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Abstract—Next generations of compute-intensive real-time ap-
plications in automotive systems will require more powerful
computing platforms. One promising power-efficient solution for
such applications is to use clustered many-core architectures.
However, ensuring that real-time requirements are satisfied in
the presence of contention in shared resources, such as memories,
remains an open issue.

This work presents a novel contention-free execution frame-
work to execute automotive applications on such platforms.
Privatization of memory banks together with defined access
phases to shared memory resources is the backbone of the
framework. An Integer Linear Programming (ILP) formulation
is presented to find the optimal time-triggered schedule for the
on-core execution as well as for the access to shared memory.
Additionally a heuristic solution is presented that generates
the schedule in a fraction of the time required by the ILP.
Extensive evaluations show that the proposed heuristic performs
only 0.5% away from the optimal solution while it outperforms
a baseline heuristic by 67%. The applicability of the approach
to industrially sized problems is demonstrated in a case study of
a software for Engine Management Systems.

I. INTRODUCTION

The automotive domain is witnessing a surge of inno-

vation as new advanced driver assistance systems and au-

tonomous vehicles shape the demand for more functionality.

This demand has already resulted in modern cars with 80-

100 Electronic Control Units (ECU) [1], [2] that manage

different subsystems, such as the power-train, the chassis,

active safety, driver assistance and infotainment. In tandem

with this development, automotive architectures are also wit-

nessing a major paradigm shift from multiple scattered single-

core ECU’s (connected over multiple busses) to hierarchical

multi-core Domain Controllers (DC) with the intent of ECU

consolidation. It is envisioned that future cars will consist

of multiple DCs interconnected over a deterministic Ethernet

backbone [1], [3], [4], where each of these domain controllers

will be a many-core platform that caters to the needs of a

specific subsystem. The architectural needs for such a domain

controller can be closely mapped to newer clustered many-

core architectures, such as the MPPA-256 from Kalray [5],

Intel’s SCC [6] and Tilera Tile64 [7]. These platforms provide

clusters of cores, each capable of hosting a different domain

application. Additionally, the multiplicity of cores provides

the required computing capabilities within the desired power

envelope of embedded automotive applications.

However, the transition to multi/many-core platforms is not

straightforward, since resources (e.g. memory subsystems, the

interconnect medium and the I/O subsystem) are shared among

applications. Although resource sharing provides benefits in

terms of cost and energy savings, it may cause complex

interference scenarios between sharing applications, which

may lead to missed deadlines and/or yield incorrect outputs

in a multi-core setting [8]. This is a serious problem in some

areas, including automotive systems, where applications are

often safety-critical and have strict timing requirements.

Deriving tight bounds for an unconstrained execution on

such a platform is often difficult, if not impossible. This

paper addresses these problems by proposing a contention-

free execution framework for automotive applications on a

clustered many-core architecture. The five main contributions

of this work are:

1) A cluster organization based on two pillar concepts: (i)

privatization of memory banks to ensure interference-free

execution, and (ii) sharing of other memory banks to support

communication between software components. These concepts

are suitable for automotive applications and constitute the basis

of the framework.

2) Assuming this organization, we propose an Integer Linear

Programming (ILP) formulation that optimally maps AU-

TOSAR runnables to cores of a cluster and provides a

contention-free time-triggered schedule that distinguishes and

overlaps memory access phases and execution phases.

3) A memory-centric heuristic that finds a runnable to core

mapping and a contention-free time-triggered schedule in a

fraction of the time required by the ILP method, and scales

up to handle industrial use-cases in the automotive domain.

4) We experimentally show that the proposed memory-centric

heuristic significantly outperforms a baseline core-centric

heuristic, while only sacrificing 0.5% in average schedulable

utilization compared to the ILP.

5) Finally, we demonstrate the applicability of our approach

through a case study of a realistic engine control application

deployed on a clustered many-core architecture, resembling a

Kalray MPPA-256 [5].

The rest of this paper is organized as follows. Section II

presents related work, followed by a description of our system

model in Section III. The proposed contention-free execution

framework is introduced in Section IV, after which the ILP-

and the heuristic-based mapping and scheduling approaches

are presented in Section V. We experimentally evaluate our

approach in Section VI and demonstrate its applicability via a
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case study. Lastly, conclusions are presented in Section VII.

II. RELATED WORK

Contention analysis of shared resources in multi-/many-

core Commercial Of-The-Shelf (COTS) platforms has received

significant attention in recent years. Most analyses consider

multi-core systems with a simple bus providing access to a

single shared memory [9], [10], [11], [12]. However, con-

tention analysis of clustered many-core platforms has also

been explored, as in [13], [14], [15], [16], where the former

two are the most relevant for this work, as they focus on Kalray

MPPA-256, which is the platform considered in this paper.

A response time analysis for different resource access

models is presented in [17] and it is shown that applications

following a read-execute-write semantic perform best. The

PRedictable Execution Model (PREM) [18] builds on this

result by proposing to divide applications into dedicated non-

preemptive memory and execution phases, where all cache-

lines required for non-blocking execution are fetched during

the memory phase. Although the original work only considers

fixed-priority scheduling on a single-core system, the concept

has been extended to multi-core systems in [19], [20], [21]

and applied to a heterogeneous many-core system in [22].

Our work is related to the PREM effort in the sense that

we consider AUTOSAR applications, where the execution of

runnables is divided into memory phases and execution phases.

However, the state-of-the-art works considering PREM are

currently limited to independent periodic/sporadic tasks, while

our work relaxes that assumption and considers runnables that

share data. This addition is highly relevant in the context

of automotive applications, where a single application may

require thousands of shared variables.

There are several existing approaches to mapping applica-

tions on multi-core platforms, some heuristic and others exact.

