208 research outputs found

    Targeted online liquid chromatography electron capture dissociation mass spectrometry for the localization of sites of in vivo phosphorylation in human Sprouty2

    Get PDF
    We demonstrate a strategy employing collision-induced dissociation for phosphopeptide discovery, followed by targeted electron capture dissociation (ECD) for site localization. The high mass accuracy and low background noise of the ECD mass spectra allow facile sequencing of coeluting isobaric phosphopeptides, with up to two isobaric phosphopeptides sequenced from a single mass spectrum. In contrast to the previously described neutral loss of dependent ECD method, targeted ECD allows analysis of both phosphotyrosine peptides and lower abundance phosphopeptides. The approach was applied to phosphorylation analysis of human Sprouty2, a regulator of receptor tyrosine kinase signaling. Fifteen sites of phosphorylation were identified, 11 of which are novel

    Source Attributions of Pollution to the Western Arctic During the NASA ARCTAS Field Campaign

    Get PDF
    We use the NASA GEOS-5 transport model with tagged tracers to investigate the contributions of different regional sources of CO and black carbon (BC) to their concentrations in the Western Arctic (i.e., 50-90 deg N and 190- 320 deg E) in spring and summer 2008. The model is evaluated by comparing the results with airborne measurements of CO and BC from the NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) field campaigns to demonstrate the strengths and limitations of our simulations. We also examine the reliability of tagged CO tracers in characterizing air mass origins using the measured fossil fuel tracer of dichloromethane and the biomass burning tracer of acetonitrile. Our tagged CO simulations suggest that most of the enhanced CO concentrations (above background level from CH4 production) observed during April originate from Asian anthropogenic emissions. Boreal biomass burning emissions and Asian anthropogenic emissions are of similar importance in July domain wise, although the biomass burning CO fraction is much larger in the area of the ARCTAS field experiments. The fraction of CO from Asian anthropogenic emissions is larger in spring than in summer. European sources make up no more than 10% of CO levels in the campaign domain during either period. Comparisons of CO concentrations along the flight tracks with regional averages from GEOS-5 show that the alongtrack measurements are representative of the concentrations within the large domain of the Western Arctic in April but not in July

    Colocalized Structural and Functional Changes in the Cortex of Patients with Trigeminal Neuropathic Pain

    Get PDF
    Background: Recent data suggests that in chronic pain there are changes in gray matter consistent with decreased brain volume, indicating that the disease process may produce morphological changes in the brains of those affected. However, no study has evaluated cortical thickness in relation to specific functional changes in evoked pain. In this study we sought to investigate structural (gray matter thickness) and functional (blood oxygenation dependent level – BOLD) changes in cortical regions of precisely matched patients with chronic trigeminal neuropathic pain (TNP) affecting the right maxillary (V2) division of the trigeminal nerve. The model has a number of advantages including the evaluation of specific changes that can be mapped to known somatotopic anatomy. Methodology/Principal Findings: Cortical regions were chosen based on sensory (Somatosensory cortex (SI and SII), motor (MI) and posterior insula), or emotional (DLPFC, Frontal, Anterior Insula, Cingulate) processing of pain. Both structural and functional (to brush-induced allodynia) scans were obtained and averaged from two different imaging sessions separated by 2–6 months in all patients. Age and gender-matched healthy controls were also scanned twice for cortical thickness measurement. Changes in cortical thickness of TNP patients were frequently colocalized and correlated with functional allodynic activations, and included both cortical thickening and thinning in sensorimotor regions, and predominantly thinning in emotional regions. Conclusions: Overall, such patterns of cortical thickness suggest a dynamic functionally-driven plasticity of the brain. These structural changes, which correlated with the pain duration, age-at-onset, pain intensity and cortical activity, may be specific targets for evaluating therapeutic interventions

    Tandem Mass Spectrometry Measurement of the Collision Products of Carbamate Anions Derived from CO2 Capture Sorbents: Paving the Way for Accurate Quantitation

    Get PDF
    The reaction between CO2 and aqueous amines to produce a charged carbamate product plays a crucial role in post-combustion capture chemistry when primary and secondary amines are used. In this paper, we report the low energy negative-ion CID results for several anionic carbamates derived from primary and secondary amines commonly used as post-combustion capture solvents. The study was performed using the modern equivalent of a triple quadrupole instrument equipped with a T-wave collision cell. Deuterium labeling of 2-aminoethanol (1,1,2,2,-d4-2-aminoethanol) and computations at the M06-2X/6-311++G(d,p) level were used to confirm the identity of the fragmentation products for 2-hydroxyethylcarbamate (derived from 2-aminoethanol), in particular the ions CN−, NCO− and facile neutral losses of CO2 and water; there is precedent for the latter in condensed phase isocyanate chemistry. The fragmentations of 2-hydroxyethylcarbamate were generalized for carbamate anions derived from other capture amines, including ethylenediamine, diethanolamine, and piperazine. We also report unequivocal evidence for the existence of carbamate anions derived from sterically hindered amines (Tris(2-hydroxymethyl)aminomethane and 2-methyl-2-aminopropanol). For the suite of carbamates investigated, diagnostic losses include the decarboxylation product (−CO2, 44 mass units), loss of 46 mass units and the fragments NCO− (m/z 42) and CN− (m/z 26). We also report low energy CID results for the dicarbamate dianion (−O2CNHC2H4NHCO2−) commonly encountered in CO2 capture solution utilizing ethylenediamine. Finally, we demonstrate a promising ion chromatography-MS based procedure for the separation and quantitation of aqueous anionic carbamates, which is based on the reported CID findings. The availability of accurate quantitation methods for ionic CO2 capture products could lead to dynamic operational tuning of CO2 capture-plants and, thus, cost-savings via real-time manipulation of solvent regeneration energies

