22 research outputs found

    Model-Free Machine Learning in Biomedicine: Feasibility Study in Type 1 Diabetes

    Get PDF
    Although reinforcement learning (RL) is suitable for highly uncertain systems, the applicability of this class of algorithms to medical treatment may be limited by the patient variability which dictates individualised tuning for their usually multiple algorithmic parameters. This study explores the feasibility of RL in the framework of artificial pancreas development for type 1 diabetes (T1D). In this approach, an Actor-Critic (AC) learning algorithm is designed and developed for the optimisation of insulin infusion for personalised glucose regulation. AC optimises the daily basal insulin rate and insulin:carbohydrate ratio for each patient, on the basis of his/her measured glucose profile. Automatic, personalised tuning of AC is based on the estimation of information transfer (IT) from insulin to glucose signals. Insulin-to-glucose IT is linked to patient-specific characteristics related to total daily insulin needs and insulin sensitivity (SI). The AC algorithm is evaluated using an FDA-accepted T1D simulator on a large patient database under a complex meal protocol, meal uncertainty and diurnal SI variation. The results showed that 95.66% of time was spent in normoglycaemia in the presence of meal uncertainty and 93.02% when meal uncertainty and SI variation were simultaneously considered. The time spent in hypoglycaemia was 0.27% in both cases. The novel tuning method reduced the risk of severe hypoglycaemia, especially in patients with low SI

    The current understanding of precision medicine and personalised medicine in selected research disciplines:study protocol of a systematic concept analysis

    Get PDF
    INTRODUCTION: The terms ‘precision medicine’ and ‘personalised medicine’ have become key terms in health-related research and in science-related public communication. However, the application of these two concepts and their interpretation in various disciplines are heterogeneous, which also affects research translation and public awareness. This leads to confusion regarding the use and distinction of the two concepts. Our aim is to provide a snapshot of the current understanding of these concepts. METHODS AND ANALYSIS: Our study will use Rodgers’ evolutionary concept analysis to systematically examine the current understanding of the concepts ‘precision medicine’ and ‘personalised medicine’ in clinical medicine, biomedicine (incorporating genomics and bioinformatics), health services research, physics, chemistry, engineering, machine learning and artificial intelligence, and to identify their respective attributes (clusters of characteristics) and surrogate and related terms. A systematic search of the literature will be conducted for 2016–2022 using databases relevant to each of these disciplines: ACM Digital Library, CINAHL, Cochrane Library, F1000Research, IEEE Xplore, PubMed/Medline, Science Direct, Scopus and Web of Science. These are among the most representative databases for the included disciplines. We will examine similarities and differences in definitions of ‘precision medicine’ and ‘personalised medicine’ in the respective disciplines and across (sub)disciplines, including attributes of each term. This will enable us to determine how these two concepts are distinguished. ETHICS AND DISSEMINATION: Following ethical and research standards, we will comprehensively report the methodology for a systematic analysis following Rodgers’ concept analysis method. Our systematic concept analysis will contribute to the clarification of the two concepts and distinction in their application in given settings and circumstances. Such a broad concept analysis will contribute to non-systematic syntheses of the concepts, or occasional systematic reviews on one of the concepts that have been published in specific disciplines, in order to facilitate interdisciplinary communication, translational medical research and implementation science

    A user preference analysis of commercial breath ketone sensors to inform the development of portable breath ketone sensors for diabetes management in young people

    Get PDF
    BACKGROUNDPortable breath ketone sensors may help people with Type 1 Diabetes Mellitus (T1DM) avoid episodes of diabetic ketoacidosis; however, the design features preferred by users have not been studied. We aimed to elucidate breath sensor design preferences of young people with T1DM (age 12 to 16) and their parents to inform the development of a breath ketone sensor prototype that would best suit their diabetes management needs.RESEARCH DESIGNS AND METHODSTo elicit foundational experiences from which design preference ideas could be generated, two commercially available breath ketone sensors, designed for ketogenic diet monitoring, were explored over one week by ten young people with T1DM. Participants interacted with the breath ketone sensing devices, and undertook blood ketone testing, at least twice daily for five days to simulate use within a real life and ambulatory care setting. Semi-structured interviews were conducted post-testing with the ten young participants and their caregivers (n = 10) to elicit preferences related to breath sensor design and use, and to inform the co-design of a breath ketone sensor prototype for use in T1DM self-management. We triangulated our data collection with key informant interviews with two diabetes educators working in pediatric care about their perspectives related to young people using breath ketone sensors.RESULTSParticipants acknowledged the non-invasiveness of breath sensors as compared to blood testing. Affordability, reliability and accuracy were identified as prerequisites for breath ketone sensors used for diabetes management. Design features valued by young people included portability, ease of use, sustainability, readability and suitability for use in public. The time required to use breath sensors was similar to that for blood testing. The requirement to maintain a 10-second breath exhalation posed a challenge for users. Diabetes educators highlighted the ease of use of breath devices especially for young people who tended to under-test using blood ketone strips.CONCLUSIONSBreath ketone sensors for diabetes management have potential that may facilitate ketone testing in young people. Our study affirms features for young people that drive usability of breath sensors among this population, and provides a model of user preference assessment.</p

    Spatial and temporal heterogeneity in human mobility patterns in Holocene Southwest Asia and the East Mediterranean

