276 research outputs found
Charge- And Angle-correlated Inelasticities In Collisions Of Bare Fast Carbon Ions With Neon
We have studied the detailed energy balance in collisions of 10-MeV C6+ ions with Ne. In these collisions, the Ne is multiply ionized and the C ion may emerge as either C6+ or C5+. Projectile energy loss and scattering angle for a given carbon-ion charge state were determined in a high-resolution magnetic spectrograph and were measured in coincidence with the formation of a given Ne recoil-ion charge state. The amount of energy transferred to the continuum electrons exceeds, by far, the sum of the values of the ionization potentials. © 1988 The American Physical Society
Development of a thermal ionizer as ion catcher
An effective ion catcher is an important part of a radioactive beam facility
that is based on in-flight production. The catcher stops fast radioactive
products and emits them as singly charged slow ions. Current ion catchers are
based on stopping in He and H gas. However, with increasing intensity of
the secondary beam the amount of ion-electron pairs created eventually prevents
the electromagnetic extraction of the radioactive ions from the gas cell. In
contrast, such limitations are not present in thermal ionizers used with the
ISOL production technique. Therefore, at least for alkaline and alkaline earth
elements, a thermal ionizer should then be preferred. An important use of the
TRIP facility will be for precision measurements using atom traps. Atom
trapping is particularly possible for alkaline and alkaline earth isotopes. The
facility can produce up to 10 s of various Na isotopes with the
in-flight method. Therefore, we have built and tested a thermal ionizer. An
overview of the operation, design, construction, and commissioning of the
thermal ionizer for TRIP will be presented along with first results for
Na and Na.Comment: 10 pages, 4 figures, XVth International Conference on Electromagnetic
Isotope Separators and Techniques Related to their Applications (EMIS 2007
Velocity-selective sublevel resonance of atoms with an array of current-carrying wires
Resonance transitions between the Zeeman sublevels of optically-polarized Rb
atoms traveling through a spatially periodic magnetic field are investigated in
a radio-frequency (rf) range of sub-MHz. The atomic motion induces the
resonance when the Zeeman splitting is equal to the frequency at which the
moving atoms feel the magnetic field oscillating. Additional temporal
oscillation of the spatially periodic field splits a motion-induced resonance
peak into two by an amount of this oscillation frequency. At higher oscillation
frequencies, it is more suitable to consider that the resonance is mainly
driven by the temporal field oscillation, with its velocity-dependence or
Doppler shift caused by the atomic motion through the periodic field. A
theoretical description of motion-induced resonance is also given, with
emphasis on the translational energy change associated with the internal
transition.Comment: 7 pages, 3 figures, final versio
Modifying Effects of the HFE Polymorphisms on the Association between Lead Burden and Cognitive Decline
Background: As iron and lead promote oxidative damage, and hemochromatosis (HFE) gene polymorphisms increase body iron burden, HFE variant alleles may modify the lead burden and cognitive decline relationship. Objective: Our goal was to assess the modifying effects of HFE variants on the lead burden and cognitive decline relation in older adults. Methods: We measured tibia and patella lead using K-X-ray fluorescence (1991â1999) among participants of the Normative Aging Study, a longitudinal study of community-dwelling men from greater Boston. We assessed cognitive function with the Mini-Mental State Examination (MMSE) twice (1993â1998 and 1995â2000) and genotyped participants for HFE polymorphisms. We estimated the adjusted mean differences in lead-associated annual cognitive decline across HFE genotype groups (n = 358). Results: Higher tibia lead was associated with steeper cognitive decline among participants with at least one HFE variant allele compared with men with only wild-type alleles (p interaction = 0.03), such that a 15 ÎŒg/g increase in tibia lead was associated with a 0.2 point annual decrement in MMSE score among HFE variant allele carriers. This difference in scores among men with at least one variant allele was comparable to the difference in baseline MMSE scores that we observed among men who were 4 years apart in age. Moreover, the deleterious association between tibia lead and cognitive decline appeared progressively worse in participants with increasingly more copies of HFE variant alleles (p-trend = 0.008). Results for patella lead were similar. Conclusion: Our findings suggest that HFE polymorphisms greatly enhance susceptibility to lead-related cognitive impairment in a pattern consistent with allelelic dose
Polaritonic Enhancement of Near-Field Scattering of Small Molecules Encapsulated in Boron Nitride Nanotubes: Chemical Reactions in Confined Spaces
Nanotubes have been extensively utilized as nanocontainers for molecules and as nanoreactors for chemical reactions in confinement, with the potential for applications in hydrogen storage and catalysis. We show that phonon polaritons of boron nitride nanotubes (BNNTs) enhance the near-field vibrational spectra of molecules in close proximity to the surface. By encapsulating C60 fullerene in BNNTs, we reach a sensitivity level of a few hundred molecules. Furthermore, we show by the photopolymerization of C60 that products of chemical reactions inside the tubes can be identified, so long as their vibrational signatures lie in the reststrahlen band of the BNNT
Machine learning models predict liver steatosis but not liver fibrosis in a prospective cohort study
Introduction
Screening for liver fibrosis continues to rely on laboratory panels and non-invasive tests such as FIB-4-score and transient elastography. In this study, we evaluated the potential of machine learning (ML) methods to predict liver steatosis on abdominal ultrasound and liver fibrosis, namely the intermediate-high risk of advanced fibrosis, in individuals participating in a screening program for colorectal cancer.
