19 research outputs found

    A tighter analysis of the worst-case endto- end communication delay in massive multicores

    Get PDF
    "Many-core” systems based on the Network-on- Chip (NoC) architecture have brought into the fore-front various opportunities and challenges for the deployment of real-time systems. Such real-time systems need timing guarantees to be fulfilled. Therefore, calculating upper-bounds on the end-to-end communication delay between system components is of primary interest. In this work, we identify the limitations of an existing approach proposed by [1] and propose different techniques to overcome these limitations

    Communication Centric Design in Complex Automotive Embedded Systems

    Get PDF
    Automotive embedded applications like the engine management system are composed of multiple functional components that are tightly coupled via numerous communication dependencies and intensive data sharing, while also having real-time requirements. In order to cope with complexity, especially in multi-core settings, various communication mechanisms are used to ensure data consistency and temporal determinism along functional cause-effect chains. However, existing timing analysis methods generally only support very basic communication models that need to be extended to handle the analysis of industry grade problems which involve more complex communication semantics. In this work, we give an overview of communication semantics used in the automotive industry and the different constraints to be considered in the design process. We also propose a method for model transformation to increase the expressiveness of current timing analysis methods enabling them to work with more complex communication semantics. We demonstrate this transformation approach for concrete implementations of two communication semantics, namely, implicit and LET communication. We discuss the impact on end-to-end latencies and communication overheads based on a full blown engine management system

    Partitioning the Network-on-Chip to Enable Virtualization on Many-Core Processors

    Get PDF
    6th International Real-Time Scheduling Open Problems Seminar (RTSOPS 2015), Lund, Sweden.In this paper, we highlight some key problems in NoC based architectures that must be addressed before the deployment of real-time applications onto these platforms becomes possible. A paradigm shift from function centric to data and communication centric approaches is required. Combining hardware and software based flow-regulation seems to be the only way to ensure that NoCs go beyond the best-effort service and address the requirements of diverse applications

    Investigation on AUTOSAR-Compliant Solutions for Many-Core Architectures

    Get PDF
    As of today, AUTOSAR is the de facto standard in the automotive industry, providing a common software architec- ture and development process for automotive applications. While this standard is originally written for singlecore operated Elec- tronic Control Units (ECU), new guidelines and recommendations have been added recently to provide support for multicore archi- tectures. This update came as a response to the steady increase of the number and complexity of the software functions embedded in modern vehicles, which call for the computing power of multicore execution environments. In this paper, we enumerate and analyze the design options and the challenges of porting AUTOSAR-based automotive applications onto multicore platforms. In particular, we investigate those options when considering the emerging many- core architectures that provide a more scalable environment than the traditional multicore systems. Such platforms are suitable to enable massive parallel execution, and their design is more suitable for partitioning and isolating the software components.Euromicro Conference on Digital System Design (DSD 2015), Funchal, Portugal

    Memory Latency Distribution-Driven Regulation for Temporal Isolation in MPSoCs

    Get PDF
    Temporal isolation is one of the most significant challenges that must be addressed before Multi-Processor Systems-on-Chip (MPSoCs) can be widely adopted in mixed-criticality systems with both time-sensitive real-time (RT) applications and performance-oriented non-real-time (NRT) applications. Specifically, the main memory subsystem is one of the most prevalent causes of interference, performance degradation and loss of isolation. Existing memory bandwidth regulation mechanisms use static, dynamic, or predictive DRAM bandwidth management techniques to restore the execution time of an application under contention as close as possible to the execution time in isolation. In this paper, we propose a novel distribution-driven regulation whose goal is to achieve a timeliness objective formulated as a constraint on the probability of meeting a certain target execution time for the RT applications. Using existing interconnect-level Performance Monitoring Units (PMU), we can observe the Cumulative Distribution Function (CDF) of the per-request memory latency. Regulation is then triggered to enforce first-order stochastical dominance with respect to a desired reference. Consequently, it is possible to enforce that the overall observed execution time random variable is dominated by the reference execution time. The mechanism requires no prior information of the contending application and treats the DRAM subsystem as a black box. We provide a full-stack implementation of our mechanism on a Commercial Off-The-Shelf (COTS) platform (Xilinx Ultrascale+ MPSoC), evaluate it using real and synthetic benchmarks, experimentally validate that the timeliness objectives are met for the RT applications, and demonstrate that it is able to provide 2.2x more overall throughput for NRT applications compared to DRAM bandwidth management-based regulation approaches

    Contention-Free Execution of Automotive Applications on a Clustered Many-Core Platform

    Get PDF
    28th Euromicro Conference on Real-Time Systems (ECRTS 2016). 5 to 8, Jul, 2016. Toulouse, France.Next generations of compute-intensive real-time applications in automotive systems will require more powerful computing platforms. One promising power-efficient solution for such applications is to use clustered many-core architectures. However, ensuring that real-time requirements are satisfied in the presence of contention in shared resources, such as memories, remains an open issue. This work presents a novel contention-free execution framework to execute automotive applications on such platforms. Privatization of memory banks together with defined access phases to shared memory resources is the backbone of the framework. An Integer Linear Programming (ILP) formulation is presented to find the optimal time-triggered schedule for the on-core execution as well as for the access to shared memory. Additionally a heuristic solution is presented that generates the schedule in a fraction of the time required by the ILP. Extensive evaluations show that the proposed heuristic performs only 0.5% away from the optimal solution while it outperforms a baseline heuristic by 67%. The applicability of the approach to industrially sized problems is demonstrated in a case study of a software for Engine Management Systems.info:eu-repo/semantics/publishedVersio

    Partitioning and Analysis of the Network-on-Chip on a COTS Many-Core Platform

    Get PDF
    24th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS 2017). Pittsburgh, U.S.A..Many-core processors can provide the computational power required by future complex embedded systems. However, their adoption is not trivial, since several sources of interference on COTS many-core platforms have adverse effects on the resulting performance. One main source of performance degradation is the contention on the Network-on-Chip, which is used for communication among the compute cores via the offchip memory. Available analysis techniques for the traversal time of messages on the NoC do not consider many of the architectural features found on COTS platforms. In this work, we target a state-of-the-art many-core processor, the Kalray MPPA. A novel partitioning strategy for reducing the contention on the NoC is proposed. Further, we present an analysis technique dedicated to the proposed partitioning strategy, which considers all architectural features of the COTS NoC. Additionally, it is shown how to configure the parameters for flow-regulation on the NoC, such that the Worst-Case Traversal Time (WCTT) is minimal and buffers never overflow. The benefits of our approach are evaluated based on extensive experiments that show that contention is significantly reduced compared to the unconstrained case, while the proposed analysis outperforms a state-of-the-art analysis for the same platform. An industrial case study shows the tightness of the proposed analysis.info:eu-repo/semantics/publishedVersio

    An analysis of the impact of bus contention on the WCET in multicores

    No full text
    The use of multicores is becoming widespread inthe field of embedded systems, many of which have real-time requirements. Hence, ensuring that real-time applications meet their timing constraints is a pre-requisite before deploying them on these systems. This necessitates the consideration of the impact of the contention due to shared lowlevel hardware resources like the front-side bus (FSB) on the Worst-CaseExecution Time (WCET) of the tasks. Towards this aim, this paper proposes a method to determine an upper bound on the number of bus requests that tasks executing on a core can generate in a given time interval. We show that our method yields tighter upper bounds in comparison with the state of-the-art. We then apply our method to compute the extra contention delay incurred by tasks, when they are co-scheduled on different cores and access the shared main memory, using a shared bus, access to which is granted using a round-robin arbitration (RR) protocol
    corecore