We will discuss these two categories of solutions in turn,

starting with the former. Faragardi et al. [23] heuristically map

an AUTOSAR application in which event-chains/transactions

are clearly specified with associated deadlines and periods.

Similarly to Monot et al. [24], who use bin-packing to map

applications, they assume that transactions are independent and

therefore group all runnables within a transaction to a given

task. However, the assumption of independent transactions

does not hold for complex applications in the automotive

context due to a high degree of coupling among runnables.

This issue is addressed in [25], which also maps based on

bin-packing, although while respecting precedence constraints

between tasks. A drawback of this approach is that it does not

efficiently deal with communication delays, since they inflate

the Worst-Case Execution Time (WCET) of the runnable by

assuming maximum interference for every access. In contrast,

our contention-free approach separates execution and com-

munication into distinct phases where cores are only blocked

when a runnable is in the execution phase. This enables a more

efficient use of resources. A communication-aware mapping of

dependent tasks to a Kalray-like platform is presented in [13].

This work is related to ours as it models the MPPA-256 and

its associated resources, although the approach is contention-

aware as opposed to contention-free. An algorithm based on

general simulated annealing is proposed for mapping tasks

to cores and data to memory banks. Similarly, Dziurzanski

et al. [26] derive mappings by using a heuristic based on

genetic algorithms. However, in contrast to our work, all the

aforementioned heuristic approaches are not compared to an

optimal formulation, and the quality of the proposed heuristics

is hence not quantified.

While the quality of a heuristic approach is difficult to

establish, exact approaches to complex problems typically

suffer from scalability issues and cannot provide optimal

solutions for large problem instances in reasonable time. This

is apparent in [27], [28], where ILP formulations are proposed

for mapping and scheduling runnables on multi-core and dis-

tributed automotive architectures, respectively. The approaches

are demonstrated for a small automotive applications, although

results clearly show that a basic ILP formulation does not

scale to complex applications with hundreds or thousands

of runnables that are individually mapped and scheduled.

Existing work address this scalability issue by optimizing

their formulations (ILP or otherwise) to refine constraints

and remove symmetry [29], decomposing the problem into

smaller, possibly communicating, sub-problems [30], [31], or

by finding and addressing the minimum reason for constraint

violations [32], [30] and exclude it in future searches. These

types of optimizations help improve the scalability of exact

approaches, but have not been shown to scale to large industry-

sized applications.

Our method is different from existing work in the sense

that it proposes a contention-free execution environment for

a clustered many-core architecture based on a combination

of bank privatization and time-triggered scheduling. Unlike

most previous approaches, our work deals with code and

communication-data placement, data dependencies between

runnables, and it includes costs for fetching data/code from

off-chip memory. Additionally, we do not place any restric-

tion on the execution of runnables on a particular core, but

instead we consider the compute cluster as a pool of avail-

able resources (similar to global scheduling). A fast heuristic

algorithm is proposed to address the mapping and scheduling

problem of individual runnables of complex applications, and

its quality is compared to optimal solutions for smaller use-

cases (due to the scalability issue of optimal techniques).

III. SYSTEM MODEL

This section presents the system model used in this paper.

First, the platform model is introduced in Section III-A,

followed by the software model in Section III-B.

A. Platform Model

We consider a domain controller model very similar to

Kalray MPPA-256 Bostan [5], [33], which is a clustered many-

core platform organized as illustrated in Fig. 1. Cores are

grouped in clusters connected by a Round-Robin (RR) arbi-

trated Network-on-Chip (NoC) in a 2D-torus topology [14].



Fig. 1: Outline of the architecture of the Kalray MPPA-256.

Each cluster contains (n + 1) identical processing elements

(n = 16 in the MPPA-256), of which n are compute cores,

dedicated to general-purpose computations. Every compute

core has a private instruction and data cache. The Resource

Manager (RM) core is identical to the compute cores, but

has a different purpose – it manages processor resources on

behalf of the entire cluster (maps and schedules runnables

on compute cores), and also organizes the communication

between its hosting cluster and other clusters on the chip, as

well as with the main off-chip memory. All cores are fully

timing compositional [34] in the sense that they do not exhibit

timing anomalies. Additionally each cluster also contains a

Debug Support Unit (DSU), a network interface for receiving

data requests from the Data-NoC (D-NoC) and a DMA engine

used for data transmission over the D-NoC.

Regarding the organization of the memory subsystem, each

cluster has a local shared memory comprising n banks, each

with a capacity of Sbank, for a total memory capacity of

n⇥Sbank in each cluster. In the MPPA-256, Sbank = 128 KB

for a total memory capacity of 2 MB per cluster. Although

the cluster address space can be divided among banks in an

interleaved fashion (useful for high-performance and parallel

applications), this work uses the blocked memory mode where

the address space is divided in a sequential manner. This

results in more predictable system behavior, which is a desired

characteristic in the safety-critical domain. The mapping of

data and code to memory banks can then be done by the use

of linker scripts.

The arbitration of memory requests to a cluster’s memory

bank is performed in four levels (stages), as depicted in Fig. 2.

The first three levels use the RR arbitration scheme. The first

level arbitrates between memory requests from the data cache

and instruction cache of each compute core. At the second

level, the requests issued from each compute core compete

against requests from other compute cores. At the third level,

requests from all compute cores compete against requests from

the RM, the DSU, and the DMA. Finally, at the fourth and

last level, the scheduled requests compete with those coming

from the D-NoC (Rx) under static-priority arbitration, where

requests from the NoC always have higher priority. Note

that in order to minimize contention, all arbitration levels are

replicated for each memory bank.

