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Cancer and cardio-vascular diseases are the leading causes of death world-wide.

Caused by systemic genetic and molecular disruptions in cells, these disorders are

the manifestation of profound disturbance of normal cellular homeostasis. People

suffering or at high risk for these disorders need early diagnosis and personalized

therapeutic intervention. Successful implementation of such clinical measures can

significantly improve global health. However, development of effective therapies is

hindered by the challenges in identifying genetic and molecular determinants of the

onset of diseases; and in cases where therapies already exist, the main challenge is

to identify molecular determinants that drive resistance to the therapies. Due to

the progress in sequencing technologies, the access to a large genome-wide biolog-

ical data is now extended far beyond few experimental labs to the global research

community. The unprecedented availability of the data has revolutionized the ca-

pabilities of computational researchers, enabling them to collaboratively address

the long standing problems from many different perspectives. Likewise, this thesis



tackles the two main public health related challenges using data driven approaches.

Numerous association studies have been proposed to identify genomic variants

that determine disease. However, their clinical utility remains limited due to their

inability to distinguish causal variants from associated variants. In the presented

thesis, we first propose a simple scheme that improves association studies in su-

pervised fashion and has shown its applicability in identifying genomic regulatory

variants associated with hypertension. Next, we propose a coupled Bayesian re-

gression approach – eQTeL, which leverages epigenetic data to estimate regulatory

and gene interaction potential, and identifies combinations of regulatory genomic

variants that explain the gene expression variance. On human heart data, eQTeL

not only explains a significantly greater proportion of expression variance in sam-

ples, but also predicts gene expression more accurately than other methods. We

demonstrate that eQTeL accurately detects causal regulatory SNPs by simulation,

particularly those with small effect sizes. Using various functional data, we show

that SNPs detected by eQTeL are enriched for allele-specific protein binding and hi-

stone modifications, which potentially disrupt binding of core cardiac transcription

factors and are spatially proximal to their target. eQTeL SNPs capture a substantial

proportion of genetic determinants of expression variance and we estimate that 58%

of these SNPs are putatively causal.

The challenge of identifying molecular determinants of cancer resistance so

far could only be dealt with labor intensive and costly experimental studies, and in

case of experimental drugs such studies are infeasible. Here we take a fundamentally

different data driven approach to understand the evolving landscape of emerging re-



sistance. We introduce a novel class of genetic interactions termed synthetic rescues

(SR) in cancer, which denotes a functional interaction between two genes where a

change in the activity of one vulnerable gene (which may be a target of a cancer

drug) is lethal, but subsequently altered activity of its partner rescuer gene restores

cell viability. Next we describe a comprehensive computational framework –termed

INCISOR– for identifying SR underlying cancer resistance. Applying INCISOR to

mine The Cancer Genome Atlas (TCGA), a large collection of cancer patient data,

we identified the first pan-cancer SR networks, composed of interactions common

to many cancer types. We experimentally test and validate a subset of these in-

teractions involving the master regulator gene mTOR. We find that rescuer genes

become increasingly activated as breast cancer progresses, testifying to pervasive

ongoing rescue processes. We show that SRs can be utilized to successfully predict

patients’ survival and response to the majority of current cancer drugs, and impor-

tantly, for predicting the emergence of drug resistance from the initial tumor biopsy.

Our analysis suggests a potential new strategy for enhancing the effectiveness of ex-

isting cancer therapies by targeting their rescuer genes to counteract resistance.

The thesis provides statistical frameworks that can harness ever increasing

high throughput genomic data to address challenges in determining the molecular

underpinnings of hypertension, cardiovascular disease and cancer resistance. We

discover novel molecular mechanistic insights that will advance the progress in early

disease prevention and personalized therapeutics. Our analyses sheds light on the

fundamental biological understanding of gene regulation and interaction, and opens

up exciting avenues of translational applications in risk prediction and therapeutics.
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Chapter 1: Introduction

1.1 How does a cell function?

All living organisms, from bacteria to human, are made of cells. Cells are

basic structural, functional and biological building block of living organisms [3].

