
Communication Centric Design in Complex
Automotive Embedded Systems
Arne Hamann1, Dakshina Dasari2, Simon Kramer3,
Michael Pressler4, and Falk Wurst5

1 Corporate Research, Robert Bosch GmbH, Germany
arne.hamann@de.bosch.com

2 Corporate Research, Robert Bosch GmbH, Germany
dakshina.dasari@de.bosch.com

3 Corporate Research, Robert Bosch GmbH, Germany
simon.kramer2@de.bosch.com

4 Corporate Research, Robert Bosch GmbH, Germany
michael.pressler@de.bosch.com

5 Corporate Research, Robert Bosch GmbH, Germany
falk.wurst@de.bosch.com

Abstract
Automotive embedded applications like the engine management system are composed of multiple
functional components that are tightly coupled via numerous communication dependencies and
intensive data sharing, while also having real-time requirements. In order to cope with complexity,
especially in multi-core settings, various communication mechanisms are used to ensure data
consistency and temporal determinism along functional cause-effect chains. However, existing
timing analysis methods generally only support very basic communication models that need
to be extended to handle the analysis of industry grade problems which involve more complex
communication semantics. In this work, we give an overview of communication semantics used in
the automotive industry and the different constraints to be considered in the design process. We
also propose a method for model transformation to increase the expressiveness of current timing
analysis methods enabling them to work with more complex communication semantics. We
demonstrate this transformation approach for concrete implementations of two communication
semantics, namely, implicit and LET communication. We discuss the impact on end-to-end
latencies and communication overheads based on a full blown engine management system.

1998 ACM Subject Classification C.3 Real-Time and Embedded Systems, D.4.4 Communica-
tions Management

Keywords and phrases communication semantics, logical execution time, implicit communica-
tion, automotive, embedded systems, scheduling simulation, Amalthea

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2017.10

1 Introduction

Most of the innovation in the automotive area is happening on the electronics front and
as a result, the number of Electronic Control Units (ECUs) in the cars has increased,
with a high end car now typically having 80 to 100 ECUs. With increased functionality
arises the responsibility to address the issue of handling the increased complexity in these
systems. On the application front, embedded automotive applications, like the engine
management system (EMS), have various application requirements (timing, data consistency,
performance). Additionally, parallelizing such applications at task level to leverage the

© Arne Hamann, Dakshina Dasari, Simon Kramer, Michael Pressler, and Falk Wurst;
licensed under Creative Commons License CC-BY

29th Euromicro Conference on Real-Time Systems (ECRTS 2017).
Editor: Marko Bertogna; Article No. 10; pp. 10:1–10:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/84868911?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2017.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2 Communication Centric Design in Complex Automotive Embedded Systems

capabilities of newer multi-core platforms is non-trivial, since all functional and non-functional
properties of the software must be preserved after the transition. An EMS is inherently
complex due to the existence of multiple tightly coupled functions executed by multiple
tasks with various types of activations (periodic, sporadic, angle synchronous) exchanging
data with different communication semantics. These communication semantics set rules
on how and when data is communicated across functions to ensure data consistency and
temporal determinism. While “implicit communication” proposed by AUTOSAR targets
data consistency, Logical Execution Time (LET) has been proposed to solve the problem of
temporal non-determinism by decoupling computation and communication, especially so when
the software is deployed across multiple processors. To our knowledge, it is very uncommon to
have uncontrolled/unregulated or direct communication between concurrent tasks in industry
grade deployments and more complex communication semantics are employed.

Thus there is a need to factor-in the effects of these semantics in each phase of the system
design (including task creation, task distribution, data and code mapping) for effectively
using the platform and meeting all application objectives. In this work, we address the often
overlooked problem in system design: a communication semantic aware timing analysis.

The problem is imminent since commercial tools that are currently adopted by the
industry for timing analysis, like the Timing Architects Simulator [21] or SymTA/S from
SymtaVision [9], currently do not consider the effect of different communication semantics
and assume the most basic communication protocols (direct communication). Therefore the
provided analysis may be unreliable and non-applicable in an industry setting where data
consistency and temporal determinism must be ensured. Hence there is a need for Model
Transformation that can convert complex communication semantics into equivalent direct
communication mechanisms facilitating the use of these tools more meaningfully.

Contributions: In this paper, we highlight the importance of communication semantics
when computing end-to-end latencies of effect chains in an engine management system.
We provide a description of different execution models and communication semantics and
their role in the entire design process. Next, we propose model transformation methods to
transform LET and implicit communication into equivalent direct communication semantics.
We also propose a concrete implementation of such a model transformation taking into account
platform specific overheads. This transformed model can then be fed into existing scheduling
analysis engines without worrying about the underlying communication semantics. Based on
experiments conducted with SymTA/S, we then demonstrate the model transformation on
a full blown engine management system, showing the impact on end- to-end latencies and
communication overheads.

The rest of the document is organized as follows. We first describe the execution model
in Section 2 followed by the hardware platform description in Section 3. In Section 4 we
describe the communication semantics used in this paper. This is followed by Section 5,
where we describe the model transformations along with discussions about the incurred
communication overhead, backed up with experiments presented in Section 6.

2 Execution Model

In an earlier paper [14], an engine management system was characterized. Here we add more
details, exploring the design space further. In general, automotive applications are organized
as software components according to the AUTOSAR specification. These components consist
of schedulable entities called runnables, which are grouped by their activation into tasks. We
now describe the different elements in detail.

A. Hamann, D. Dasari, S. Kramer, M. Pressler, and F. Wurst 10:3

2.1 Runnables and Tasks
Runnables are atomic functions that constitute the smallest executable unit in a software
component. They interact with each other over shared variables called labels. Each runnable
is characterized by its code footprint, execution time (best case, average case, worst case),
activation (as described later) and the set of labels it accesses. Typically runnables with the
same activation (period) are grouped into tasks, with each runnable occupying a particular
position in a task. Tasks are the units of scheduling by the operating system. Runnables
with the same activation scheme can also be grouped into multiple tasks, e.g. for separation
or distribution purposes.