The large number of memory clients sharing each memory

bank give rise to a large amount of possible contention for

each memory access. In the worst case, all memory clients

try to access the same memory bank at the same time. In

this case, a cache of one of the cores has to compete with

31 other caches in the first two levels of RR arbitration, each

of which could be preceded by an access by the RM, DSU,

or DMA in the third arbiter. Even if the interference from

the NoC receiver in the static-priority arbiter is ignored, this

results in a worst-case latency of 16 · 2 · 2− 1 = 63 memory

accesses. Assuming accesses of a single word, which takes

10 cycles to serve (9 cycles latency with 8 bytes fetched on

each consecutive cycle, as reported in [35]), this corresponds

to 630 clock cycles, or 1575 ns at 400 MHz. In contrast, an

access without contention would finish in just 10 cycles, or

25 ns. Based on this interference analysis, we infer that the

penalty for a cache miss may be very high unless the worst-

case situation is somehow prevented. This work proposes to

address this problem by creating a contention-free execution

environment based on a combination of bank privatization and

time-triggered scheduling, as further detailed in Section IV.

B. Software Model

We consider an AUTOSAR application, which at the lowest

level consists of a number of runnables. A runnable is a

schedulable entity that can be thought of as a C-function. We

characterize a runnable ri by the tuple {Ti, Ci, Si,Ri,Wi},

where Ti is the period of the runnable, Ci is its worst-case

execution time, and Si is its memory footprint. Each runnable

is implicitly assigned a deadline equal to its period.

We adopt the read-execute-write semantics of execution,

which is a standard execution model for AUTOSAR appli-

cations [36], [37]. Under these semantics, the execution of a

runnable is logically divided into three distinct and consecutive



Fig. 2: Memory request arbitration for the memory banks on a cluster of the
MPPA-256.

phases, namely the read, execute, and write phases. During

the read phase of a runnable, the code and all data needed

for the execution of the runnable are copied into the memory

space allocated to it. In the execution phase, the runnable is

executed in a non-blocking manner. Finally, in the write phase,

all output variables are written. We denote by Cread
i , Cexec

i ,

and Cwrite
i the WCET of each phase of runnable ri, with

Ci = Cread
i + Cexec

i + Cwrite
i .

Runnables communicate through variables (called labels in

the automotive domain) stored in a shared memory. Each

runnable description therefore includes a set of input labels Ri

and a set of output labels Wi. The access type of a runnable

to a label can be read, write, or both, and a label can be

accessed from any number of runnables, without precedence

constraints. A label itself is denoted as Lk = {Mk}, where

Mk is its size in bytes.

IV. CONTENTION-FREE EXECUTION FRAMEWORK

The previous section showed that the maximum contention

for shared memory banks is prohibitively large unless accesses

to the memory banks are constrained. This section explains

how we address this problem by proposing a contention-free

execution framework for automotive applications in clustered

many-core systems. The two key ingredients to achieve this

are: 1) eliminate interference from other cores using memory

bank privatization, while enabling communication between

cores using a shared communication bank, 2) read-execute-

write semantics for runnables to get coarse-grained memory

phases that can be scheduled on the label bank and off-chip

memory in a mutually exclusive manner by a time-triggered

scheduler. These mechanisms are further detailed below.

A. Memory Bank Privatization

The idea behind bank privatization is to avoid interference

between runnables executing on different cores by preventing

them from accessing the same memory bank at the same

time. Privatization is achieved by statically assigning each

core to one bank with exclusive access, i.e. the bank assigned

to each core cannot be accessed by any other core. This is

a viable approach since the considered hardware platform

provides as many memory banks as compute cores. Such

a bank privatization technique totally eliminates interference

from other cores and interfaces at the first, second, and third

levels of arbitration, as those arbiters are replicated for each

individual bank (see Fig. 2).

To enable communication between cores, a memory bank

among the set of available banks is arbitrarily selected and

dedicated to the storage of all the labels (hereafter this bank

is casually referred to as the label bank). Unlike the private

banks, all cores can access the label bank and use it as shared

memory for communication. The labels are statically loaded

into the label bank when the system boots and are never

evicted at run-time. To increase predictability, we sacrifice

performance and do not perform any computation on the

compute core associated with this label bank, thus this core

remains unused1.

Communication in our framework follows the implicit com-

munication model of AUTOSAR, where runnables always

operate on local copies of the labels [37], [36]. This means

that if a runnable ri has read access to a specific label Lk

(i.e. Lk 2 Ri) the label is copied from the label bank into the

private bank of its assigned core. During execution, solely the

local copy is accessed by the runnable. Similarly, if a runnable

ri has write access to a label Lk (i.e. Lk 2 Wi) the runnable

writes to a variable located in the local memory bank. Once

the execution of a job ends, these values are committed to

the label bank. Note that, as per this implicit communication

model of AUTOSAR, if a runnable reads and writes the same

variable, two local copies are used to store the input and output

value respectively. This is done such that the runnable always

operates on the same input value during the execution of one

job.

To avoid interference on the label bank, it must be guaran-

teed that there cannot be two runnables that retrieve/commit a

value simultaneously from/to the label-bank. This is ensured

in our model by explicitly defining different runnable phases

and by scheduling these phases suitably, as explained in the

following sections.

B. Read-Execute-Write Semantic

As previously mentioned, our approach uses read-execute-

write semantics of execution [36], [37] to benefit from coarse-

grained memory phases that can be orchestrated in software.

During the read phase of a runnable, all data needed for its

execution is written into the private memory bank of the core

to which the runnable has been assigned. This includes the

code and input data of the runnable (that may have to be

fetched from the off-chip memory), but also the labels used for

the communication with other runnables. Input labels needed

by the runnable during its execution are copied from the

common label bank to the private bank of the core. Similarly,

buffers for output labels are configured with their respective

initialization values. In the write phase, the modified non-

shared data is written back to the off-chip memory and the

1Note that if the labels do not fit within one bank, more banks could be
selected and dedicated to the storage of the labels, which also means that
more compute cores would be unused.



output labels in the label bank are updated with their new

values from the private bank.

