6 research outputs found

    Semiconductor-Metal Nano-Floret Hybrid Structures by Self-Processing Synthesis

    Get PDF
    We present a synthetic strategy that takes advantage of the inherent asymmetry exhibited by semiconductor nanowires prepared by Au-catalyzed chemical vapor deposition (CVD). The metal–semiconductor junction is used for activating etch, deposition, and modification steps localized to the tip area using a wet-chemistry approach. The hybrid nanostructures obtained for the coinage metals Cu, Ag, and Au resemble the morphology of grass flowers, termed here Nanofloret hybrid nanostructures consisting of a high aspect ratio SiGe nanowire (NW) with a metallic nanoshell cap. The synthetic method is used to prepare hybrid nanostructures in one step by triggering a programmable cascade of events that is autonomously executed, termed self-processing synthesis. The synthesis progression was monitored by ex situ transmission electron microscopy (TEM), in situ scanning transmission electron microscopy (STEM) and inductively coupled plasma mass spectrometry (ICP-MS) analyses to study the mechanistic reaction details of the various processes taking place during the synthesis. Our results indicate that the synthesis involves distinct processing steps including localized oxide etch, metal deposition, and process termination. Control over the deposition and etching processes is demonstrated by several parameters: (i) etchant concentration (water), (ii) SiGe alloy composition, (iii) reducing agent, (iv) metal redox potential, and (v) addition of surfactants for controlling the deposited metal grain size. The NF structures exhibit broad plasmonic absorption that is utilized for demonstrating surface-enhanced Raman scattering (SERS) of thiophenol monolayer. The new type of nanostructures feature a metallic nanoshell directly coupled to the crystalline semiconductor NW showing broad plasmonic absorption

    Non-Enzymatic Electroanalysis of Glucose on Electrodeposited Au-PEDOT Dendrites

    No full text
    Electrodeposition of Au on poly (3,4-ethylenedioxythiophene) (PEDOT) coated carbon paper electrode results in the formation of a stable 3-D urchin-like morphology. Au-PEDOT/C electrode exhibits higher surface area, greater catalytic activity, higher sensitivity and lower detection limit for glucose analysis in an alkaline medium than Au/C electrode. Au-PEDOT/C electrode exhibits a linear current response in glucose concentration ranging up to 10 mu M with sensitivity of 515 mu A cm(-2) mu M-1 (on the basis of geometric area) and a low detection limit of 0.03 mu M with signal to noise ratio of 3. Thus, the PEDOT under-layer improves the property of Au for glucose analysis. (c) 2013 The Electrochemical Society

    Nanoflowers of PdRu on PEDOT for Electrooxidation of Glycerol and Its Analysis

    No full text
    Poly(3,4-ethylenedioxythiophene) (PEDOT) supported PdRu catalysts with various Pd:Ru atomic ratios are prepared by one step electrodeposition method. The catalysts are characterised by several physico-chemical techniques. The morphology depends on Pd:Ru ratio. The nanoflowers of Pd5Ru catalyst are deposited on PEDOT surface in an alloy form. Cyclic voltammetry experiments indicate that Ru improves the catalytic activity of Pd for glycerol oxidation significantly. However, the oxidation of glycerol is not observed on Ru-PEDOT/C electrode. Amongst all compositions, Pd5Ru nanoflowers on PEDOT exhibit the highest electrocatalytic activity and stability. Cyclic voltammetry and differential pulse voltammetry experiments are performed for the analysis of glycerol. Pd5Ru-PEDOT/C electrode is highly sensitive towards glycerol detection with sensitivity of 99.8 mu A cm(-2) mu M-1 and low detection limit of 0.1 mu M. Thus, electrochemically deposited nanoflowers Pd5Ru on PEDOT are efficient catalysts for direct glycerol oxidation as well as for analysis in alkaline media. (C) 2015 Elsevier Ltd. All rights reserved

    High catalytic activity of Au-PEDOT nanoflowers toward electrooxidation of glucose

    No full text
    Electrochemically deposited porous film of poly(3,4-ethylenedioxythiophene) (PEDOT) on carbon paper current collector is used as the substrate for electrochemical deposition of Au. PEDOT facilitates the formation of Au nanoflowers with an enhanced electrochemical active surface area, when compared with sub-micron size Au particles deposited on bare carbon paper electrode. Owing to enhanced surface area of Au nanoflowers, the Au-PEDOT/C electrode shows greater activity than Au/C electrode toward electrooxidation of glucose in 0.5 M NaOH electrolyte. Cyclic voltammetry studies show that the peak current density increases with increase in concentrations of glucose and NaOH in the electrolyte. H-1-NMR spectroscopy data indicates that sodium formate and gluconate are the primary products of electrooxidation of glucose on Au-PEDOT/C electrode. Repetitive cyclic voltametry and amperometry studies suggest that the electrochemical stability of Au-PEDOT/C electrode is higher than that of Au/C electrode. Thus, electrochemically deposited nanostructured Au on PEDOT/C is an efficient catalyst for direct glucose oxidation in alkaline media. (C) 2013 The Electrochemical Society. All rights reserved

    Electrochemical co-deposition of bimetallic Pt-Ru nanoclusters dispersed on poly(3,4-ethylenedioxythiophene) and electrocatalytic behavior for methanol oxidation

    No full text
    Nanoclusters of bimetallic Pt-Ru are electrochemically deposited on conductive polymer, poly(3,4-ethylenedioxythiophene)(PEDOT), which is also electrochemically deposited on a carbon paper substrate. The bimetallic deposition is carried out in an acidic electrolyte consisting of chloroplatinic acid and ruthenium chloride at 0.0 V versus saturated calomel electrode (SCE) on PEDOT coated carbon paper. A thin layer PEDOT on a carbon paper substrate facilitates the formation of uniform, well-dispersed, nano clusters of Pt-Ru of mean diameter of 123 nm, which consist of nanosize particles. In the absence of PEDOT, the size of the clusters is about 251 nm, which are unevenly distributed on carbon paper substrate. Cyclic voltammetry studies suggest that peak currents of methanol oxidation are several times greater on PtRu-PEDOT electrode than on Pt-Ru electrode in the absence of PEDOT. (C) 2011 Elsevier B.V. All rights reserved
    corecore