2.2 Task Model: Activation Semantics
Different kinds of tasks co-exist in an EMS and they primarily differ in their activation
triggers.

2.2.1 Periodic, Sporadic and Single Activation tasks
Periodic tasks are time triggered exactly every P time units and typically an EMS has
different tasks with periods in {1, 2, 5, 10, 20, 50, 100, 200, 1000} ms. Sporadic tasks are
typically defined by a minimum interarrival time minT– that is two activations are separated
by at least minT time units. Single activation tasks, as the name suggests, occur only once
in the system. Typically system setup and initialization tasks fall into this category.

2.2.2 Angle Synchronous tasks
These tasks are asynchronously activated at specific angles of the crankshaft and their
periodicity is determined by the speed of the crankshaft, generally represented in rotations
per minute, rpm, and the number of cylinders, nCyl in the engine. The period P is then
given by P = 120/(rpm ∗ nCyl). As a result, these tasks are also called adaptive rate tasks
since their rate changes with the speed of rotation. As seen above, these tasks are activated
more frequently with increase in rotation speed.

2.2.3 Chained Tasks
Unlike other tasks that are triggered independently, these tasks are typically triggered by a
predecessor task. Here the predecessor task is terminated and the thread of control is handed
over to the newly activated task. Tasks can also be chained across cores.

2.2.4 Interrupts Service Routines (ISR)
Interrupt Service Routines are functions that are directly triggered by a hardware event.
They usually execute their functionality directly without any task switching overhead, and
thus respond faster to events.

2.3 Scheduling Model
Tasks in the EMS are scheduled using fixed priority preemptive scheduling like rate monotonic
scheduling (RMS) [15]. With RMS, the priority of the tasks depends on the period (rate)
– shorter the period, higher is the priority. In general, only higher priority tasks may
preempt lower priority tasks. Furthermore, tasks are scheduled either in a fully preemptive

ECRTS 2017

10:4 Communication Centric Design in Complex Automotive Embedded Systems

Figure 1 Age and Reaction Latency.

or cooperative manner. Tasks that participate in preemptive scheduling can preempt every
other task at any time. However, tasks that are scheduled cooperatively may be preempted
by higher priority cooperative tasks only at specified schedule points which correspond to
runnable boundaries within a task. This ensures data consistency at the granularity of the
runnables. Since preemption can occur at runnable boundaries only, it may lead to cases
in which higher priority tasks are blocked by lower priority tasks still executing the current
runnable. Note that preemptive tasks may preempt cooperative tasks at any point.

2.4 Event Chains
An event chain, also called effect chain or signal flow, is an abstraction of a data flow through
a system. Typically an EMS has multiple event chains wherein data is sensed by the sensor
nodes, passed on to control functions which act on this data and finally the output is used to
configure the actuation functions to perform the desired action. Thus these event chains are
a sequence of successive stimulus-response segments, where the response of one segment is
the stimulus of the next segment. Each of these event chains is associated with an end-to-end
latency requirement which is specified via one of the two delay semantics: an Age or Reaction
latency constraint (see Figure 1). Event chains may be based on arbitrary events that occur
in a system. In this paper we focus on event chains that are based on runnables as well as
on start and termination events. With this, runnables could be part of different tasks and
hence a stimulus and response segment will be realized by runnables that may belong to two
different tasks.

2.4.1 Reaction Latency Constraint
Reaction latency denotes the time between the occurrence of the response to a specific
stimulus. In other words, it denotes the time lapsed between a specific (sensor) input value
or signal to a corresponding (actuator) output value, specifying how long a value or signal
needs from one end to the other. A reaction latency constraint of k time units to a particular
stimulus implies that the response should occur no later than k time units after that stimulus.
An example from the chassis domain is the time from the brake pedal is pressed until the

A. Hamann, D. Dasari, S. Kramer, M. Pressler, and F. Wurst 10:5

brakes are activated [6]. In this work, we will deal with reaction latency constraints.

2.4.2 Age Latency Constraint

For the age latency, the freshness of the data producing the response is important and hence
the focus is from the response perspective rather than from the stimulus perspective. In
other words, this is the maximum time a specific output (actuator) value is available from
a corresponding (sensor) input value or signal. This also equals the validity of a specific
value or signal before a new value arrives. A (max) age constraint of “k” time units for a
cause-effect chain mandates that for an occurrence of a response event, the corresponding
input data is not older than “k” time units [6]. When for example an actuator value is
periodically updated, it is of importance that the corresponding input values are not too old.

2.4.3 Multi-Rate Event Chains

The complexity of computing end to end delays (age or reaction) in event chains arises due
to the fact that an event chain may consist of tasks executing at different rates or periods.
Such multi-rate event chains thus often suffer from effects of i) undersampling in which
the producer produces data at a higher rate than the consumer task can process it or ii)
oversampling in which the consumer is activated at a higher rate than the producer. With
these effects, there is a problem of either produced results being lost as they are not consumed
as frequently, or duplicate inputs being acted upon by different consumer task activations.
Besides, the effects of jitter during the sensing, scheduling, control and actuation, together
with the possible presence of multiple clocks in the system, add to uncertainty in the delay
calculations.

3 Platform Model

A cost model of the hardware platform is necessary as it is required to compute the overheads
of data accesses while employing different communication semantics. In this work, we consider
the AURIX [4] platform as seen in Figure 2, which is widely used for deploying automotive
embedded real-time systems. The 32-bit platform consists of three cores, each equipped with
a local data and code scratchpad memory. Additionally the platform provides a persistent
global flash memory which is used to store code and persistent data, and a global dynamic
RAM for storing non-persistent data. The memory is distributed and each core can access
all scratchpads and the global memory via a crossbar interconnection.

The AURIX platform has a write buffer to decouple memory write operations from the
CPU instruction execution. When the buffer is full, the priority of the buffer is raised,
as a consequence of which, the buffer is flushed. Due to this mechanism, additional write
access latencies are negligible and of a non-blocking nature for automotive control software
categorized in [14]. Hence, we ignore additional write access latencies in the overhead
calculation in this work.