Bacteria, perhaps the simplest organism that exists today, is a self contained single

cell. Humans, on the other hand, are multicellular and comprise of around 10 trillion

cells.

All cells in a unicellular or a multicellular organism contain an outer cellular

membrane that encapsulates liquid cytoplasm. Around 70% of cytoplasm is water,

rest comprises proteins and number of other small molecules (amino acids, glucose

etc.). DNA is a molecule that carries genetic hereditary information [3]. It holds

all the instructions for life of an organism in genes, which are stretches of DNA

and most of them encode protein molecules. In simple organisms, referred to as

prokaryotes, DNA resides in the cytoplasm. Whereas in more complex organisms,

called eukaryotes, a special nuclear membrane protects the DNA and separates it

from the cytoplasm [4].

Proteins carry out all essential processes necessary to maintain life, including
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development, maintenance functions and reproduction [5]. There are many different

kinds of proteins including enzymes, antibodies (related to immune system), regu-

latory proteins, contractile proteins (related to muscle function), structural proteins

and transport proteins [6]. The enzymes catalyze more than 5,000 bio-chemical re-

actions and convert substrates to products inside the cells. Almost all metabolic

reactions need enzymes, which thus are essential for life [7]. What metabolic pro-

cesses occurs in a cell depends on the set of enzymes present in the cell [7]. The

case of lactose intolerance illustrates the importance of enzymes. People with lac-

tose intolerance cannot produce lactase enzymes. Lactase breaks down lactose into

monomers glucose and galactose, completing the first step in lactose digestion, there-

fore people who suffer from the lactose intolerance cannot digest milk that contains

lactose. This condition can be mitigated by taking lactase pill prior to drinking

milk [3, 8].

1.2 How does a cell produce proteins?

The answer to the question lies in a central dogma of molecular biology [9],

which explains how genetic information flows in an organism. DNA, mRNA and

proteins are major players in the central dogma [10]. The end product of this

process involves manufacturing of proteins by genes, which constitutes of following

two steps:

• Transcription: is a process by which information in DNA is transferred to

a messenger RNAs (mRNA). Specific proteins, RNA polymerase and tran-
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scription factors, form a core of the transcription machinery and facilitate the

transcription [3]. Using a DNA-encoded gene as a template, DNA-polymerase

copies the gene to its corresponding mRNA.

In eukaryotic cells transcription process generates first primary transcript

mRNA (pre-mRNA) [5,11], which is then processed to mature mRNA (Fig 1.1).The

processing involves attaching a poly-A tail and a 5 ′ cap to pre-mRNA. This

is followed by splicing, which gives the final product - the mature mRNA

molecule [12].

• Translation: is a process transfers information from mRNAs to corresponding

proteins [3]. During translation, a protein complex called ribosome reads the

mRNA according to genetic code [10], where each mRNA triplet codon encodes

for an amino acid (Fig 1.1) [10]. Thus, mRNA is used as a template to assemble

a chain of amino acids that form the final protein product. In eukaryotic

cells, transcription occurs in the nucleus while translation occurs in cytoplasm,

therefore mRNA are transported out of nucleus (to the cytoplasm)(Fig 1.1).

In many organisms, the translated protein can be further modified by various

enzymes. This process, referred as post-translation modification, is not covered in

the central dogma.
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Figure 1.1: Central dogma of molecular biology.

1.3 How can same DNA give rise to drastically

different cells?

All cells in a human body are created by cell-divisions and DNA replications

from a single fertilized cell; thus all cells in an individual share identical DNA (with

exceptions of B cells) [13]. If DNA contains all genetic information, how do the

differences in tissues and cell types arise in a multicellular organism? How does the

same genetic information translate into morphologically and phenotypically distinct

cells (Fig 1.2).

The underlying mechanism involved in generation of different morphologies

and functions of cell types is called differentiation [13]. It is mechanism by which

a less specialized stem cell produces more specialized differentiated cells. Each
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Figure 1.2: In multicellular organism different cell and tissue types share same DNA

cell type expresses a unique subset of genes which is specific to the cell type [13].

