene flow and population structure of two octocoral species, Eunicella verrucosa and Alcyonium digitatum, in the northeast Atlantic (ranging from the northwest of Ireland and the southern North Sea, to southern Portugal), using two panels of thirteen and eight microsatellite loci, respectively. Our results identified regional genetic structure in E. verrucosa partitioned between populations from southern Portugal, northwest Ireland, and Britain/France; subsequent hierarchical analysis of population structure also indicated reduced gene flow between southwest Britain and northwest France. However, over a similar geographical area, A. digitatum showed little evidence of population structure, suggesting high gene flow and/or a large effective population size; indeed, the only significant genetic differentiation detected in A. digitatum occurred between North Sea samples and those from the English Channel/northeast Atlantic. In both species the vast majority of gene flow originated from sample sites within regions, with populations in southwest Britain being the predominant source of contemporary exogenous genetic variants for the populations studied. Unsurprisingly, historical patterns of gene flow appeared more complex, though again southwest Britain appeared an important source of genetic variation for both species. Our findings have major conservation implications, particularly for E. verrucosa, a protected species in UK waters and listed by the IUCN as ‘Vulnerable’, and for the designation and management of European MPAs.We thank Natural England (project No. RP0286, contract No. SAE 03-02-146), the NERC (grant No. NE/L002434/1) and the University of Exeter for funding this research. Additional funding for sample collection, travel and microsatellite development was provided by the EU Framework 7 ASSEMBLE programme, agreement no. 227799, and NERC grant No. NBAF-362
Ecological impacts of non-native Pacific oysters (Crassostrea gigas) and management measures for protected areas in Europe
Pacific oysters are now one of the most ‘globalised’ marine invertebrates. They dominate bivalve aquaculture production in many regions and wild populations are increasingly becoming established, with potential to displace native species and modify habitats and ecosystems. While some fishing communities may benefit from wild populations, there is now a tension between the continued production of Pacific oysters and risk to biodiversity, which is of particular concern within protected sites. The issue of the Pacific oyster therefore locates at the intersection between two policy areas: one concerning the conservation of protected habitats, the other relating to livelihoods and the socio-economics of coastal aquaculture and fishing communities. To help provide an informed basis for management decisions, we first summarise evidence for ecological impacts of wild Pacific oysters in representative coastal habitats. At local scales, it is clear that establishment of Pacific oysters can significantly alter diversity, community structure and ecosystem processes, with effects varying among habitats and locations and with the density of oysters. Less evidence is available to evaluate regional-scale impacts. A range of management measures have been applied to mitigate negative impacts of wild Pacific oysters and we develop recommendations which are consistent with the scientific evidence and believe compatible with multiple interests. We conclude that all stakeholders must engage in regional decision making to help minimise negative environmental impacts, and promote sustainable industry development
Spearfishing Regulation Benefits Artisanal Fisheries: The ReGS Indicator and Its Application to a Multiple-Use Mediterranean Marine Protected Area
The development of fishing efficiency coupled with an increase of fishing effort led to the overexploitation of numerous natural marine resources. In addition to this commercial pressure, the impact of recreational activities on fish assemblages remains barely known. Here we examined the impact of spearfishing limitation on resources in a marine protected area (MPA) and the benefit it provides for the local artisanal fishery through the use of a novel indicator. We analysed trends in the fish assemblage composition using artisanal fisheries data collected in the Bonifacio Strait Natural Reserve (BSNR), a Mediterranean MPA where the spearfishing activity has been forbidden over 15% of its area. Fish species were pooled into three response groups according to their target level by spearfishing. We developed the new flexible ReGS indicator reflecting shifts in species assemblages according to the relative abundance of each response group facing external pressure. The catch per unit effort (CPUE) increased by ca. 60% in the BSNR between 2000 and 2007, while the MPA was established in 1999. The gain of CPUE strongly depended on the considered response group: for the highly targeted group, the CPUE doubled while the CPUE of the untargeted group increased by only 15.5%. The ReGS value significantly increased from 0.31 to 0.45 (on a scale between 0 and 1) in the general perimeter of this MPA while it has reached a threshold of 0.43, considered as a reference point, in the area protected from spearfishing since 1982. Our results demonstrated that limiting recreational fishing by appropriate zoning in multiple-use MPAs represents a real benefit for artisanal fisheries. More generally we showed how our new indicator may reveal a wide range of impacts on coastal ecosystems such as global change or habitat degradation
Performance comparison of biotic indices measuring the ecological status base on soft-bottom macroinvertebrates: a study along the shallow Gomishan lagoon (Southeast Caspian Sea)
Abstract This paper aims to test the suitability of some biotic indices for their application in Southeast Caspian Sea. For this purpose, the ecological quality of the Gomishan lagoon was assessed using three biotic indices (AMBI, BENTIX, BOPA) during summer and autumn 2010. The results from the application of the biotic indices do not highlight a clear distinction between the stations. The results show that two of the indices (AMBI and BENTIX) are very close in terms of diagnosis (good and high) and seem to generally perform better than BOPA. In addition, Principal Component Analysis (PCA) based on abiotic parameters showed clear spatial and temporal differences in environmental variables. However, at this shallow sites with low human pressure and high water residence times, such benthic community composition can be associated with physical stress due to salinity increase and to changes in environmental characteristics, triggered by conventional seasonal variations. Natural variability of transitional waters is a crucial factor for a correct evaluation of the ecological condition of macroinvertebrate communities across the lagoonal system
- …