Contention arises when multiple cores try to access cross-core/flash data or when high
priority DMA blocks the memory. A precise analysis must ideally calculate the exact timing of
concurrent accesses but dynamic hardware effects leading to execution jitters make a realistic
formal calculation of these overheads nontrivial, and these aspects have been addressed to
some extent in [13, 16]. Therefore, contention modelled by α is an additional overhead in the
calculations which is highly dependent on the actual software and deployment configuration.

ECRTS 2017

10:6 Communication Centric Design in Complex Automotive Embedded Systems

Figure 2 Simplified AURIX Architecture [20].

In this paper, to keep the focus on the semantics, we do not consider the overheads in the
experimental section.

To compute the remaining memory access latency, we distinguish between read and
write accesses. Data read from local scratchpads is directly available and therefore load
instructions need one execution cycle1. In the following, we calculate the read access latency
Ar, by Ar(x) = CCx + 1 + α, where CCx represents the CPU access latency to memory x,
and the additional cycle accounts for the execution of the load instruction. As stated above
the contention α is ignored in our experiments. The CPU access latency CCx to a local
scratchpad costs zero cycles and eight cycles for a remote RAM access. The write access Aw

always needs one cycle. We only consider the store instruction execution time and ignore the
interconnect latencies due to the write buffer mechanism. Additionally, we assume that all
labels in the system under analysis fit into the word size of the AURIX architecture (32 bits),
and thus can always be fetched with a single access. This is the case for the EMS considered
in this paper.

4 Communication Semantic Centric Design

As mentioned earlier, the importance of data consistency is integral to the engine management
system due to the high coupling of combustion control functions [17]. Multiple functions
are involved in computing the dynamic process starting from air intake to the end of the
exhaust system. Highly dynamic physical values (like engine speed, manifold pressure, air
temperature) are constantly exchanged at high rates between different functions. Since many
sensed values are required by multiple functions, race conditions are quite probable. This
problem is aggravated by the fact that the involved functions are executed by tasks allocated
to different cores communicating with each other using shared data that need to be protected
by mechanisms that guarantee mutually exclusive access with bounded worst-case blocking
time. To cope with this problem, platform mechanisms enforcing data consistency and
temporal determinism are employed in industrial systems to constructively ensure functional
correctness. The definition of the term data consistency includes two different dimensions.
The first dimension is the consistency in value, meaning that the value of a variable/message
is not affected by action outside the current execution context. The other dimension is

1 We ignore micro-architecture effects, e.g. result latencies, here, which could lead to additional delays.

A. Hamann, D. Dasari, S. Kramer, M. Pressler, and F. Wurst 10:7

(a) (b)

Figure 3 (a) Direct access: task performs read and writes on a global variable during its execution.
(b) Example showing how task A uses 2 different values at different points in execution.

Figure 4 Implicit communication: CopyIn and CopyOut runnables read and write copies at
beginning and end of the task.

consistency of a variable with other variables. This means that multiple variables are only
valid if all (within the consistency scope) are stemming from the correct (same) point in time.
In this work we deal with the first dimension of the data consistency problem by employing
inter-task and intra-task communication semantics as described below.

4.1 Inter-Task Communication Semantics

4.1.1 Explicit or Direct Communication
This semantic, often also called direct access, allows unrestricted access to shared variables
(labels) across tasks. As seen in Figure 3a, the task works on the global variable of the
label. This may work for labels which are strictly read-only, but with labels which may be
overwritten, data inconsistency may result. Interleaving of task activations will result in
different values of the data. In a single core setting, a simple scenario is one in which a
preempting task changes a shared value and so the preempted tasks works on two different
values at two different points in time, leading to inconsistencies as seen in Figure 3b.

4.1.2 Implicit Communication
This semantic, proposed by AUTOSAR, is primarily focused towards maintaining data
consistency to avoid the pitfalls of explicit communication. It essentially follows a read-
execute-write paradigm – Implicit communication mandates that the task always makes local
copies of the shared data it needs at the beginning of its execution, works on the local copies
and writes the data back at the end of its execution (see Figure 4). This ensures that the
task works on the same copy throughout its execution, and also preserves consistent state of
the data.

From the access latency perspective, all the variables that are read during task execution
will have to be pre-fetched into local memory from its source and then the task may execute
by referencing readily available local copies (see Figure 5), hence not incurring the cost of
remote accesses multiple times.

ECRTS 2017

10:8 Communication Centric Design in Complex Automotive Embedded Systems

Figure 5 Implicit communication: each task works on its local copies.

Figure 6 LET: The observed output is independent of the time a task executes in its LET
interval.

The access latency in case of implicit communication is therefore dependent on multiple
factors including, the cost of access to remote and local memory, number of accesses to the
label during one execution to the local memory, and the period/activation rate of the task.
However on the memory storage front, more local storage is required, since for every task
which accesses the label, an extra local copy is required.

4.1.3 Logical Execution Time Model

Logical Execution Time (LET) was introduced with the time-triggered programming language
Giotto [11]. It is a real-time programming concept which ensures temporal determinism by
decoupling computation and communication. The problem with an unconstrained commu-
nication method, i.e, allowing tasks to read and write arbitrarily is non-determinism due
to “execution jitter”. The result is highly dependent on possible interferences of other tasks
executing within a tasks activation interval (say from its release to the end of its period).
The effects of this jitter becomes more prominent in event chains, leading to large variations
in end-to-end delays. The LET model is robust against these jitters by enforcing strict
communication rules. With the LET model, tasks always read data at the beginning of the
activation interval and write data at the end of the activation interval (see Figure 6). As
with implicit communication, LET requires that a local copy is available for each variable
accessed by a task. Using LET, the observable temporal behavior of a task is independent
from its physical execution. That is irrespective of the exact time a task executes within
its execution interval, the result will be always available only at the end of its activation
interval. LET also ensures portability, i.e, the same behavior of the tasks when migrated to
another hardware (core), integrability on addition of newer software and interoperability,
which is verified by deterministic communication.