The division into these three execution phases has three

main advantages:

1) Since no information (code and data) of a runnable is kept

in the cores’ private banks after its execution, the framework

yields independence between the runnables and the cores.

Runnables can therefore be assigned to any core and sub-

sequent executions of a same runnable can be assigned to

different cores. This results in extra freedom during schedul-

ing, thereby increasing the chances of satisfying the timing

requirements of a given set of runnables.

2) By generating a time-triggered schedule for the three

phases of every runnable without overlap (as discussed in

the next section), it is possible to provide exclusive access

to off-chip memories and the label bank, thereby eliminating

all memory contention.

3) It ensures that the required data is always available to the

runnable before it starts executing and it will not stall once it

has started. This increases the predictability of the system by

reducing uncertainties and thus pessimism in the analysis, as

well as unpredictable overheads at runtime.

C. Time-Triggered Scheduler

Our next directive is to compute a schedule of the runnables

on the cores and enforce that schedule at run-time. Here,

”schedule” refers to the set of time-instants at which each

runnable job starts to execute. A time-triggered scheduler

enforces predictable system behavior and does not require

complex scheduling decisions at run-time. It also eliminates

the need for synchronization constructs, such as mutexes

and spin-locks. The time-triggered schedule proposed here is

defined with the objective of avoiding resource access conflicts

(and hence interference), both on the cores and the memory.

Each of the three phases of the runnables (read, execute,

and write) is a schedulable entity that starts at a specifically

computed time-instant and executes non-preemptively. The

schedule is constructed according to the following 3 rules:

(1) the required data and code sections of every runnable

are loaded into the private memory bank of its assigned core

before it starts its execution in order to enable non-blocking

execution, (2) read and write phases of any two runnables

do not overlap in time to avoid interference in label banks

and off-chip memory, and (3) the schedule is guaranteed to

preserve the timeliness of the execution. The actual algorithms

for deriving such a schedule are described in the next section.

V. GENERATION OF THE TIME-TRIGGERED SCHEDULE

Generating a time-triggered schedule is an NP-hard prob-

lem, as it involves mapping jobs to cores and deciding the

execution order, while at the same time satisfying dependen-

cies. This section proposes two different approaches towards

solving this problem. The first approach adopts Integer Linear

Programming (ILP) while the second approach proposes a

memory-centric scheduling heuristic.

A. The ILP Approach: Finding an Optimal Solution

In this approach, we construct a time-triggered schedule by

formulating the problem as an objective function, subject to

linear constraints. Then, we feed that formulation into an ILP

solver. This approach has the benefit of finding the optimal

solution, i.e. a schedule is found, as long as a solution exists,

but it suffers from the well-known limitation of having its

computation time growing drastically with the problem size

under consideration.

The objective function: Since our goal is to find any

schedule that meets all timing requirements (i.e. fulfill all the

constraints), we do not need to optimize any criteria and we

use a constant objective function, e.g. “maximize 1”.

The variables: The objects to be scheduled are the (potentially

many) executions of every runnable within a given time

window of length H . Given that runnables execute periodically

in our model, we define H as the hyper-period of all runnables,

i.e. H
def
= LCM(Ti), 8i. We denote by J the set of all

runnable executions in H and by ri,j 2 J the jth execution

of runnable ri in the time interval H (also called its jth job).

For each job ri,j , we define two constants reli,j and deadi,j
which denote the time-instants of its release and deadline,

respectively. The variables starti,j and endi,j are introduced

to denote the time when ri,j starts and ends its execution

(including the read and write phase). Further, we introduce

the decision variables mappedi,j,k to indicate whether or not

the job ri,j is assigned to core k, i.e.

mappedi,j,k =

(

1, if ri,j is mapped to core k

0, otherwise

The constraints: Some constraints that we use in our formu-

lation require two logical operators, logical and – (^), and

logical or – (_). These operators are not directly applicable

to ILPs, and therefore should be linearized beforehand (Equa-

tions (1)−(2) demonstrate how that can be done for two binary

variables a and b).

a ^ b = 1 ) a+ b ≥ 2 (1)

a _ b = 1 ) a+ b ≥ 1 (2)

In the remainder of this work, for clarity purposes, we use

logical operators to express constraints. Note that some pro-

grams for implementing and solving ILPs (e.g. [38]) support

logical operators and automatically perform linearizations.

In our implementation, there are two types of constraints.

1) Job-to-core assignment constraints: At run-time, every

job of a runnable must be executed on exactly one core,

but the execution model does not require all the jobs of the

same runnable to be assigned to the same core, i.e. runnable

migration is allowed while job-level migration is forbidden.

This is enforced by adding the following constraint to the

model:

8ri,j 2 J :
n
X

k=1

mappedi,j,k = 1



Every job must execute entirely within its execution window

delimited by the time-instants of its release and deadline:

8ri,j 2 J : starti,j ≥ reli,j

8ri,j 2 J : endi,j  deadi,j

Additionally, every job must occupy the core for at least

its minimum execution time. There might be benefits by not

minimizing endi,j . Delaying endi,j will implicitly postpone

the write phase of the job, which can improve schedulability

(e.g. in case another job rk,l executing on an other core needs

to urgently schedule its write phase in order to reach its

deadline. Delaying the write phase of job ri,j after the write

phase of ri,k will thus allow for rk,l to finish in time.).