    Get PDF
    We present a spatiotemporal picture of human genetic diversity in Anatolia, Iran, Levant, South Caucasus, and the Aegean, a broad region that experienced the earliest Neolithic transition and the emergence of complex hierarchical societies. Combining 35 new ancient shotgun genomes with 382 ancient and 23 present-day published genomes, we found that genetic diversity within each region steadily increased through the Holocene. We further observed that the inferred sources of gene flow shifted in time. In the first half of the Holocene, Southwest Asian and the East Mediterranean populations homogenized among themselves. Starting with the Bronze Age, however, regional populations diverged from each other, most likely driven by gene flow from external sources, which we term “the expanding mobility model.” Interestingly, this increase in inter-regional divergence can be captured by outgroup-f3_3-based genetic distances, but not by the commonly used FST_{ST} statistic, due to the sensitivity of FST_{ST}, but not outgroup-f3_3, to within-population diversity. Finally, we report a temporal trend of increasing male bias in admixture events through the Holocene

    Low-level feedback control for the phase regulation of CLIC Drive Beam Klystrons

    No full text
    The requirement of luminosity loss below 1% raises tight tolerances for the phase and power stability of the CLIC drive beam (DB) klystrons and consequently for the high voltage pulse ripple of the modulators. A low-level RF (LLRF) feedback system needs to be developed and combined with the modulator in order to guarantee the phase and amplitude tolerances. To this aim, three feedback control strategies were investigated, i) Proportional Integral (PI) controller, ii) Linear Quadratic Integral Regulator (LQI) and iii) Model Predictive Controller (MPC). The klystron, as well as the incident phase noise were modelled and used for the design and evaluation of the controllers. First simulation results are presented along with future steps and directions

    Personalized Tuning of a Reinforcement Learning Control Algorithm for Glucose Regulation

    No full text
    Artificial pancreas is in the forefront of research towards the automatic insulin infusion for patients with type 1 diabetes. Due to the high inter- and intra-variability of the diabetic population, the need for personalized approaches has been raised. This study presents an adaptive, patient-specific control strategy for glucose regulation based on reinforcement learning and more specifically on the Actor-Critic (AC) learning approach. The control algorithm provides daily updates of the basal rate and insulin-to-carbohydrate (IC) ratio in order to optimize glucose regulation. A method for the automatic and personalized initialization of the control algorithm is designed based on the estimation of the transfer entropy (TE) between insulin and glucose signals. The algorithm has been evaluated in silico in adults, adolescents and children for 10 days. Three scenarios of initialization to i) zero values, ii) random values and iii) TE-based values have been comparatively assessed. The results have shown that when the TE-based initialization is used, the algorithm achieves faster learning with 98%, 90% and 73% in the A+B zones of the Control Variability Grid Analysis for adults, adolescents and children respectively after five days compared to 95%, 78%, 41% for random initialization and 93%, 88%, 41% for zero initial values. Furthermore, in the case of children, the daily Low Blood Glucose Index reduces much faster when the TE-based tuning is applied. The results imply that automatic and personalized tuning based on TE reduces the learning period and improves the overall performance of the AC algorithm

    Multi-Model Data Fusion to Improve an Early Warning System for Hypo-/Hyperglycemic Events

    No full text
    Correct predictions of future blood glucose levels in individuals with Type 1 Diabetes (T1D) can be used to provide early warning of upcoming hypo-/hyperglycemic events and thus to improve the patient's safety. To increase prediction accuracy and efficiency, various approaches have been proposed which combine multiple predictors to produce superior results compared to single predictors. Three methods for model fusion are presented and comparatively assessed. Data from 23 T1D subjects under sensor-augmented pump (SAP) therapy were used in two adaptive data-driven models (an autoregressive model with output correction - cARX, and a recurrent neural network - RNN). Data fusion techniques based on i) Dempster-Shafer Evidential Theory (DST), ii) Genetic Algorithms (GA), and iii) Genetic Programming (GP) were used to merge the complimentary performances of the prediction models. The fused output is used in a warning algorithm to issue alarms of upcoming hypo-/hyperglycemic events. The fusion schemes showed improved performance with lower root mean square errors, lower time lags, and higher correlation. In the warning algorithm, median daily false alarms (DFA) of 0.25%, and 100% correct alarms (CA) were obtained for both event types. The detection times (DT) before occurrence of events were 13.0 and 12.1 min respectively for hypo-/hyperglycemic events. Compared to the cARX and RNN models, and a linear fusion of the two, the proposed fusion schemes represents a significant improvement

    Nurses and Midwives in the Digital Age: Selected Papers, Posters and Panels from the 15th International Congress in Nursing Informatics

    No full text
    Complexity and domain-specificity make medical text hard to understand for patients and their next of kin. To simplify such text, this paper explored how word and character level information can be leveraged to identify medical terms when training data is limited. We created a dataset of medical and general terms using the Human Disease Ontology from BioPortal and Wikipedia pages. Our results from 10-fold cross validation indicated that convolutional neural networks (CNNs) and transformers perform competitively. The best F score of 93.9% was achieved by a CNN trained on both word and character level embeddings. Statistical significance tests demonstrated that general word embeddings provide rich word representations for medical term identification. Consequently, focusing on words is favorable for medical term identification if using deep learning architectures

    Feasibility of Remote Vital Signs Sensing with a mm-Wave CW Reflectometer

    No full text
    <p>Remote monitoring of vital signs (VS) is an emerging technology with a vast number of possible uses from hospital care to the automotive industry and assisting living environments. Radio-frequency (RF) sensing enables the remote and unobtrusive measurement of VS without the need to wear any special device or clothing and under any lighting conditions. A demonstrator of RF vital signs sensing was designed and prototyped based on a continuous wave reflectometer involving a Software Defined Radio platform. The sensor operates at 110 GHz. The feasibility of remote respiration and heart rate (HR) monitoring was investigated. The breathing pattern was found to affect significantly the reliability of the HR estimation. The potential of remote VS sensing at distances up to 10 m was theoretically explored.</p
    corecore