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Abstract—“Many-core” systems based on the Network-on-
Chip (NoC) architecture have brought into the fore-front various
opportunities and challenges for the deployment of real-time
systems. Such real-time systems need timing guarantees to be
fulfilled. Therefore, calculating upper-bounds on the end-to-end
communication delay between system components is of primary
interest. In this work, we identify the limitations of an existing
approach proposed by [1] and propose different techniques to
overcome these limitations.

I. INTRODUCTION

The current trend in the embedded industry is towards a
strong push for integrating previously isolated functionalities
into a single-chip. Multicores are becoming ubiquitous, not
only for general purpose systems, but also in the embedded
computing area. This trend reflects the steadily increasing
demands on the processing power of contemporary embedded
applications. Also, advancements in the semiconductor arena
have paved the way for the introduction of the “many-core” (or
massive multicore) era and we are witnessing the emergence
of chips with up to 1024 cores. The Tile64 from Tilera [2],
Epiphany from Adapteva and the 48-core Single-Chip-Cloud
computer from Intel are a few examples of such many-core
systems. The immense computing capabilities offered by these
chips, coupled with a power efficient design, make them
potential candidates for use in real-time embedded systems.
If real-time guarantees can be obtained for tasks executing on
these cores, then many safety-critical real-time applications
could benefit from such an architecture.
Besides offering enhanced computational capabilities com-

pared to the traditional multicore platforms, the internal ar-
chitecture of many-core platforms is fundamentally differ-
ent: of particular interest is the Network-on-Chip [3] (NoC)
communication framework which serves as a communication
channel amongst the cores and between the cores and the main
memory. System designers realized that the traditional shared
bus/ring (see left plot of Figure 1) would not scale beyond a
limited number of cores, because it would result in an non-
negligible increase of the access time to main memory and
other cores due to contention on the bus/ring. Therefore, the
presence of many cores necessitated a shift in the earlier design
paradigm of using a shared bus/ring as an interconnection
network. Each core of a massive multicores architecture is
typically a part of a more general device called “tile”. Each
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Fig. 1. Traditional vs. massive multicores architecture

tile is composed of a core, a private cache and a network
switch connected to its neighbors (see right plot of Figure 1).
It is important to find an upper bound on the delay intro-

duced by the interconnection network in a system on which
real-time applications must be deployed. In a scenario involv-
ing data transfers (amongst cores or from cores to memory),
the execution time of a task running on a given core is
increased because the core stalls waiting for data to be fetched
over the underlying network. This waiting time can lead to a
non-negligible increase in the execution time when the traffic
on the network increases due to the congestion. Specifically
when the analyzed task is required to meet some strict timing
guarantees, this extra delay must be upper-bounded.
There has been extensive research aimed at providing guar-

anteed timing requirements for NoCs. Some of these use the
support of special hardware mechanisms [4], using priority
based mechanisms [5], time-triggered systems [6] and time
division multiple access [7]. Among the most relevant studies,
one can also cite [8] and [9]. The list of contributions is
extensive and an entire survey is beyond the scope of this short
paper. Here, we aim to identify the limitations in the work done
by Ferrandiz et. al [1] and suggest improvements to provide
tighter upper-bounds on the end-to-end communication delay
between the system components (cores and memory). First,
we identify the sources of pessimism in their approach and
then, we propose techniques to tighten the upper bounds.

II. SYSTEM MODEL

We assume a platform model as illustrated in Figure 1
(right-hand plot). Each tile is composed of one core and one



switch. The tiles are arranged as a m × m grid and are
connected to only one memory controller. The entire grid
is modeled by a directed graph G(N ,L), where (i) N =
{n1,n2, . . . ,n2m2+1} is the set of 2m2 + 1 nodes composed
of m2 switches, m2 cores, and the memory controller, and
(ii) L is the set of edges, i.e., the channels that interconnect
the switches to the cores, to other switches or to the memory
controller. A bi-directional channel is modeled by using two
edges in opposite directions. For a given channel l ∈ L,
we denote by src(l) and dest(l) the origin and destination
node of the directed channel, respectively. Hereafter, we will
sometimes use the term link to refer to a channel. All the
links have the same capacity denoted by C. We assume the
presence of bidirectional links (full-duplex transmission) with
the interpretation that request and response packets can be
simultaneously sent across a tile and will not contend amongst
each other for the link. Packets are switched between routers
using the wormhole switching technique [10], where the
arbitration in the switch is done using round-robin arbitration
protocol as in Tilera architecture [11]. Within wormhole rout-
ing schemes, every packet sent over the network is split into
smaller irreducible units called flits (FLow control digITS).
The tasks are periodic and non-preemptive in nature. Re-