With LET, the end-to-end latencies in case of synchronous stimuli is always equal the
sum of the periods of the tasks involved in the chain. However, with asynchronous stimuli it
may happen that each task in the effect chain executes as early as possible in its activation
window but the data arrives just after it begins execution (meaning it is operating on an
older value of the data). Thus the newer data is consumed only one time period later. The

A. Hamann, D. Dasari, S. Kramer, M. Pressler, and F. Wurst 10:9

(a) Effect chain (b) Direct

(c) Implicit (d) LET

Figure 7 The effect chain spans over two task activations due to backward communication.

same scenario could occur with every pair of tasks in the chain. Eventually, the worst case
latency in the case of such asynchronous arrivals is twice the sum of the periods of all the
tasks in the chain.

LET thus leads to longer latencies in event chains. But on the other hand, with LET,
there is no need for complex synchronization mechanisms to handle race conditions or priority
inversions, given its well-defined semantics.

4.2 Intra-task communication
Runnables within a task may communicate with each other in two different ways. With
forward communication, the producer runnable completes before the consumer runnable and
hence there is no delay in getting the latest data by the consumer and communication is
therefore fast.

With backward communication however, the consumer runnable executes before the
producer, and thus there is a delay of one period in this case to receive the latest data.

4.3 Event chains and communication semantics
Figure 7 summarizes how the different communication mechanisms affect the resulting latency
of a simple event chain in which all runnables are mapped to one task, but there is a backward
communication, since the consumer is positioned before the producer in the task, as shown
in Figure 7a, and has a different order in the event chain.

5 Model transformation

Currently existing timing analysis tools like SymTA/S [9] typically do not consider the
implementation overheads of the underlying communication semantics or are only equipped
to handle direct communication. As a result, these tools cannot be reliably used in ac-
tual industry-grade evaluations where typically complex semantics like implicit or LET
communication are deployed. Additionally, since each design phase like task creation, task
distribution, data/code mapping and computation of end-to-end latencies of event chains are
heavily influenced by the underlying semantics, the implementation-specific details cannot
be ignored. We transform the models as shown below – these models can then be analyzed
using state-of-the-art timing analysis tools to effectively compute the end-to-end latencies
along event chains by considering the implementation specific overheads for copying data.

ECRTS 2017

10:10 Communication Centric Design in Complex Automotive Embedded Systems

Figure 8 Example event chain exhibiting non deterministic latencies with implicit communication
semantics. Case I: shows that newer data from the sending runnable might be discarded due to the
copy-in mechanism. Case II: shows shorter latency in a different execution scenario.

5.1 Transformation of event chains to model latency effects
In this section we describe how event chains consisting of runnables communicating according
to implicit and LET communication semantics can be transformed to equivalent event chains
in terms of end-to-end latencies assuming direct communication between all runnables. The
transformations are explained on event chain segment basis2, meaning that they can be
mixed along event chains to address systems with heterogeneous communication semantics,
which is usually the case in real systems.

5.1.1 End-to-end latency with implicit communication semantic
As mentioned earlier, implicit communication mandates that the task makes local copies
of the shared data it needs at the beginning of its execution, works on these local copies
and writes the data back at the end of its execution. In order to realize this aspect of
implicit communication, auxiliary Copy-in Cpin and Copy-out Cpout runnables are added
at the beginning and the end of each task, respectively. The Cpin runnable prefetches all
the labels that are needed by the task during execution, into local memory. Then, during
task execution, only these local copies are accessed. Similarly, all the labels that are written
by a task are written into local memory and then, after task execution are written back to
the original labels by Cpout. The labels that a task needs during execution are extracted by
program analysis, which is possible in such embedded programs, where pointers and other
complex programming artifacts are not encouraged.

Figure 8 visualizes how event chains need to be transformed to take implicit communication
semantics into account.

Each event chain segment {S → R} where the stimulus runnable S and response runnable
R, belong to different tasks, needs to be replaced by three new consecutive event chain
segments with stimulus and responses pairs and the modified event segments are: {{S →
Cpout(S)}{Cpout(S)→ Cpin(R)}{Cpin(R)→ R}}, where the notation Cpout(S) represents
the copy-out runnable of task containing S. For completeness, we similarly model the initial
copy-in to the first runnable in the event chain and the copy-out of the last runnable of the
event chain.

2 We assume that event chains are defined on runnable level.

A. Hamann, D. Dasari, S. Kramer, M. Pressler, and F. Wurst 10:11

As can be observed in Figure 8, Case I, the copy-in operations potentially increase the
end-to-end latency along event chains. More precisely, this is the case when the sending
runnable S updates the label after the copy-in procedure of the task containing the receiving
runnable R has taken place and before R is executed. In the given example, this leads
to the situation where fresher data of TS is discarded, which would not be the case with
direct communication. Obviously, such situations leading to increased latency due to implicit
communication semantics do not occur systematically as is visualized in Case II. However,
similar data race effects occur due to the copy-out mechanisms.

Please note that it is assumed that there is exactly one task responsible for writing each
label. In case multiple tasks with different priority levels perform write accesses to the same
label, there can be data races when all of them try to perform a copy-out to the master copy
of the same variable. Lock mechanisms for exclusive update rights must then be provided
for maintaining consistency. Also task priorities that prevent data race conditions can be
exploited to optimize the number of created label copies.

5.1.2 End-to-end latency with LET communication semantic

Modeling LET communication is similar to modeling implicit communication, in that copy
in and copy-out tasks must be augmented to the model. However, positioning these auxiliary
tasks correctly is important to achieve the expected behaviour. The activation rates of the
pair of communicating tasks (relatively harmonic or non-harmonic) and their priorities will
have an influence on the resulting end-to-end latencies. Note that with LET, tasks can
communicate data only at the beginning and the end of their activation interval. Since we
consider a system that employs fixed priority preemptive processing, we prioritize the copy
operations by elevating their priorities to the highest in the system. Hence the copy-out task
is given the highest priority while the next highest priority is assigned to copy-in tasks.