    Regulation of Progranulin Expression in Human Microglia and Proteolysis of Progranulin by Matrix Metalloproteinase-12 (MMP-12)

    Get PDF
    Background: The essential role of progranulin (PGRN) as a neurotrophic factor has been demonstrated by the discovery that haploinsufficiency due to GRN gene mutations causes frontotemporal lobar dementia. In addition to neurons, microglia in vivo express PGRN, but little is known about the regulation of PGRN expression by microglia. Goal: In the current study, we examined the regulation of expression and function of PGRN, its proteolytic enzyme macrophage elastase (MMP-12), as well as the inhibitor of PGRN proteolysis, secretory leukocyte protease inhibitor (SLPI), in human CNS cells. Methods: Cultures of primary human microglia and astrocytes were stimulated with the TLR ligands (LPS or poly IC), Th1 cytokines (IL-1/IFNc), or Th2 cytokines (IL-4, IL-13). Results were analyzed by Q-PCR, immunoblotting or ELISA. The roles of MMP-12 and SLPI in PGRN cleavage were also examined. Results: Unstimulated microglia produced nanogram levels of PGRN, and PGRN release from microglia was suppressed by the TLR ligands or IL-1/IFNc, but increased by IL-4 or IL-13. Unexpectedly, while astrocytes stimulated with proinflammatory factors released large amounts of SLPI, none were detected in microglial cultures. We also identified MMP-12 as a PGRN proteolytic enzyme, and SLPI as an inhibitor of MMP-12-induced PGRN proteolysis. Experiments employing PGRN siRNA demonstrated that microglial PGRN was involved in the cytokine and chemokine production following TLR3/4 activation

    Multilayered Mechanism of CD4 Downregulation by HIV-1 Vpu Involving Distinct ER Retention and ERAD Targeting Steps

    Get PDF
    A key function of the Vpu protein of HIV-1 is the targeting of newly-synthesized CD4 for proteasomal degradation. This function has been proposed to occur by a mechanism that is fundamentally distinct from the cellular ER-associated degradation (ERAD) pathway. However, using a combination of genetic, biochemical and morphological methodologies, we find that CD4 degradation induced by Vpu is dependent on a key component of the ERAD machinery, the VCP-UFD1L-NPL4 complex, as well as on SCFβ-TrCP-dependent ubiquitination of the CD4 cytosolic tail on lysine and serine/threonine residues. When degradation of CD4 is blocked by either inactivation of the VCP-UFD1L-NPL4 complex or prevention of CD4 ubiquitination, Vpu still retains the bulk of CD4 in the ER mainly through transmembrane domain interactions. Addition of a strong ER export signal from the VSV-G protein overrides this retention. Thus, Vpu exerts two distinct activities in the process of downregulating CD4: ER retention followed by targeting to late stages of ERAD. The multiple levels at which Vpu engages these cellular quality control mechanisms underscore the importance of ensuring profound suppression of CD4 to the life cycle of HIV-1

    Formation of Complexes at Plasmodesmata for Potyvirus Intercellular Movement Is Mediated by the Viral Protein P3N-PIPO

    Get PDF
    Intercellular transport of viruses through cytoplasmic connections, termed plasmodesmata (PD), is essential for systemic infection in plants by viruses. Previous genetic and ultrastructural data revealed that the potyvirus cyclindrical inclusion (CI) protein is directly involved in cell-to-cell movement, likely through the formation of conical structures anchored to and extended through PD. In this study, we demonstrate that plasmodesmatal localization of CI in N. benthamiana leaf cells is modulated by the recently discovered potyviral protein, P3N-PIPO, in a CI:P3N-PIPO ratio-dependent manner. We show that P3N-PIPO is a PD-located protein that physically interacts with CI in planta. The early secretory pathway, rather than the actomyosin motility system, is required for the delivery of P3N-PIPO and CI to PD. Moreover, CI mutations that disrupt virus cell-to-cell movement compromise PD-localization capacity. These data suggest that the CI and P3N-PIPO complex coordinates the formation of PD-associated structures that facilitate the intercellular movement of potyviruses in infected plants
    • …
    corecore