garding task assignment, we assume that a single task is
assigned to a given core and that there is a 1:1 mapping
between a task and a core.
A communication between a task and a destination node (the

memory controller or any other core) is modeled by a flow.
That is, each task can generate several flows, each modeling
a communication with the memory controller or with another
core. Each flow f goes though a pre-defined path, which is
defined by an ordered list of links noted path(f). We denote
by first(f) the first link of path(f). Note that the first link of
every path always connects the core and its associated switch.
In addition, given a link l, we use the notations prev(f, l)
and next(f, l) to refer to the links directly before and after
the link l in path(f). If l is the first link of path(f) then
prev(f, l) returns null and similarly, if l is the last link of
path(f) then next(f, l) returns null. Finally, we denote by
psize(f) the maximum size of a packet in the communication
modeled by f (which includes the protocol headers).
Packets are routed statically using a deadlock free algorithm.

Although adaptive routing patterns are more efficient as the
route taken by a packet is decided at run-time by taking into
account a global-view of the congestion in the network, they
are non-deterministic and hence we adopt a static routing
algorithm.
In contrast with the work presented in [1], we assume that

there can be only one outstanding request packet from a task at
any given time, i.e., the core running the task stalls waiting for
the packet to be sent and for the response to be received (the
response can be a simple ACK). This implies that the delay
incurred by sending the packet and waiting for the response
is added to the resulting execution time of the task running
on the core. Also, we denote by CR(f, t) an upper-bound on
the number of packets that the flow f can generate in a time

Algorithm 1: d(f, l) [1]
input : a flow f ,

a link l,
output: an upper-bound on the end-to-end delay of f , starting

from link l, to the destination.
1 begin

/* there cannot be any contention on the first

link. */

2 if l = first(f) then return d(f, next(f, l)) ;
/* If the first flit of the packet has reached

the destination, then the whole packet can

transit. */

3 if l = null then return psize(f)
C ;

/* Determine the set of links connected to the

input ports of the switch src(l). */

4 U ← {lin ∈ L | lin �= prev(f, l) and dest(lin) = src(l)} ;
5 foreach lin ∈ U do

/* Determine the set of flows fin passing

through lin and l). */

6 Flin ← {fin ∈ F | lin ∈
path(fin) and next(fin, lin) = l} ;

7 cumul delay ←
�

lin∈U

max
fin∈Flin

{dsw + d(fin, next(fin, l))}

return cumul delay +dsw + d(f, next(f, l)) ;
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Fig. 2. Example of flows.

interval of length t, when the task initiating this flow f is run
in isolation. We assume that these communication patterns are
derived using either static analysis or by measurement.

III. THE APPROACH PROPOSED IN [1]
A. Description of the method
In [1], the authors propose a recursive equation to compute

an upper bound d(f, l) on the delay needed to deliver a packet
of flow f , starting from the moment at which the packet tries to
access the link l. For sake of readability, we have rewritten this
recursive equation as an pseudo-code given by Algorithm 1
and the reasoning behind this procedure is explained through
the following simple example.
Let us consider the part of Figure 2 above the horizontal

dotted lines (the part below these dotted lines will be con-
sidered later). There are four nodes: a core n1, two switches



n2 and n3, and another core n4, and three flows: f1 models
a communication between n1 and the core n4, whereas the
source nodes of f2 and f3 are not specified; f2 transits through
the switches n2 and n3, and f3 passes only across the switch
n3 before ending in n4. Suppose that we study the worst-case
end-to-end delay of f1 by calling d(f1, l1) (see Algorithm 1).
Since l = l1 is the first link of f = f1, f could be

blocked only if other flows generated by its source (here, the
cpu n1) have to transit first. The authors of [1] propose a
particular procedure to deal with this specific case. In contrast,
we assume that the cores stall while waiting for a given packet
transmission to be completed before initiating a new transmis-
sion. Therefore, under this assumption, a flow f issued from
one core can never be blocked by another flow issued from the
same core and the first flit of the packet is directly transferred
to the input port of the switch n2. Thus, the algorithm directly
calls the function d(f,next(f, l)) = d(f1, l6) at line 2.
With the input �f, l� = �f1, l6�, the algorithm starts at line