In this paper, LET communication semantic is applied at task level, i.e. deterministic
communication is ensured at task activation boundaries. For this reason, event chain segments
with the stimulus runnable S and the response runnable R need to be transformed if, either,
they belong to different tasks, or if they belong to the same task and exchange data with
backward communication (see Section 4.2).

Figure 9 visualizes the transformation, where TS and TR denote the tasks containing
the runnables S and R, respectively. We transform the segment {TS → TR} to {TS →
Cpout(TS)}, {Cpout(TS)→ Cpin(TR)}, {Cpin(TR)→ TR}}. For completeness, we similarly
model event chain segments modelling the initial copy-in to the first runnable and the final
copy-out from the last runnable. Please note that these tasks are only needed logically
to mimic LET communication semantics for analysis engines that are based on direct
communication. Therefore, the execution time attributed to those copy tasks is equal to zero.
How the overhead induced by these copy operations can be taken into account is discussed
later.

5.2 Calculating the communication overhead

In this section we explain how to calculate the communication overhead of the system with
respect to the different data synchronization mechanisms. We use the cost model of the
widely used AURIX [4] platform explained in Section 3. Obviously, there are different
implementation alternatives on software level for the mentioned communication mechanisms.
Depending on the chosen alternative, runnables for modeling the overhead need to be added

ECRTS 2017

10:12 Communication Centric Design in Complex Automotive Embedded Systems

Figure 9 LET communication semantic is achieved by 1) adding highest priority copy-out and
second highest priority copy-in tasks with 0 execution time for each task, and 2) placing these in
event chains between communicating tasks.

to different tasks. We assume that the execution time for each runnable contains code-fetching
overhead, but excludes any load/store execution times.

We assume that constants are mapped to the global RAM and that accesses are never
cached. Variables have exactly one writer but can have multiple readers and are mapped to
the local scratchpad of the core hosting the writer (task or runnable). We also assume that
labels are not persisted in registers when multiple accesses to labels in local scratchpads are
made, and therefore a load instruction is necessary.

The communication cost per task is calculated as described in Section 3 for each read
label access and considers one cycle for each write accesses as described earlier. Let ηi(l) be
the number of accesses of the label l from task τi during one execution. Let πl denote the
memory where label l is mapped. Then,

Ccom =
∑
l∈Ri

ηi(l) ∗Ar(πl) +
∑

k∈Wi

ηi(k) ∗Aw(πk)

=
∑
l∈Ri

ηi(l) ∗Ar(πl) +
∑

k∈Wi

ηi(k) (1)

where Ri andWi denotes the set of labels read and written by task τi and Ar(πl) describes the
time for a read access from memory πl and correspondingly Aw(πl) = 1 for any πl. Eventually
Ccom is added to the effective execution time of the task. Note that for the experiments, we
similarly apply the above formula at runnable level to compute their gross execution time.
For direct communication, the overall communication cost is given by Equation 1 and so
Cdc = Ccom. However, additional costs are incurred for the implicit case as seen below.

5.2.1 Communication cost for implicit communication
As explained in Section 5.1.1, two runnables are added to each task for realizing implicit
communication: Cpin for copying all labels read inside the task into local copies, and Cpout

for writing back all local copies of labels written inside the task.

A. Hamann, D. Dasari, S. Kramer, M. Pressler, and F. Wurst 10:13

The cost for Cpout depends on the number of written labels, since the access latency
overhead is minimal due to the write buffers of the considered AURIX platform (refer
Section 3).

To create copies of labels, a read operation followed by a write operation is executed
to load a label into the local scratchpad. The read operation loads the label into the CPU
register and the write operation stores it into the local scratchpad. The runtime Cin for the
Cpin runnables is calculated by

Cin =
∑
l∈Ri

(Ar(πl) +Aw(x)) =
∑
l∈Ri

Ar(πl) + |Ri| (2)

where again πl describes the memory location of the label l, which could be mapped locally
or remotely. Aw(x) denotes the cost of writing a label to the local scratchpad memory x,
which like any other write access always costs 1 cycle. Note that we do not include the
frequency of accesses here since a copy is done once for each task that accesses the label.

The cost Cout for the write-back of the label copies in Cpout is calculated by the below
equation where y denotes the target memory location.

Cout =
∑

l∈Wi

(Ar(πl) +Aw(y)) = |Wi| ∗ 2 . (3)

Due to the fact, that the copies are located in the local memory and so Ar(πl) = 1, the
overhead for the copy is always two cycles per written label.

In addition to the copy runnables, we need to consider the access latencies within the
task to compute the overall communication cost Cimplicit for implicit communication. The
formula to calculate the communication cost is given by Equation 1, but considering that the
labels to be accessed are now located in the local scratchpad incurring a single cycle access
latency. Only the constants remain in the global RAM. In the following equation, Ccom

includes the accesses from the runnables of the task whereas Cin and Cout contain the costs
of the auxiliary copy runnables, leading to:

Cimplicit = Ccom + Cin + Cout . (4)

5.2.2 Communication cost for LET communication
In contrast to implicit communication, with LET, communication happens at period bound-
aries. Thus we add additional runnables for copying the required data for each task into the
corresponding local scratchpad memories as with implicit communication, but we trigger
these copy operations at different time points. In our proposed implementation, this copying
is facilitated via highest priority interrupts.

The first step of the model transformation is to add highest priority interrupts for each
periodic task in the system. These interrupts are activated with the same period as the tasks
they correspond to.

In the second step of the model transformation, runnables performing the necessary copy
operations to realize LET communication have to be added to the system for each pair of
communicating tasks. In the following, the two communicating tasks are denoted by TA and
TB , whereas their periods are denoted by PA and PB .

