72 research outputs found

    Ecological baseline study of the Yakima Firing Center proposed land acquisition: A Preliminary Report

    Get PDF
    A baseline census was conducted from October 1987 to Janurary 1988 on the property identified for possible expansion of the Yakima Firing Center. These studies provide general descriptions of the major plant communities presentand animal inhabitants during the late fall and winter study period. A vegetation map derived from a combination of onsite surveillance and remotely sensed imagery is also provided as part of this report. Through January 1988, 13 wildlife species of special interest to state and federal agencies, in addition to ducks and geese, were observed on the proposed expansion area. Then raptorial bird species were observed in the area, including bald eagles, golden eagles, and prairie falcons. Upland game bird species, such as sage grouse, California quail, chuckars, and gray (Hungarian) partridge were present. Loggerhead shrikes, a species of special interest, were also observed on the site. Estimates of waterfowl abundance are included for the Priest Rapids Pool of the Columbia River, which includes the proposed river crossing sites. The number of waterfowl on the proposed crossing areas were comparatively low during the winter of 1986 to 1987 and high in 1987 to 1988. Bald eagles ad common loons were observed on the crossing areas. Six small mammal species were captured during this study period;one, the sagebrush vole, is a species of special interest. Two large animal species, mule deer and elk, were noted on the site. Beaver were the only furbearig animals noted to date. Rainbow trout were the only fish species collected within the proposed northern expansion area. The distribution of fall chinook salmon spawning areas was documented within the proposed river crossing areas. 3 refs., 7 figs., 3 tabs

    Ecological baseline study of the Yakima Firing Center proposed land acquisition: A status report

    Get PDF
    This report provides baseline environmental information for the property identified for possible expansion of the Yakima Firing Center. Results from this work provide general descriptions of the animals and major plant communities present. A vegetation map derived from a combination of on-site surveillance and remotely sensed imagery is provided as part of this report. Twenty-seven wildlife species of special interest (protected, sensitive, furbearer, game animal, etc.), and waterfowl, were observed on the proposed expansion area. Bird censuses revealed 13 raptorial species (including four of special interest: bald eagle, golden eagle, osprey, and prairie falcon); five upland game bird species (sage grouse, California quail, chukar, gray partridge, and ring-necked pheasant); common loons (a species proposed for state listing as threatened); and five other species of special interest (sage thrasher, loggerhead shrike, mourning dove, sage sparrow, and long-billed curlew). Estimates of waterfowl abundance are included for the Priest Rapids Pool of the Columbia River. Six small mammal species were captured during this study; one, the sagebrush vole, is a species of special interest. Two large animal species, mule deer and elk, were noted on the site. Five species of furbearing animals were observed (coyote, beaver, raccoon, mink, and striped skunk). Four species of reptiles and one amphibian were noted. Fisheries surveys were conducted to document the presence of gamefish, and sensitive-classified fish and aquatic invertebrates. Rainbow trout were the only fish collected within the boundaries of the proposed northern expansion area. 22 refs., 10 figs., 4 tabs

    DOE Hydropower Program Biennial Report for FY 2005-2006

    Get PDF
    SUMMARY The U.S. Department of Energy (DOE) Hydropower Program is part of the Office of Wind and Hydropower Technologies, Office of Energy Efficiency and Renewable Energy. The Program's mission is to conduct research and development (R&D) that will increase the technical, societal, and environmental benefits of hydropower. The Department's Hydropower Program activities are conducted by its national laboratories: Idaho National Laboratory (INL) [formerly Idaho National Engineering and Environmental Laboratory], Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and National Renewable Energy Laboratory (NREL), and by a number of industry, university, and federal research facilities. Programmatically, DOE Hydropower Program R&D activities are conducted in two areas: Technology Viability and Technology Application. The Technology Viability area has two components: (1) Advanced Hydropower Technology (Large Turbine Field Testing, Water Use Optimization, and Improved Mitigation Practices) and (2) Supporting Research and Testing (Environmental Performance Testing Methods, Computational and Physical Modeling, Instrumentation and Controls, and Environmental Analysis). The Technology Application area also has two components: (1) Systems Integration and Technology Acceptance (Hydro/Wind Integration, National Hydropower Collaborative, and Integration and Communications) and (2) Supporting Engineering and Analysis (Valuation Methods and Assessments and Characterization of Innovative Technology). This report describes the progress of the R&D conducted in FY 2005-2006 under all four program areas. Major accomplishments include the following: Conducted field testing of a Retrofit Aeration System to increase the dissolved oxygen content of water discharged from the turbines of the Osage Project in Missouri. Contributed to the installation and field testing of an advanced, minimum gap runner turbine at the Wanapum Dam project in Washington. Completed a state-of-the-science review of hydropower optimization methods and published reports on alternative operating strategies and opportunities for spill reduction. Carried out feasibility studies of new environmental performance measurements of the new MGR turbine at Wanapum Dam, including measurement of behavioral responses, biomarkers, bioindex testing, and the use of dyes to assess external injuries. Evaluated the benefits of mitigation measures for instream flow releases and the value of surface flow outlets for downstream fish passage. Refined turbulence flow measurement techniques, the computational modeling of unsteady flows, and models of blade strike of fish. Published numerous technical reports, proceedings papers, and peer-reviewed literature, most of which are available on the DOE Hydropower website. Further developed and tested the sensor fish measuring device at hydropower plants in the Columbia River. Data from the sensor fish are coupled with a computational model to yield a more detailed assessment of hydraulic environments in and around dams. Published reports related to the Virtual Hydropower Prospector and the assessment of water energy resources in the U.S. for low head/low power hydroelectric plants. Convened a workshop to consider the environmental and technical issues associated with new hydrokinetic and wave energy technologies. Laboratory and DOE staff participated in numerous workshops, conferences, coordination meetings, planning meetings, implementation meetings, and reviews to transfer the results of DOE-sponsored research to end-users

    Coastal Upwelling Supplies Oxygen-Depleted Water to the Columbia River Estuary

    Get PDF
    Low dissolved oxygen (DO) is a common feature of many estuarine and shallow-water environments, and is often attributed to anthropogenic nutrient enrichment from terrestrial-fluvial pathways. However, recent events in the U.S. Pacific Northwest have highlighted that wind-forced upwelling can cause naturally occurring low DO water to move onto the continental shelf, leading to mortalities of benthic fish and invertebrates. Coastal estuaries in the Pacific Northwest are strongly linked to ocean forcings, and here we report observations on the spatial and temporal patterns of oxygen concentration in the Columbia River estuary. Hydrographic measurements were made from transect (spatial survey) or anchor station (temporal survey) deployments over a variety of wind stresses and tidal states during the upwelling seasons of 2006 through 2008. During this period, biologically stressful levels of dissolved oxygen were observed to enter the Columbia River estuary from oceanic sources, with minimum values close to the hypoxic threshold of 2.0 mg L−1. Riverine water was consistently normoxic. Upwelling wind stress controlled the timing and magnitude of low DO events, while tidal-modulated estuarine circulation patterns influenced the spatial extent and duration of exposure to low DO water. Strong upwelling during neap tides produced the largest impact on the estuary. The observed oxygen concentrations likely had deleterious behavioral and physiological consequences for migrating juvenile salmon and benthic crabs. Based on a wind-forced supply mechanism, low DO events are probably common to the Columbia River and other regional estuaries and if conditions on the shelf deteriorate further, as observations and models predict, Pacific Northwest estuarine habitats could experience a decrease in environmental quality
    corecore