Methods
We performed ultrasound on 5834 patients admitted between 2006 and 2020, and transient elastography on a subset of 1240 patients. Steatosis on ultrasound was diagnosed if liver areas showed a significantly increased echogenicity compared to the renal parenchyma. Liver fibrosis was defined as a liver stiffness measurement â„8 kPa in transient elastography. We evaluated the performance of three algorithms, namely Extreme Gradient Boosting, Feed-Forward neural network and Logistic Regression, deriving the models using data from patients admitted from January 2007 up to January 2016 and prospectively evaluating on the data of patients admitted from January 2016 up to March 2020. We also performed a performance comparison with the standard clinical test based on Fibrosis-4 Index (FIB-4).
Results
The mean age was 58±9 years with 3036 males (52%). Modelling laboratory parameters, clinical parameters, and data on eight food types/dietary patterns, we achieved high performance in predicting liver steatosis on ultrasound with AUC of 0.87 (95% CI [0.87â0.87]), and moderate performance in predicting liver fibrosis with AUC of 0.75 (95% CI [0.74â0.75]) using XGBoost machine learning algorithm. Patient-reported variables did not significantly improve predictive performance. Gender-specific analyses showed significantly higher performance in males with AUC of 0.74 (95% CI [0.73â0.74]) in comparison to female patients with AUC of 0.66 (95% CI [0.65â0.66]) in prediction of liver fibrosis. This difference was significantly smaller in prediction of steatosis with AUC of 0.85 (95% CI [0.83â0.87]) in female patients, in comparison to male patients with AUC of 0.82 (95% CI [0.80â0.84]).
Conclusion
ML based on point-prevalence laboratory and clinical information predicts liver steatosis with high accuracy and liver fibrosis with moderate accuracy. The observed gender differences suggest the need to develop gender-specific models
Coherent radiation from neutral molecules moving above a grating
We predict and study the quantum-electrodynamical effect of parametric
self-induced excitation of a molecule moving above the dielectric or conducting
medium with periodic grating. In this case the radiation reaction force
modulates the molecular transition frequency which results in a parametric
instability of dipole oscillations even from the level of quantum or thermal
fluctuations. The present mechanism of instability of electrically neutral
molecules is different from that of the well-known Smith-Purcell and transition
radiation in which a moving charge and its oscillating image create an
oscillating dipole.
We show that parametrically excited molecular bunches can produce an easily
detectable coherent radiation flux of up to a microwatt.Comment: 4 page
Variants in PCSK7, PNPLA3 and TM6SF2 are risk factors for the development of cirrhosis in hereditary haemochromatosis
BACKGROUND: Cirrhosis develops in <10% of individuals homozygous for the C282Y variant in the homeostatic iron regulator (HFE) gene. Carriage of PCSK7:rs236918 is associated with an increased risk of cirrhosis in this population. AIM: To determine if genetic variants significantly associated with the risk of alcohol- and NAFLD-related cirrhosis also modulate the cirrhosis risk in C282Y homozygotes. METHODS: Variants in PCSK7, PNPLA3, TM6SF2, MBOAT7 and HSD17B13 were genotyped in 1319 C282Y homozygotes, from six European countries, of whom 171 (13.0%) had cirrhosis. Genotypic and allelic associations with the risk for developing cirrhosis were assessed, adjusting for age and sex. Fixed effects meta-analyses of the adjusted summary data for each country were performed. Post hoc association testing was undertaken in the 131 (76.6%) cases and 299 (26.0%) controls with available liver histology. RESULTS: Significant associations were observed between PCSK7:rs236918 (ORÂ =Â 1.52 [95% CI 1.06-2.19]; PÂ =Â 0.022; I2 Â =Â 0%); PNPLA3:rs738409 (ORÂ =Â 1.60 [95% CI 1.22-2.11]; PÂ =Â 7.37Â ĂÂ 10-4 ; I2 Â =Â 45.5%) and TM6SF2:rs58542926 (ORÂ =Â 1.94 [95% CI 1.28-2.95]; PÂ =Â 1.86Â ĂÂ 10-3 ; I2 Â =Â 0%) and the cirrhosis risk in C282Y homozygotes. These findings remained significant in the subpopulation with available liver histology. The population-attributable fractions were 5.6% for PCSK7:rs236918, 13.8% for PNPLA3:rs738409, 6.5% for TM6SF2:rs58542926 and 24.0% for carriage of all three variants combined. CONCLUSIONS: The risk of cirrhosis associated with carriage of PCSK7:rs236918 was confirmed in this much larger population of C282Y homozygotes. In addition, PNPLA3:rs738409 and TM6SF2:rs58542926 were established as significant additional risk factors. More detailed genetic testing of C282Y homozygotes would allow risk stratification and help guide future management
Particle emission following Coulomb excitation in ultrarelativistic heavy-ion collisions
We study nuclear reactions induced by virtual photons associated with
Lorentz-boosted Coulomb fields of ultrarelativistic heavy ions. Evaporation,
fission and multifragmentation mechanisms are included in a new RELDIS code,
which describes the deexcitation of residual nuclei formed after single and
double photon absorption in peripheral heavy-ion collisions. Partial cross
sections for different dissociation channels, including the multiple neutron
emission ones, are calculated and compared with data when available. Rapidity
and transverse momentum distributions of nucleons, nuclear fragments and pions,
produced electromagnetically, are also calculated. These results provide
important information for designing large-rapidity detectors and zero-degree
calorimeters at RHIC and LHC. The electromagnetic dissociation of nuclei
imposes some constrains on the investigation of exotic particle production in
gamma-gamma fusion reactions.Comment: 26 LaTeX pages including 8 figures, uses epsf.st
- âŠ