In order to describe the timing of the copy operations, the notions of prescale and offset
that can be associated to runnables are required. The prescale describes the activation
frequency of the runnable in relation to the activation frequency of the task it is mapped
to. For instance, a prescale of 2 denotes that the runnable is executed only every second

ECRTS 2017

10:14 Communication Centric Design in Complex Automotive Embedded Systems

Figure 10 Copy operations (realized by high-priority interrupts) that need to be performed
between two tasks with non-harmonic periods in order to realize LET communication.

time the parent task is activated. In relation to that, the offset describes the initial shift of
the first execution starting to count from 0. For instance, a prescale of 3 and an offset of 1
denote that the runnable is executed at the activations 2, 5, 8, etc. of the parent task.

Figure 10 shows the necessary copy operation for the more general case where TA and
TB have non-harmonic periods. In this case PA = 2 and PB = 5.

5.2.2.1 Costs for label accesses

Firstly, as in implicit communication, the execution times of both TA and TB are increased
by Ccom, as in Equation 1, to factor-in the label access costs. Note that for the calculation
of Ccom, it has to be taken into account that all tasks operate on local copies.

5.2.2.2 Bi-directional copy at hyperperiods

Then, a bi-directional update of the local label copies needs to be performed at the end of
the hyperperiod of the two communicating tasks. This is necessary since according to the
LET semantic, new written data becomes visible for all reading tasks at that point. These
bi-directional copy operations are performed by a single runnable that is mapped to the
copy interrupt corresponding to the faster task. Given that PA < PB, the following copy
operations need to be performed:

The local copies of labels written by TA and read by TB need to be updated in the local
scratchpad of the core that TB is mapped to. The cost for these operations is denoted by
CAB .
The local copies of labels written by TB and read by TA need to be updated in the local
scratchpad of the core that TA is mapped to. The cost for these operations is denoted by
CBA.

An important point in the following cost computations is that labels are mapped to the
local memory of the core hosting the task that writes the label. Let SAB be the set of labels

A. Hamann, D. Dasari, S. Kramer, M. Pressler, and F. Wurst 10:15

written by task TA and read by TB . Likewise SBA denotes the set of labels written by task
TB and read by task TA. Then given that Aw(x) = 1 for any destination memory x, and πl

is the local memory of the core where TA is mapped to, we have:

CAB =
∑

l∈SAB

(Ar(πl) +Aw(x)) = 2 ∗ |SAB | . (5)

Similarly given πk is the local memory of the core where TB is mapped to and y is the
local memory of the core where TA is mapped to, we have:

CBA =
∑

k∈SBA

(Ar(πk) +Aw(y)) =
∑

k∈SBA

Ar(πk) + |SBA| . (6)

5.2.2.3 Handling non-harmonic tasks

In the case of harmonic task periods, the copy operations at the hyperperiod are sufficient
to realize LET communication semantics. However, in case of non-harmonic task periods
additional copy operations need to be performed. Figure 10 visualizes the extra operations
necessary for LET communication between the tasks TA and TB with periods PA = 2 and
PB = 5, respectively.

As observed, the results of TA’s second execution become visible at time instant 4, and,
thus, before the second activation of TB at time instant 5. For this reason, the local copies
of the labels written by TA that are read by TB must be updated in the local memory of
the core TB is mapped to before its second activation is executed. In the implementation
discussed in this paper, the necessary copy operations are performed by a runnable that is
mapped to the copy interrupt corresponding to TB with prescale = 2 and offset = 1. In the
reverse communication direction, the results of TB’s first execution that become visible at
time instant 5 need to be made available for TA’s fourth activation at time instant 6. This is
achieved by adding a runnable to the copy interrupt corresponding to TA with prescale = 5
and offset = 3.

Algorithm 1 Calculate additional copy points for tasks with non-harmonic periods
Input: Periods PA and PB of two tasks TA and TB involved in LET communication
Output: List of copy points (prescale p and offset o) at which TA needs to copy-in new

available data from TB

1: CopyPoints← {}
2: bCur ← PB

3: while bCur < lcm(PA, PB) do
4: aCur ← PA ×

⌈
bCur
PA

⌉
5: bCur ← PB ×

⌈
aCur

PB

⌉
6: if aCur 6= lcm(PA, PB) then
7: CopyPoints←

(
p = lcm(PA,PB)

PA
, o = aCur

PA

)
8: end if
9: end while
10: return CopyPoints

Algorithm 1 describes how these uni-directional additional copy points can be calculated
in the general case. Given the periods of two communicating tasks, the algorithm returns a
list of copy points (tuples of prescale and offset) at which the first specified task needs to
fetch the results of the second task in the above explained manner.

ECRTS 2017

10:16 Communication Centric Design in Complex Automotive Embedded Systems

The communication costs for each of these copy points is the calculated by Eq. 5 and
Eq. 6. The calculations must be done for every pair of periodic tasks that exchange data.
The communication costs for one execution of the task differ on whether no updates are
needed, a bi-directional hyperperiod data exchange is performed, or non-harmonic task pairs
perform intermediate copy updates.

6 Experimental Results

6.1 Experimental Setup
We base our experiments on the model of an engine management system provided in the
context of the industrial challenge of the WATERS 2017 workshop [2], an extension of that
provided in [14, 1]. The earlier model is augmented to specify the frequency of label accesses
from each runnable. The platform consists of 4 cores, running at 200 MHz and executing a
set of periodic tasks, an angle synchronous task as well as interrupt service routines (ISR).
Please note that the model transformations proposed in this paper are only applied to
the periodic tasks. The application consists of 1250 runnables grouped into 21 tasks/ISRs
which communicate via 10000 labels. Since the focus is on modeling the communication
semantics, we assume that the mapping of labels and tasks is already provided. Constant
calibration data, i.e. labels that are only read but never written, is mapped to the global
RAM. Variables, i.e. labels that are written by a single task and potentially read by multiple
tasks, are mapped to the local memory of the core hosting the writer task. We further
assume that the underlying platform does not support data caching for the data mapped into
the global RAM. We assume synchronous releases of all periodic tasks for these experiments,
whereas the angle synchronous task and all ISRs are asynchronously released. The calculated
end-to-end latency does not contain extra delays for sampling effects with external stimuli.
In case of implicit communication, the beginning of the event chain is the point in time when
the copy-in runnable of the task containing the first runnable of the effect chain is executed.