8ri,j 2 J : endi,j − starti,j ≥ Ci

Moreover, the execution of any two jobs assigned to the

same core cannot overlap: 8ri,j , rx,y 2 J with ri,j 6= rx,y ,

8k 2 [1, n]:

mappedi,j,k +mappedx,y,k  1 _ overlapx,yi,j = 0

with

overlapx,yi,j = startx,y  starti,j < endx,y

_ startx,y < endi,j  endx,y

_ (starti,j < startx,y ^ endi,j > endx,y)

2) Memory constraints: The following constraints relate to

the memory and data dependencies. First, we introduce a

constraint to prevent any overlap between memory read and

write phases, ensuring that the shared memory banks or off-

chip memory are never accessed simultaneously: 8ri,j , rx,y 2
J with ri,j 6= rx,y , 8k 2 [1, n]: R-overlapx,yi,j = 0 ^

W-overlapx,yi,j = 0, with R-overlapx,yi,j

def
=

startx,y  starti,j < startx,y +Cread
x

_ startx,y < starti,j +Cread
i  startx,y +Cread

x

_ (starti,j < startx,y ^ starti,j +Cread
i > startx,y +Cread

x )

and W-overlapx,yi,j

def
=

endx,y −Cwrite
x  endi,j −Cwrite

i < endx,y

_ endx,y −Cwrite
x < endi,j  endx,y

_ (endi,j −Cwrite
i < endx,y −Cwrite

x ^ endi,j > endx,y)

B. Memory-Centric Scheduling Heuristic (MCH)

In this approach, we construct an offline time-triggered

schedule using a memory-centric scheduling heuristic. The

central idea behind this approach is that the crucial resources

to be scheduled within the cluster are not the cores (which

are plentifully available) but the single NoC channel which

transfers data between the cluster and the external off-chip

memory and the common label banks on the cluster which

must be accessed exclusively to avoid contention. MCH there-

fore aims to create a time triggered schedule of (exclusive

contention free) accesses to the NoC and the label banks.

1) Algorithm Overview: The input to Algorithm 1 is a

set of runnable instances (jobs) that must be scheduled on

the compute cluster during one hyperperiod. Each job is

considered to be a scheduling entity and the algorithm aims

at assigning jobs to the available cores, while scheduling their

memory access phases on the off-chip memory via the NoC,

and the local memory banks. The algorithm follows a global

scheduling approach, where different jobs of a given runnable

may be assigned to different cores. In order to decouple the

computation from memory accesses, the algorithm splits each

job into three logical (sub-) jobs, a read job, an execute job and

a write job. Note that all these sub-jobs are always assigned

to the same core. The assignment of the three phases of the

job follows the read-execute-write semantic. A specific core

is selected from which the read job (code and data fetch) is

initiated, which implicitly decides where the corresponding

execute and write jobs are carried out. As a result of the bank

privatization described earlier, it follows that the code/label

section of the job is allocated to the private bank of that core.

In principle, there is no explicit assignment of the execute

and write portions of the job. As we describe shortly, each of

these sub-jobs are also assigned a deadline, release-time and

execution time, making it a well-defined schedulable entity.

2) Algorithm Setup: A current time variable “ctime”, ini-

tialized to zero at the outset, is used to track the progress of

the algorithm from time zero to the computed hyperperiod.

Additionally, two queues are used to manage the unscheduled

jobs. The queue Qjob contains all jobs that are not yet ready,

meaning that their release time is after (greater than) the time

indicated by ctime. A second queue, Qready contains all jobs

that are ready to be scheduled at the current algorithm time.

With the progress of time, jobs subsequently move from Qjob

to Qready and the algorithm assigns jobs from Qready to the

cores. A set S that is initially empty is used to hold the final

memory access schedule. Hence, S holds the start times of all

read and write phases. This implicitly defines the start times

of the execution phases or a window in which it can be started

unless they are tightly packed, since no other job can utilize

the core while the associated private memory bank is accessed

by either read or write phase. Thus S does not include the start

time of the execution phase of a job.

3) Algorithm Description: After initialization, the algo-

rithm progresses by populating the queue Qjob of jobs to be

scheduled within the hyperperiod (see line 5). The next step

is to create and define read sub-jobs, which is realized by the

function generateReadJobs(J ). This function generates a

job jreadi,k for every job ri,k in J , corresponding to the read

phase of ri,k. As illustrated in Fig. 3, the release time reli,k
of the read job jreadi,k is set to the release time of its associated

job ri,k and its deadline deadi,k is set to the release time

of the next job of the same runnable, after deducting the

execution time of its execute and write phases, i.e. deadi,k =
reli,k+1 −(Cexec

i +Cwrite
i ). The WCET of jreadi,k is simply set

to the WCET Cread
i of the read job of ri,k. Every such read

job jreadi,k is enqueued in Qjob. At this point, the queue Qready

is initially empty since there are no ready jobs. The following
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Fig. 3: Relation between the runnable jobs and the generated jobs.

explains the algorithm in five steps (a-e).

a) Empty ready queue: At line 8, when there are no jobs

running (it is for instance the case at the first iteration in the

while loop), the algorithm advances the current time ctime,

up to the point when one of the jobs in Qjob can be moved

to Qready , which happens when ctime is equal to the release

time of that job (line 9).

b) Single read job in the ready queue: If the job in the

ready queue is a read-job (line 11), the algorithm assigns it

to an available core (if any), implying that the execute phase

of that job will run on that core. Additionally, the memory

channel is assigned to complete the read job (line 14), which

is thus added to S. The algorithm time ctime is advanced to

account for the completion of the read job.

c) Multiple jobs in the ready queue: If there are multiple

jobs in the ready queue, the selection of the next job to be

executed (see line 10) is carried out by the rules outlined in

Algorithm 2 and explained below. The ready queue is sorted

in a non-decreasing order based on the deadline of the jobs.

The algorithm then selects the first read job and the first write

job in the sorted queue. A selection between the candidate

read- and write-jobs is carried out by applying the following

three rules:

1) If all the cores are used (line 4-5), schedule any write job

(if any).

