233 research outputs found

    Gauge Theory Formulation of the c=1c=1 Matrix Model: Symmetries and Discrete States

    Full text link
    We present a non-relativistic fermionic field theory in 2-dimensions coupled to external gauge fields. The singlet sector of the c=1c=1 matrix model corresponds to a specific external gauge field. The gauge theory is one-dimensional (time) and the space coordinate is treated as a group index. The generators of the gauge algebra are polynomials in the single particle momentum and position operators and they form the group W1+∞(+)W^{(+)}_{1+\infty}. There are corresponding Ward identities and residual gauge transformations that leave the external gauge fields invariant. We discuss the realization of these residual symmetries in the Minkowski time theory and conclude that the symmetries generated by the polynomial basis are not realized. We motivate and present an analytic continuation of the model which realises the group of residual symmetries. We consider the classical limit of this theory and make the correspondence with the discrete states of the c=1c=1 (Euclidean time) Liouville theory. We explain the appearance of the SL(2)SL(2) structure in W1+∞(+)W^{(+)}_{1+\infty}. We also present all the Euclidean classical solutions and the classical action in the classical phase space. A possible relation of this theory to the N=2N=2 string theory and also self-dual Einstein gravity in 4-dimensions is pointed out.Comment: 35 page

    WW-Infinity Ward Identities and Correlation Functions in the C=1C=1 Matrix Model

    Get PDF
    We explore consequences of WW-infinity symmetry in the fermionic field theory of the c=1c=1 matrix model. We derive exact Ward identities relating correlation functions of the bilocal operator. These identities can be expressed as equations satisfied by the effective action of a {\it three} dimensional theory and contain non-perturbative information about the model. We use these identities to calculate the two point function of the bilocal operator in the double scaling limit. We extract the operator whose two point correlator has a {\it single} pole at an (imaginary) integer value of the energy. We then rewrite the \winf~ charges in terms of operators in the matrix model and use this derive constraints satisfied by the partition function of the matrix model with a general time dependent potential.Comment: 17 page

    Genome-wide prediction of synthetic rescue mediators of resistance to targeted and immunotherapy

    Get PDF
    Most patients with advanced cancer eventually acquire resistance to targeted therapies, spurring extensive efforts to identify molecular events mediating therapy resistance. Many of these events involve synthetic rescue (SR) interactions, where the reduction in cancer cell viability caused by targeted gene inactivation is rescued by an adaptive alteration of another gene (the rescuer). Here, we perform a genome-wide in silico prediction of SR rescuer genes by analyzing tumor transcriptomics and survival data of 10,000 TCGA cancer patients. Predicted SR interactions are validated in new experimental screens. We show that SR interactions can successfully predict cancer patients\u27 response and emerging resistance. Inhibiting predicted rescuer genes sensitizes resistant cancer cells to therapies synergistically, providing initial leads for developing combinatorial approaches to overcome resistance proactively. Finally, we show that the SR analysis of melanoma patients successfully identifies known mediators of resistance to immunotherapy and predicts novel rescuers

    Learning Expressive Prompting With Residuals for Vision Transformers

    Full text link
    Prompt learning is an efficient approach to adapt transformers by inserting learnable set of parameters into the input and intermediate representations of a pre-trained model. In this work, we present Expressive Prompts with Residuals (EXPRES) which modifies the prompt learning paradigm specifically for effective adaptation of vision transformers (ViT). Out method constructs downstream representations via learnable ``output'' tokens, that are akin to the learned class tokens of the ViT. Further for better steering of the downstream representation processed by the frozen transformer, we introduce residual learnable tokens that are added to the output of various computations. We apply EXPRES for image classification, few shot learning, and semantic segmentation, and show our method is capable of achieving state of the art prompt tuning on 3/3 categories of the VTAB benchmark. In addition to strong performance, we observe that our approach is an order of magnitude more prompt efficient than existing visual prompting baselines. We analytically show the computational benefits of our approach over weight space adaptation techniques like finetuning. Lastly we systematically corroborate the architectural design of our method via a series of ablation experiments.Comment: Accepted at CVPR (2023

    Novel symmetries in N = 2 supersymmetric quantum mechanical models

    Full text link
    We demonstrate the existence of a novel set of discrete symmetries in the context of N = 2 supersymmetric (SUSY) quantum mechanical model with a potential function f(x) that is a generalization of the potential of the 1D SUSY harmonic oscillator. We perform the same exercise for the motion of a charged particle in the X-Y plane under the influence of a magnetic field in the Z-direction. We derive the underlying algebra of the existing continuous symmetry transformations (and corresponding conserved charges) and establish its relevance to the algebraic structures of the de Rham cohomological operators of differential geometry. We show that the discrete symmetry transformations of our present general theories correspond to the Hodge duality operation. Ultimately, we conjecture that any arbitrary N = 2 SUSY quantum mechanical system can be shown to be a tractable model for the Hodge theory.Comment: LaTeX file, 23 pages, Title and Abstract changed, Text modified, version to appear in Annals of Physic

    Fermionic representation for the ferromagnetic Kondo lattice model -- diagrammatic study of spin-charge coupling effects on magnon excitations

    Full text link
    A purely fermionic representation is introduced for the ferromagnetic Kondo lattice model which allows conventional diagrammatic tools to be employed to study correlation effects. Quantum 1/S corrections to magnon excitations are investigated using a systematic inverse-degeneracy expansion scheme which incorporates correlation effects in the form of self-energy and vertex corrections, while explicitly preserving the continuous spin-rotation symmetry. Magnon self-energy is studied in the full range of interaction strength, and shown to result in strong magnon damping and anomalous softening for zone boundary modes, which accounts for several zone-boundary anomalies observed in recent spin-wave measurements of ferromagnetic manganites.Comment: 16 pages, 9 figure
    • …
    corecore