82 research outputs found

    Covalent modification of reduced graphene oxide with piperazine as a novel nanoadsorbent for removal of H2S gas

    Get PDF
    In the present research, piperazine grafted-reduced graphene oxide RGO-N-(piperazine) was synthesized through a three-step reaction and employed as a highly efficient nanoadsorbent for H2S gas removal. Temperature optimization within the range of 30–90 °C was set which significantly improved the adsorption capacity of the nanoadsorbent. The operational conditions including the initial concentration of H2S (60,000 ppm) with CH4 (15 vol%), H2O (10 vol%), O2 (3 vol%) and the rest by helium gas and gas hour space velocity (GHSV) 4000–6000 h−1 were examined on adsorption capacity. The results of the removal of H2S after 180 min by RGO-N-(piperazine), reduced graphene oxide (RGO), and graphene oxide (GO) were reported as 99.71, 99.18, and 99.38, respectively. Also, the output concentration of H2S after 180 min by RGO-N-(piperazine), RGO, and GO was found to be 170, 488, and 369 ppm, respectively. Both chemisorption and physisorption are suggested as mechanism in which the chemisorption is based on an acid–base reaction between H2S and amine, epoxy, hydroxyl functional groups on the surface of RGO-N-(piperazine), GO, and RGO. The piperazine augmentation of removal percentage can be attributed to the presence of amine functional groups in the case of RGO-N-(piperazine) versus RGO and GO. Finally, analyses of the equilibrium models used to describe the experimental data showed that the three-parameter isotherm equations Toth and Sips provided slightly better fits compared to the three-parameter isotherms

    Improved adsorption performance of nanostructured composite by ultrasonic wave: Optimization through response surface methodology, isotherm and kinetic studies

    No full text
    © 2016 Elsevier B.V.In this work, ultrasound-assisted adsorption of an anionic dye, sunset yellow (SY) and cationic dyes, malachite green (MG), methylene blue (MB) and their ternary dye solutions onto Cu@ Mn-ZnS-NPs-AC from water aqueous was optimized by response surface methodology (RSM) using the central composite design (CCD). The adsorbent was characterized using Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX) and EDX mapping images. The effects of various parameters such as pH, sonication time, adsorbent mass and initial concentrations of SY, MG and MB were examined. A total 33 experiments were conducted to establish a quadratic model. Cu@ Mn-ZnS-NPs-AC has the maximum adsorption efficiency (>99.5%) when the pH, sonication time, adsorbent mass and initial concentrations of SY, MG and MB were optimally set as 6.0, 5 min, 0.02 g, 9, 12 and 12 mg L-1, respectively. Sonication time has a statistically significant effect on the selected responses. Langmuir isotherm model was found to be best fitted to adsorption and adsorption capacities were 67.5 mg g-1 for SY, 74.6 mg g-1 for MG and 72.9 mg g-1 for MB. Four kinetic models (pseudo-first order, pseudo-second order, Weber–Morris intraparticle diffusion rate and Elovich) were tested to correlate the experimental data and the sorption was fitted well with the pseudo-second order kinetic model
    • 

    corecore