2) If there is an available core and a read and a write job

have the same deadline, prioritize the write job (line 8).

3) If there is an available core, prioritize the job with the

smaller deadline (line 10-13).

The main intuition behind prioritizing a write job over a

read job is that once completed, a write job releases the

occupied core, whereas executing an additional read job locks

up another core. Not prioritizing a write-job may lead to

indefinite blocking in the case where all cores are currently

in job’s execution phase or before a job’s write phase (hence

busy or waiting for the write job to be scheduled) and a read

job has the smallest deadline in Qready . If write jobs are not

prioritized, the system blocks indefinitely waiting for a core

to become free.

d) Job completion: As the current time ctime advances,

the algorithm checks if it aligns with the completion time of

any read or write job that was scheduled to run (line 21). If the

completing job is a read job (line 23), the algorithm creates a

corresponding write job jwrite (line 24). The release time of

that write job is set to the finishing time of the read job, plus

Algorithm 1: MCH-GenerateMemSchedule(J )

input : J , the set of jobs
1 begin
2 S  ;; // empty schedule

3 ctime 0; // current time

4 HP getHyperperiod(J );
5 Qjob  generateReadJobs(J );
6 Qready  ;; // empty queue of ready jobs

7 while (ctime  HP) do
8 if (no read/write job is running at time ctime) then
9 Qready.add({ji,k 2 Qjob | reli,k = ctime}) ;

10 jcurr  getNextJob(Qready);
11 if (jcurr is a read job) then
12 if (there is a core available) then
13 assign jcurr to an available core;
14 S.add(jcurr);
15 ctime ctime+Ccurr;

16 else ctime ctime+1;

17 else if (jcurr is a write job) then
18 S.add(jcurr);
19 ctime ctime+Ccurr;

20 else ctime ctime+1;

21 if (a read or write job is running and

is finishing at time ctime) then
22 jrun  the running job;
23 if (jrun is a read job) then
24 jwrite  generateWriteJob(jrun);
25 Qjob.add(jwrite);

26 if (jrun is a write job) then
27 if (jrun finished after its deadline) then
28 return UNSCHEDULABLE;

29 mark its assigned core as free;

30 if (Qready 6= ; _Qjob 6= ; _ Active job 6= ;) then
31 return UNSCHEDULABLE;

32 return S;

the time for the corresponding execution phase. The deadline

of jwrite is set to the deadline of the parent runnable job.

Job jwrite is then enqueued in Qjob (line 25). There is no

explicit mapping step needed for a write job, since a core

is already assigned to its (parent) job in an earlier phase.

Likewise, the start time of the execution phase is implicitly

set to the finishing time of its corresponding read job.

If the completed job is a write job (line 26), its assigned

core needs to be freed (line 29), because this phase marks

the end of the execution of the entire job. At this point, the

heuristic also checks if the deadline of the write job was

missed, in which case the algorithm terminates, returning the

status “unschedulable” (line 28).

e) End of hyperperiod: Once ctime exceeds a hyperpe-

riod, the algorithm checks if there is any job in Qready or

Qjob as well as if there are currently executing jobs on one

of the cores or on the memory (line 30). The presence of

any such job implies that the algorithm was unsuccessful in

scheduling it within the hyperperiod and it terminates with the

result “unschedulable”. In the case of successfully scheduling



Algorithm 2: MCH-getNextJob(Qready)

input : Qready, queue with ready jobs
1 begin

// get index of first read and write job

without dependencies to active jobs

2 iwrite  getJobIndex(Qready, “write”);
3 iread  getJobIndex(Qready, “read”);
4 if (there is no core available) then
5 return remove(Qready, iwrite)

// deadline of selected read & write job

6 Dread  getDeadline(Qready, iread);
7 Dwrite  getDeadline(Qready, iwrite);

// getDeadline() returns −1 if no job found

8 if (Dwrite = Dread ^Dwrite 6= −1) then
9 return remove(Qready, iwrite)

10 if (Dread < Dwrite ^Dread 6= −1) then
11 return remove(Qready, iread);

12 if (Dread > Dwrite ^Dwrite 6= −1) then
13 return remove(Qready, iwrite);

14 return ;

all jobs, the algorithm returns the generated schedule S.

VI. EXPERIMENTS

In this section we evaluate the proposed execution frame-

work as well as the heuristic to generate the time-triggered

schedule. We describe the experimental setup and compare

our proposed memory centric heuristic (MCH) against a core-

centric heuristic (CCH) (described later in this section) and the

ILP formulation. Additionally, the applicability to industrially

sized applications is compared for the two heuristics and the

ILP formulation using an automotive case study.

A. Experimental Setup

1) Instance Generation: In the first set of experiments, we

generate synthetic data sets with parameters that conform to

automotive applications [37]. The runnable utilizations were

generated by UUniFast [39] and periods were selected such

that the complete runnable set comprises 1 x 100 ms (1

runnable of period 100 ms), 5 x 1000 ms, 1 x 50 ms, 3 x

200 ms, and 1 x 20 ms. Thus, each runnable set comprises

100 jobs over the entire hyperperiod of 1000 ms.

2) Baseline Core-Centric Heuristic (CCH): Methods de-

scribed in related work either assume different platforms or

application models, which renders them unsuitable for any

meaningful comparison. Hence, we propose a baseline heuris-

tic for comparison. The underlying premise of this baseline

core-centric heuristic (CCH) is that the main resources to

be scheduled are the available cores in the compute cluster;

therefore this heuristic is built around conventional scheduling

parameters i.e., deadlines of jobs. A global runnable job queue

is maintained by the heuristic and jobs are sorted in a non-

decreasing order by their relative deadlines. In alignment

with our model, CCH also conforms to the read-execute-write

semantics. It schedules the memory access by maintaining a

list of currently available free memory access intervals.