4. At this stage, the flow f1 is coming from l1 and it has to
pass through l6 via the node n2. The algorithm first computes
the set U of links connected to the other input ports of n2 (i.e.,
the links different from l1). Here, U = {l2, l3, l4, l5}. Then,
for each of those links lin ∈ U , the algorithm determines the
set Flin of flows fin such that fin passes through lin and l6.
Here, Fl2 = φ, Fl3 = φ, Fl4 = f2 and Fl5 = φ. Note that
one and only one flow of each set Flin might block f1 since
the switch arbitration rule is assumed to be Round-Robin. At
line 7, the algorithm sums the maximum delay that every flow
fin in each Flin can generate. Finally at last line returns this
cumulative delay, plus the time needed to make the flow f1

progress through n2 (i.e., dsw), plus the delay incurred by f1

in the next hop (i.e., d(f1,next(f1, l6)) = d(f1, l9)).
Notice that at line 3, if l = null, then it means that the flow

f has reached its destination. In this case, the packet of f is
totally transmitted, which takes in the worst-case psize(f)

C time
units.

B. Sources of pessimism
Although the computation presented in the previous section

is correct and terminates within a reasonable computation time
(as shown in [1]), we identified two main sources of pessimism
in this computation. In order to highlight this pessimism, one
can construct the computation tree followed by Algorithm 1, in
which each recursive call to the function d(f, l), with f �= null,
is a node of the tree and each call to d(f,null) is a leaf (see
Figure 3). Algorithm 1 traverses this computation tree in a
preorder depth-first manner, i.e., the node is visited, and then
each of the subtrees, from the left to the right.
As it can be seen in this figure, the order in which the leafs

of the computational tree are reached reflects the following
scenario. The flow f1 is delayed because f2 goes first (step
!). f2 is then blocked by f3 in node n3. Once f3 has reached
the core n4, its whole packet is transferred to n4, hence adding
psize(f3)/C to the delay (step ", the first “leaf”). Then f2

flows and also reaches the core n4 (step #), followed by f1

which passes through n2 but gets blocked by another flow of

psize(f1)
C

psize(f2)
C

psize(f3)
C

dswitch + d(f2, l9) + dswitch + d(f1, l9)

d(f1, l6)

d(f1, l1)

dswitch + d(f3,null) dswitch + d(f2,null)+ + dswitch + d(f3,null) + dswitch + d(f1,null)

psize(f3)
C

➀

➁ ➂ ➃ ➄

Fig. 3. Computation tree of d(f1, l1).

f3 in n3. This second flow of f3 passes first (step $), and
finally f1 can progress to its destination (step %).
As a conclusion, the scenario considered by this compu-

tation of d(f1, l1) supposes that f3 can block the flow f1

twice before it reaches the core n4, which may not be possible
for several reasons that we call “source of pessimism” in the
computation.

a) Network-level pessimism: Algorithm 1 can lead to
situations in which two consecutive calls to d(f, l) (with the
same f and l) are too close in time so that they do not reflect
a possible scenario, i.e., a scenario in which a packet of f
arrives to a switch before the previous packet of the same
flow f could have carried out a round-trip from its source to
its destination. To understand this first source of pessimism,
let us focus on the node n3, and in particular on what it does
in the scenario described above. When the flow f3 progresses
to the core n4 for the first time, n3 transmits every flit of
the packet p3 of f3. During this time, both flows f1 and
f2 are blocked in n2. Then, right after transmitting the last
flit of p3, n3 starts transmitting all the flits of the packet
p2 of f2. Finally, directly after transmitting the last flit of
p2, n3 transmits another packet of p3 before transmitting p1.
However, this scenario is possible only if the second packet
of f3 can arrive at the switch n3 before the packet p2 has
reached its destination, i.e., if dsw + psize(f2)

C > RTT(f3),
where RTT(f) denotes a lower-bound on the delay needed to
(i) deliver a packet of flow f , from its source to its destination,
and (ii) carry the response back to its source. We will address
the computation of RTT(f), for all flows f , in future work.
In order to detect this kind of situation, in which two

consecutive calls to d(f, l) (with the same f and l) are
too close in time so that they do not reflect a possible
scenario, we propose to extend Algorithm 1 as follows. A
“timestamp” ts(f, l) is associated to each call to the function
d(f, l) during the traversal of the computation tree. Basically,
the computation starts with a counter count set to 0 and
updates it as follows: the counter is increased by dsw times
units whenever it encounters a dsw term in the computation
(while visiting the nodes of the tree) and it is increased by
psize(f)