We use the AMALTHEA [3] meta-model for describing the engine management system.
AMALTHEA provides model elements to express event chains, different tasks models,
different constraints and the hardware platform. We implemented the above proposed
transformations to realize the direct, implicit, and LET communication semantics. This
transformed AMALTHEA model is then fed into the SymTA/S tool, wherein the execution
behavior is simulated over multiple runs to generate the access latency distributions we
present.

6.2 Comparison of the end-to-end latencies
In this experiment, we compare the end-to-end latencies of effect chains across the three
communication semantics. For the experimental results we highlight the applicability on two
important types of chains for evaluation.

6.2.1 Single-rate effect chain with backward communication
We analyze effect chain EC1, composed of four runnables, all positioned in a single task with
activation of 10ms similar to the example in Figure 7a. There is backward communication
in this scenario, since the relative order of the producer and consumer in the effect chain is
different from the positions in the task.

The different latencies observed for around 3500 runs are shown in Figure 11. As seen, the
latency for direct communication is the least, since the available input is read immediately

A. Hamann, D. Dasari, S. Kramer, M. Pressler, and F. Wurst 10:17

(a) (b)

(c)

Figure 11 Comparison of end-to-end latency distribution between direct, implicit and LET
communication.

by the first runnable of the effect chain and the produced output is immediately reflected
across the event chain segments, therefore reducing the effective end-to-end latency. However
with implicit and LET semantics, as seen in Fig. 7c and Fig 7d, there is, as expected, an
increase in the end-to-end latencies in the chain. As described earlier the output using
implicit communication is globally available only at the end of the task execution, while
with LET at the end of the activation interval. Note that with LET irrespective of where it
executes, the end-to-end latency is always centered around 20ms with a negligible execution
jitter in the order of microseconds. This jitter is due to the execution times of the copy-in
and copy-out runnables which are executed with highest priorities at the points in time
the LET communication takes place. Obviously, this leads to deviations compared to the
idealized LET semantics.

6.2.2 Multi-rate chains

We next analyze effect chain EC2 composed of 3 runnables, with task periods 100, 10 and 2
ms. The resulting end-to-end latency distributions are presented in Figure 12. As expected,
direct communication results in the least latency (say x), while implicit communication
and LET have higher (almost 4x and 14x) latencies. This increased latency for implicit
communication is attributed to the fact that results are not directly available after runnable
completion, but rather after task completion. Obviously, this leads to situations where several
instances of the receiving task are “missed” before the receiving runnable can read the data.
The negative effect on the end-to-end latency is aggravated with increasing response time of

ECRTS 2017

10:18 Communication Centric Design in Complex Automotive Embedded Systems

(a) (b)

(c)

Figure 12 Comparison of latency overheads and variations across direct, implicit and LET
communication.

the sending task. The increased latency for LET is purely attributed to the involved task
periods since results are available only at the end of the task interval. As seen, the average
latency is almost equal to the sum of the periods of the involved tasks. The reason for the
jitter is the same as for event chain EC1.

6.3 Comparison of the communication overhead

In this experiment, we compute the overhead incurred by applying different mechanisms
(see Figure 13). In order to compute it, we consider the cost of accesses of all labels in the
application as described earlier, without factoring-in contention. The higher communication
overhead for direct access is because remotely stored labels are fetched each time they are
accessed. In contrast, references to local copies in implicit and LET communication result in
slightly lower overhead. However, each time a new task accesses a label, new copies are to be
made – and so, while direct communication is influenced by the frequency of label accesses,
implicit and LET communication are influenced by the number of tasks accessing the label,
since copies need to be maintained for every task.

6.4 Summary of experiments

We observe that data consistency via implicit communication or temporal determinism via
LET comes at a cost of higher end-to-end event chain latencies and reduced communication
overheads – but this trade-off is reasonable considering the intangible gains towards functional
correctness of the systems and development, validation and deployment efforts.

A. Hamann, D. Dasari, S. Kramer, M. Pressler, and F. Wurst 10:19

Figure 13 Comparison of communication overheads.

7 Related Work

For automotive embedded systems, in addition to meeting deadlines of individual tasks,
meeting end to end latency requirements of event chains is crucial. These end to end timing
requirements are described in standards such as AUTOSAR [5] and EAST-ADL [7]. In this
regard, [18] compute end-to-end latencies considering the AUTOSAR implicit communication
model and describe age and reaction constraints while introducing the first-to-first, first-to-
last, last-to-first, last-to-last semantics. Kluge et al. [12] show how an LET based approach
can facilitate compositionality by extending the MOSSCA multicore OS for LET. Henzinger
et al. [10] proposed a methodology that supports distributed realtime code generation for
distributed real-time systems considering LET. Farcas et al. [8] further demonstrate how a
transparent task distribution is facilitated via LET and hence irrespective of where a task
is mapped on a distributed system, the logical timing behavior is undisturbed. Pellizoni et
al. [19] also proposed and analyze tasks under the “Predictable Execution Model” which have
semantics similar to implicit communication. Our work is different in that we emphasise on
the end-to-end latency implications of event chains in a real-world system. We also focus on
how an existing tool can be extended to express these semantics.

8 Conclusion

In this paper we presented communication semantics used in the industry and their role
in ensuring data consistency and temporal determinism in real-time multi-core embedded
systems, and in particular an engine management system. We proposed model transformations
to increase the expressiveness of existing tools and demonstrated the resulting impact on the
system behavior. The consideration of communication semantics in widespread modeling
approaches allowed us to evaluate their significant impact using a well-known timing analysis
tool. These results can guide system designers to evaluate different optimization goals like
minimizing communication overheads or reducing event-chain latencies, as well as ensuring
deterministic system behavior.

References
1 S. Kramer A. Hamann, D. Ziegenbein and M. Lukasiewycz. Demonstration of the FMTV

2016 timing verification challenge. 2016 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 00:1, 2016.

2 A. Hamann, S. Kramer, M. Pressler, D. Dasari, F. Wurst, and D. Ziegenbein. The industrial
challenge of WATERS 2017 provided by Robert Bosch GmbH. URL: http://waters2017.
inria.fr/challenge/.