The aim of this heuristic is to derive an offline schedule table

that spans the Hyper-Period (HP) of all the jobs. To do so, a

“current time” (ctimei) variable traces the run of the algorithm

from 0 up to HP on each available core i. The heuristic

proceeds by assigning the job at the head of the job queue to

a core when the job is ready to execute. The core is selected

based on the ctimei variable, where it is assigned to the core

with the smallest ctimei within the cluster, thus following a

first-fit approach. After the core is assigned to a job, in order to

prefetch the required data into the local memory banks (read

phase), the heuristic finds the earliest free memory interval

(beginning at time, say t1, where t1 is larger than or equal than

ctimei and the release time of the job), which is large enough

to complete the read job. After the read phase is completed, the

execute phase proceeds and accordingly, the variable ctimei
is set to ctimei = t1+Cread+Cexec. The heuristic then finds

the first free memory interval, say t2, after the updated ctimei
of the core, which is large enough to complete the write phase

and ctimei is then advanced to account for the completion of

the write job (ctimei = t2 + Cwrite).

If the time to complete the write part of the job exceeds its

deadline, the heuristic flags a failure implying that the job-set

is “unschedulable” and terminates. If all the jobs in the job-

queue have been assigned to a core when (or before) all ctimei
are equal to the hyper-period, the heuristic has successfully

found a schedule for each of the jobs. However, if there are

unscheduled jobs in the job-queue after the HP is exceeded,

it flags a failure (“unschedulable”) and eventually terminates.

During the evaluations several sorting policies were exam-

ined (e.g. sorting of the job queue by release time or slack

time). The deadline-based heuristic presented here outper-

formed all other tested candidate policies, hence we only use

this policy for the further comparisons.

B. Synthetic Experiments

In order to compare the proposed heuristics, we performed

a sensitivity analysis by varying (i) the cluster size and (ii)

application characteristics.

1) Varying the Cluster Size: The objective of this exper-

iment is to understand the maximum utilization achievable

by the proposed heuristic on a given cluster size. In this

experiment, we examined runnable sets with a (5%:90%:5%)

read-execute-write ratio. For a given cluster size, the sim-

ulations were initiated by considering a runnable set with

low utilization. The execution times of the jobs were then

incrementally inflated until the last schedulable instance was

found. This utilization was recorded. The simulations were

repeated by increasing the number of cores available on the

cluster in order to show the implications of different cluster

sizes. The cluster size was varied in the range of 1 to 14 cores.

For each data point in the graph, 500 random runnable sets

were evaluated.

The results are depicted in Fig. 4. It can be seen that

the Core-Centric Heuristic (CCH) has difficulties utilizing

the hardware platform, even if a large number of cores are

available. This is an outcome of the core-centric scheduling.
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Fig. 4: Average schedulability of the Memory-Centric Heuristic (MCH) and
the Core-Centric Heuristic (CCH) for task sets with with a (5%:90%:5%)
read-execute-write ratio of each task, when the cluster size is changed.

Jobs are assigned to cores and they access the next free

memory slot for their read and write access, making the

memory access uncoordinated between the different cores,

resulting in large stall times. The Memory-Centric Heuristic

(MCH) outperforms CCH for all cluster sizes. The benefits

of scheduling the scarce resource, i.e. the memory, become

clearly visible with this approach. It can also be seen that

the proposed heuristic reaches saturation once the cluster size

reaches 7 cores. At this point the memory schedule is filled

densely, which hinders the inflation of the memory phases

further. Consequently, inflating the task set further leads to an

unschedulable systems.

2) Changing the Job Characteristics: Given the read-

execute-write semantics of the underlying application, the

objective of the experiment was to observe how the heuristic

utilizes the available platform when the execution-to-memory

access ratios are varied in the runnable set. For these experi-

ments, we generate random runnable sets as described earlier.

The cluster size is fixed to 14 cores and 2 label banks. The

ratio of the memory access phase in comparison to the jobs

execution phase is varied. Note that a memory access ratio of

5% means that the read and write phase each comprise 5% of

the generated execution time of UUniFast for the respective

runnable.

To observe the impact, the memory access ratio is varied

between 0.5% and 25%. The results are presented in Fig. 5. It

can be seen that the maximum average schedulable utilization

drops for both heuristics as the read and write phases of the

jobs increase. The main reason behind this drop in utilization

is the growing granularity of memory accesses that need to

be scheduled, i.e. the access to memory itself grows and the

memory fragmentation increases, which results in inefficient

use of a scarce shared resource.

A value of 25% hence means that half the execution time

of the job is spent on accessing the shared memory, which is

a single resource shared among all cores. This means, even

an optimal algorithm that utilizes the memory 100% yields

only a core utilization of 200%. This is because no other
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Fig. 5: Average last schedulable utilization of the Memory-Centric Heuristic
(MCH) and the Core-Centric Heuristic (CCH) with different percentages of
memory access relative to the execution time.

runnable can utilize the core during the memory access of the

read and write portion. Further, the results show clear benefits

of MCH compared to CCH when the memory access phase

becomes small. The way the memory accesses are scheduled

for CCH leads to fragmentation, which in turn renders the

runnable sets unschedulable, since the heuristic cannot find a

continuous free slot of the memory access size in the memory

schedule. MCH, on the other hand, primarily schedule the

memory, which creates an organized access to memory and

in turn allows for higher utilization of the system.

3) Quality of the Heuristic Solution: The memory-centric

algorithm presented in Section V is a heuristic and therefore

may not yield optimal solutions. In order to compare the

quality of this heuristic against the optimal case, we generate

small runnable sets of the size solvable by the ILP formulation

in reasonable time.

