24 research outputs found

    Generative Adversarial Networks for Scintillation Signal Simulation in EXO-200

    Full text link
    Generative Adversarial Networks trained on samples of simulated or actual events have been proposed as a way of generating large simulated datasets at a reduced computational cost. In this work, a novel approach to perform the simulation of photodetector signals from the time projection chamber of the EXO-200 experiment is demonstrated. The method is based on a Wasserstein Generative Adversarial Network - a deep learning technique allowing for implicit non-parametric estimation of the population distribution for a given set of objects. Our network is trained on real calibration data using raw scintillation waveforms as input. We find that it is able to produce high-quality simulated waveforms an order of magnitude faster than the traditional simulation approach and, importantly, generalize from the training sample and discern salient high-level features of the data. In particular, the network correctly deduces position dependency of scintillation light response in the detector and correctly recognizes dead photodetector channels. The network output is then integrated into the EXO-200 analysis framework to show that the standard EXO-200 reconstruction routine processes the simulated waveforms to produce energy distributions comparable to that of real waveforms. Finally, the remaining discrepancies and potential ways to improve the approach further are highlighted.Comment: 20 pages, 10 figure

    Ação afirmativa nos Estados Unidos: breve síntese da jurisprudência e da pesquisa social científica

    Get PDF
    Este artigo pretende apresentar sucintamente aos leitores não familiarizados com a ação afirmativa nos Estados Unidos seus antecedentes históricos e atual status legislativo e, de maneira mais abrangente, abordar questões empíricas das ciências sociais relacionadas com a ação afirmativa. Abordam-se especificamente as falhas e/ou limitações da pesquisa que sustenta a hipótese da disparidade educacional, da evidência empírica da "disparidade científica", e a afirmação de que a ação afirmativa baseada em classe social seria tão ou quase tão eficaz na promoção da diversidade racial quanto a ação afirmativa baseada em raça. Examinam-se especificamente os trabalhos de Richard Sander, Richard Kahlenberg, Doug Williams e Peter Arcidiacono. O artigo também afirma que o casoBakke, que apresentou, pela primeira vez, uma decisão da Suprema Corte sobre a ação afirmativa, desvirtuou a jurisprudência a respeito da ação afirmativa na educação e as discussões sobre o tema, de modo a provocar efeitos lamentáveis e duradouros

    Search for Neutrinoless Double- β Decay with the Complete EXO-200 Dataset

    Get PDF
    A search for neutrinoless double-β decay (0νββ) in Xe136 is performed with the full EXO-200 dataset using a deep neural network to discriminate between 0νββ and background events. Relative to previous analyses, the signal detection efficiency has been raised from 80.8% to 96.4±3.0%, and the energy resolution of the detector at the Q value of Xe136 0νββ has been improved from σ/E=1.23% to 1.15±0.02% with the upgraded detector. Accounting for the new data, the median 90% confidence level 0νββ half-life sensitivity for this analysis is 5.0×1025 yr with a total Xe136 exposure of 234.1 kg yr. No statistically significant evidence for 0νββ is observed, leading to a lower limit on the 0νββ half-life of 3.5×1025 yr at the 90% confidence level

    Constraints on dark matter-nucleon effective couplings in the presence of kinematically distinct halo substructures using the DEAP-3600 detector

    Get PDF
    DEAP-3600 is a single-phase liquid argon detector aiming to directly detect weakly interacting massive particles (WIMPs), located at SNOLAB (Sudbury, Canada). After analyzing data taken during the first year of operation, a null result was used to place an upper bound on the WIMP-nucleon, spin-independent, isoscalar cross section. This study reinterprets this result within a nonrelativistic effective field theory framework and further examines how various possible substructures in the local dark matter halo may affect these constraints. Such substructures are hinted at by kinematic structures in the local stellar distribution observed by the Gaia satellite and other recent astronomical surveys. These include the Gaia Sausage (or Enceladus), as well as a number of distinct streams identified in recent studies. Limits are presented for the coupling strength of the effective contact interaction operators O1, O3, O5, O8, and O11, considering isoscalar, isovector, and xenonphobic scenarios, as well as the specific operators corresponding to millicharge, magnetic dipole, electric dipole, and anapole interactions. The effects of halo substructures on each of these operators are explored as well, showing that the O5 and O8 operators are particularly sensitive to the velocity distribution, even at dark matter masses above 100 GeV=c

    Diagnostic capabilities of nanopore long-read sequencing in muscular dystrophy

    No full text
    Many individuals with muscular dystrophies remain genetically undiagnosed despite clinical diagnostic testing, including exome sequencing. Some may harbor previously undetected structural variants (SVs) or cryptic splice sites. We enrolled 10 unrelated families: nine had muscular dystrophy but lacked complete genetic diagnoses and one had an asymptomatic DMD duplication. Nano-pore genomic long-read sequencing identified previously undetected pathogenic variants in four individuals: an SV in DMD, an SV in LAMA2, and two single nucleotide variants in DMD that alter splicing. The DMD duplication in the asymptomatic individual was in tandem. Nanopore sequencing may help streamline genetic diagnostic approaches for muscular dystrophy

    Diagnostic capabilities of nanopore long-read sequencing in muscular dystrophy

    No full text
    Many individuals with muscular dystrophies remain genetically undiagnosed despite clinical diagnostic testing, including exome sequencing. Some may harbor previously undetected structural variants (SVs) or cryptic splice sites. We enrolled 10 unrelated families: nine had muscular dystrophy but lacked complete genetic diagnoses and one had an asymptomatic DMD duplication. Nano-pore genomic long-read sequencing identified previously undetected pathogenic variants in four individuals: an SV in DMD, an SV in LAMA2, and two single nucleotide variants in DMD that alter splicing. The DMD duplication in the asymptomatic individual was in tandem. Nanopore sequencing may help streamline genetic diagnostic approaches for muscular dystrophy.Functional Genomics of Muscle, Nerve and Brain Disorder
    corecore