ECRTS 2017

http://waters2017.inria.fr/challenge/
http://waters2017.inria.fr/challenge/

10:20 Communication Centric Design in Complex Automotive Embedded Systems

3 AMALTHEA. An open platform project for embedded multicore systems. URL: http:
//www.amalthea-project.org.

4 AURIX. Aurix – safety joins performance. URL: http://www.infineon.com.
5 AUTOSAR – Spec. of Timing Extensions, 2014.
6 M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte. Synthesizing job-level depend-

encies for automotive multi-rate effect chains. In 2016 IEEE 22nd International Conference
on Embedded and Real-Time Computing Systems and Applications (RTCSA), pages 159–
169, Aug 2016. doi:10.1109/RTCSA.2016.41.

7 EAST-ADL – Domain Model Specification, 2014.
8 E. Farcas, C. Farcas, W. Pree, and J. Templ. Transparent distribution of real-time

components based on logical execution time. SIGPLAN Not., 40(7):31–39, June 2005.
doi:10.1145/1070891.1065915.

9 R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst. System level per-
formance analysis - the SymTA/S approach. Computers and Digital Techniques, IEEE
Proceedings -, 152(2):148–166, March 2005. doi:10.1049/ip-cdt:20045088.

10 T.A. Henzinger, C.M. Kirsch, and S. Matic. Composable code generation for distributed
giotto. SIGPLAN Not., 40(7):21–30, June 2005. doi:10.1145/1070891.1065914.

11 C.M. Kirsch and A. Sokolova. The Logical Execution Time Paradigm, pages 103–120.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

12 F. Kluge, M. Schoeberl, and T. Ungerer. Support for the logical execution time model on
a time-predictable multicore processor. SIGBED Rev., 13(4):61–66, November 2016.

13 L. Kosmidis, D. Compagnin, D. Morales, E. Mezzetti, E. Quinones, J. Abella, T. Vardanega,
and F. J. Cazorla. Measurement-Based Timing Analysis of the AURIX Caches. In 16th
International Workshop on Worst-Case Execution Time Analysis (WCET 2016), volume 55
of OpenAccess Series in Informatics (OASIcs), pages 1–11, 2016. doi:10.4230/OASIcs.
WCET.2016.9.

14 S. Kramer, D. Ziegenbein, and A. Hamann. Real world automotive benchmarks for free.
In 6th International Workshop on Analysis Tools and Methodologies for Embedded and
Real-time Systems, 2015.

15 C.L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard-
real-time environment. J. ACM, 20(1):46–61, January 1973. doi:10.1145/321738.321743.

16 E. Mezzetti M. Ziccardi, A. Cornaglia and T. Vardanega. Software-enforced Interconnect
Arbitration for COTSMulticores. In 15th International Workshop on Worst-Case Execution
Time Analysis (WCET 2015), volume 47 of OpenAccess Series in Informatics (OASIcs),
pages 11–20, 2015. doi:10.4230/OASIcs.WCET.2015.11.

17 L. Michel, T. Flaemig, D. Claraz, and R. Mader. Shared SW development in multi-
core automotive context. In 8th European Congress on Embedded Real Time Software
and Systems (ERTS 2016), TOULOUSE, France, January 2016. URL: https://hal.
archives-ouvertes.fr/hal-01284591.

18 F. Nico, R. Kai, N. Johan, and J. Jan. A compositional framework for end-to-end path
delay calculation of automotive systems under different path semantics. In Int. Workshop
on Compositional Theory and Technology for Real-Time Embedded Systems, 2008.

19 R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and R. Kegley. A
Predictable Execution Model for COTS-Based Embedded Systems. In 2011 17th IEEE
Real-Time and Embedded Technology and Applications Symposium, pages 269–279, April
2011. doi:10.1109/RTAS.2011.33.

20 D. Reinhardt and G. Morgan. An embedded hypervisor for safety-relevant automotive
e/e-systems. In SIES, 2014.

21 Timing Architect. Model-based development tools for embedded multi-core systems. URL:
https://www.timing-architects.com.

http://www.amalthea-project.org
http://www.amalthea-project.org
http://www.infineon.com
http://dx.doi.org/10.1109/RTCSA.2016.41
http://dx.doi.org/10.1145/1070891.1065915
http://dx.doi.org/10.1049/ip-cdt:20045088
http://dx.doi.org/10.1145/1070891.1065914
http://dx.doi.org/10.4230/OASIcs.WCET.2016.9
http://dx.doi.org/10.4230/OASIcs.WCET.2016.9
http://dx.doi.org/10.1145/321738.321743
http://dx.doi.org/10.4230/OASIcs.WCET.2015.11
https://hal.archives-ouvertes.fr/hal-01284591
https://hal.archives-ouvertes.fr/hal-01284591
http://dx.doi.org/10.1109/RTAS.2011.33
https://www.timing-architects.com

	Introduction
	Execution Model
	Runnables and Tasks
	Task Model: Activation Semantics
	Periodic, Sporadic and Single Activation tasks
	Angle Synchronous tasks
	Chained Tasks
	Interrupts Service Routines (ISR)

	Scheduling Model
	Event Chains
	Reaction Latency Constraint
	Age Latency Constraint
	Multi-Rate Event Chains

	Platform Model
	Communication Semantic Centric Design
	Inter-Task Communication Semantics
	Explicit or Direct Communication
	Implicit Communication
	Logical Execution Time Model

	Intra-task communication
	Event chains and communication semantics

	Model transformation
	Transformation of event chains to model latency effects
	End-to-end latency with implicit communication semantic
	End-to-end latency with LET communication semantic

	Calculating the communication overhead
	Communication cost for implicit communication
	Communication cost for LET communication

	Experimental Results
	Experimental Setup
	Comparison of the end-to-end latencies
	Single-rate effect chain with backward communication
	Multi-rate chains

	Comparison of the communication overhead
	Summary of experiments

	Related Work
	Conclusion