We use the same method as described in Section VI-A1

to generate our sample runnable sets. The runnable sets

included two runnables of period 100 ms, three runnables

of period 20 ms, three runnables of period 10 ms, and one

runnable of period 50 ms. This distribution of periods is

representative for the automotive domain and in line with [37].

The memory access times are again distributed between read,

execute, and write phase in the ratio 5%:90%:5%. The CPLEX

optimizer [38] version 12.6.2 was used to solve the ILP

formulations, and all experiments were performed on a sys-

tem containing an Intel i5 CPU (2 cores at 2.7 GHz), and

8GB of RAM. The results present the average values out of

100 randomly generated runnable sets. The utilization of a

generated runnable set is then increased and we record the

last schedulable utilization value for each algorithm.

The results are presented in Table 1. The first column

presents our proposed memory-centric heuristic, the base-

line heuristic, and the ILP solution. Column 2 presents the

average time for each solution to find a schedule for a

schedulable instance. If no solution was found the time was

excluded from the average solving time. The third column

presents the average Last Schedulable Utilization (LSU) of



TABLE I: Comparison of solving time, last schedulable utilization, and
improvement of MCH for the different methods when 14 cores are available.

Algorithm Average Solving time LSU MCH vs. X

CCH 35 ms 276% 67%

MCH 130 ms 463% 0%

ILP 21087ms 486% -0.5%

the two heuristics and the ILP solution. Finally, the last

column presents the improvements of solutions compared to

our proposed heuristic. The improvement is calculated as

(MCH vs. X)
def
== LSUMCH−LSUX

LSUX
.

For 4 out of the 100 runnable sets the memory-centric

heuristic finds a larger LSU than the ILP. This is the case

because the ILP was aborted if no solution was found within

2 hours. For 24 out of the 100 runnable sets both memory-

centric heuristic and ILP, return with the same LSU.

From the data, we can see that there is a tradeoff between the

solution efficiency and the computation time of the algorithms.

The increased time to arrive at a solution for MCH compared

to CCH can be explained by the additional need to manage

the different queues used in the heuristic. Considering the

improvements of MCH over the baseline heuristic, it is seen

that MCH clearly outperforms the baseline heuristic. However,

the heuristic performs marginally worse (0.5%) than the opti-

mal solution found by the ILP. This is a reasonable cost for

scaling to industrially-sized applications. We will demonstrate

this capability in a case study in the following section.

C. Case Study

The application in this case study is a software for Engine

Management Systems (EMS), which is one of the most

complex ECU’s in a car. A modern EMS involves 40-50

sensors and multiple actuators [40]. The associated software

spans around 2000 modules (atomic SW components), more

than 5000 source files and half a million lines of C-code.

Depending on different variants, nearly 2000-4000 runnables

communicate over more than 20000-60000 data labels. The

memory footprint is approximately 1.5 MB to 2.5 MB of

program flash, and 750 KB to 1.5 MB of RAM, together with

around 250 KB of calibration data.

The parameters of the hardware platform are chosen based

on the Kalray MPPA-256 Bostan as presented in [35], [33].

Each local memory bank has a capacity of 128 KB. Without

contention, access to local memory banks has a 9 cycle latency

with 8 bytes fetched on each consecutive cycle. Access to off-

chip memory is more expensive having a 55 cycle latency after

which 4 bytes of data are fetched on each consecutive cycle.

The memory and compute cores are clocked at 400 MHz.

All numbers are in line with measurements performed on the

Kalray hardware platform.

The EMS application used in this case study contains

2000 runnables and 50000 shared labels. The access to labels

is divided into read, write, and read-write access with a

partitioning of 40%, 10%, and 50% respectively [37].

The proposed memory-centric heuristic (MCH) successfully

finds a time-triggered schedule for this application in 52

minutes. The generated schedule utilizes all 14 cores with

a per core utilization between 23.3% and 26.1%, while the

memory has a utilization of 26.4%.

The core-centric heuristic, on the other hand, fails to find a

solution. By changing the system frequency to 3200 MHz, this

heuristic manages to find a schedulable solution. Similarly, a

schedulable solution is found if the number of cores available

for execution within the cluster is increased to 93. While it

is possible to change the platform parameters such that the

core-centric heuristic finds a solution, these changes are severe

(scaling the system frequency by a factor of 8 or the number

of cores by a factor of 6.64), which in turn leads to a heavily

under utilized system.

The ILP formulation does not terminate in reasonable time.

Even for a reduced job set of 1000 jobs (out of the 171631

jobs which need to be scheduled within one hyperperiod) no

solution is found within the first 64 hours.

These observations also bring forth the strengths of the

proposed memory-centric heuristic and demonstrate its appli-

cability to real-world problem scenarios.

VII. CONCLUSIONS

This paper presents a contention-free execution framework

on a clustered many-core platform, tailored for automotive

applications. One of the main issues for real-time applications

on such platforms is the large number of possible sources

for interference on the path to shared memory. The execu-

tion framework presented in this paper privatizes memory

resources to allow contention-free access during the execution

of runnables. Access to shared memory resources is done at

the beginning and end of the job. Orchestrating these memory

accesses hence becomes the main challenge, considering the

large number of shared labels commonly found in automotive

applications. We present an ILP formulation to generate a

time-triggered schedule, taking the runnable-to-core mapping

as well as the access to shared memory into account. A heuris-

tic solution, where the time-triggered schedule is constructed

based on the memory accesses, is furthermore presented. We

experimentally evaluate the execution framework as well as the

proposed heuristic. The results show that the heuristic provides

near-optimal solutions (within 0.5%), while requiring only a

fraction of the time required by the ILP. Further experiments

confirm that the bottleneck in such architectures is the memory

and not the compute resources. Finally, we demonstrate that

the approach is applicable to industrial-sized problems – and

computes a solution within acceptable time for an Engine

Management System with 2000 runnables and 50000 labels

on the cluster.
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