C whenever it reaches a leaf d(f,null) of the tree. Then,
after visiting a node d(f, l) for the first time (i.e., at the
return from the first call to the function d(f, l)), the algorithm
sets the corresponding timestamp ts(f, l) to the current value
of count. Whenever it has to enter a node d(f, l) that has



been already visited, the algorithm compares the value of its
corresponding timestamp ts(f, l) to the current value of count.
If count− ts(f, l) ≤ RTT(f) then it is impossible for the
flow f to have another packet in the current switch at this
time count, given that the last packet of f in that switch
was considered at time ts(f, l). Therefore, the node d(f, l)
does not have to be traversed and can be pruned, together
with all its subtrees. Since some nodes can be potentially
excluded from one of the top levels of the tree, we believe
that this improvement can lead to a considerable reduction of
the pessimism of the returned upper-bound.

b) Task-level pessimism: Suppose that the function
d(f, l) is called multiple times with the same input parameters
f and l, and suppose that every pair of consecutive calls to
this function are separated in time by more than RTT(f) time
units (thus, this scenario is valid according to the previous
improvement). Let ∆t denote the time between any two calls
to d(f, l), and let x denote the number of times that d(f, l) has
been called during these ∆t time units (including the two calls
occurring at the boundary of this time interval). It might be the
case that the task generating the flow f is not able to generate
x packets in a time interval of length ∆t. Therefore, upon any
call to the function d(f, l), the algorithm should check whether
the total number of calls performed to this function (including
the current call) does not exceed the maximum number of
packets that can be generated by the task generating f .
We propose to reduce this source of pessimism in the same

way as the network-level pessimism. Basically, instead of asso-
ciating one timestamp to each node d(f, l) we associate a list
of timestamps list(f, l) = {ts1(f, l), ts2(f, l), . . . , tsk(f, l)}.
Whenever the computation returns from a call d(f, l), it
inserts a new timestamp at the end of the list (the value
of the newly inserted timestamp is set to the current value
of count (see the first improvement). That is, given one
node d(f, l), the length k of its associated list(f, l) gives the
number of times that the function d(f, l) has been called from
the beginning of the computation. During the computation,
before entering a node d(f, l) of the tree for the (k + 1)th
time (k = 2, . . . ,∞), the algorithm should check, for every
element tsi(f, l) (i = 1, . . . , k) in the associated list, whether
the task generating f is capable of generating (k + 1) − i
packets in a time interval of length count− tsi(f, l), i.e.,
CR(f, count− tsi(f, l)) ≤ (k + 1) − i. If this condition is
satisfied for all i = 1, . . . , k, then it might be possible for the
task generating f to emit another (k+1)th packet. Otherwise,
the node d(f, l) does not have to be traversed and can be
pruned together with all its subtrees, hence further reducing
the pessimism.
We believe that this second improvement can also drastically

reduce the pessimism involved by Algorithm 1. The intuition
is given in the example of Figure 2. Suppose now that the
destination of f1 is the memory controller denoted by the node
nZ , and suppose that this node nZ is located far away from n1

in terms of number of hops. In addition, suppose that there is
a flow fx from the core nX to nZ , where nX is located just a
few hops next to nZ . Chances are high that Algorithm 1 will

call the function d(fx, ly) a significant number of times since
this node d(fx, ly) will belong to many subtrees. Furthermore,
RTT(fx) is very low since the distance between nX and nZ

is short. In this case, this second improvement will enable not
to account for d(fx, ly) an excessive amount of times, hence
reducing the pessimism.

IV. CONCLUSION
We present the intuition to improve the approach presented

in [1], and we believe that this improvement will drastically
reduce the pessimism involved in the computation of the end-
to-end communication delay in massive multicores. Obtaining
such a tighter upper-bound on these delays will in turn
decrease the time-overhead added to the worst-case execution
time (WCET) of the tasks, which will ultimately propagate
in a cascading manner through the upper-layer analyses (such
as tasks worst-case response time and schedulability analysis)
which are built on top of the WCET analysis.
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