Conversely, set of the genes expressed in a cell determines its identity (including its

morphology and functions) [14]. For example, the set of genes that is expressed in

stem cells is different from those in cardiac muscle cells or in neurons, that’s the

reason all of the cell types look and act differently. Thus, at the molecular level

differentiation is a mechanism by which a daughter cell acquires the capability to

express different set of genes than the parent cell. The signal of differentiation comes

from diverse factors such as external environment, signals from neighboring cells,

etc. [13]. Cancer cells also activate set of genes that are different from any normal

cell, thus acting differently from any normal cell [15].
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1.4 How do eukaryotes regulate genes in a cell-

type specific manner?

In eukaryotes, a promoter Fig 1.3 is a genomic region that is necessary to

initiate transcription of a specific downstream gene. They are generally located

a few base pairs upstream of the transcription initiation site (TSS) of its target

gene [16]. Each transcription factor (TF), protein that helps in transcription of

genes, contains a specific DNA binding domain that recognizes a 6-10 base-pair

motif of DNA. A promoter contains a specific set of motifs, also called transcription

factor binding sites (TFBS), which allow specific set of TFs to bind and modulate

expression of its target gene [16].

For a gene to be transcribed, its promoter region must be accessible (or open)

to TFs [17], so that a pre-initiation complex can be formed. Once TFs are bound

to the promoter, RNA polymerase binds to the promoter forming a transcription

initiation complex. This initiates the transcription of the gene.

In eukaryotic cells, the transcriptional regulation depends upon chromatin,

which is a complex of DNA and proteins called histones [18]. The DNA in the

default state is tightly wrapped around histones in the nucleus, a state referred as

closed chromatin. TFs and RNA polymerase cannot bind to promoters in a such

state because they are inaccessible. Genes in such a state are inactive [18].

A set of chemical modifications to the histones can change the local accessibil-

ity of DNA for TF binding and therefore can modulate gene expression [17,18]. For
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Figure 1.3: Regulatory elements in a cell: Promoter and enhancer in DNA. The
few hundreds to a thousand base pairs region immediately upstream of a gene that
mediates the assembly of the pre-initiation complex and initiate gene transcription
is referred to as the promoter. An enhancer, on the other hand, is a distal regulatory
element that interacts with a promoter by forming a loop.

example, a histone modification H3K4me3 at promoter of a gene can make promoter

accessible to TFs and RNA polymerase, thus activating the gene. There are other

types of histone modifications (for eg. H3K27me3) that repress the gene. DNA

methylation is another modification to DNA that silences gene expression. Histone

modifications and DNA methylation are also known to be inherited during the cell

division and therefore are collectively called epigenetics [3]. Epigenetics, in sum-

mary, decides how transcription machinery reads the genetic instruction from DNA

in a cell. It is also widely known that undesirable epigenetic changes cause many

human disease [19, 20].

For transcription, a promoter needs to be unwound from histones so that TFs

can bind [17]. Many TFs are activators, while others are repressor of genes. The
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TFs not only bind to promoter but it can also bind a distal regulator of gene called

enhancer (Fig 1.3). Like a promoter, an enhancer is a genomic region that can be

bound by TFs to activate transcription of its distal target gene by interacting with

the gene promoter [17]. To activate its target gene an enhancer physically interacts

with the gene-promoter by forming a chromatin loop as shown in Fig 1.3. Enhancers

are located up to 1Mbp away from TSS. Enhancers are also activated or inactivated

by epigenetic factors like histone modifications and DNA methylation [21]. Some

histone modifications are known to be specific to enhancers.

1.5 Biological processes performed by genes

Genes are involved in variety of biological processes in a cell. One of the way

biological processes can be broadly categorized into [3]:

• Cellular metabolism: These are the set of biochemical reactions needed to

maintain life and allow to the cells function properly. In a case of environ-

mental changes, metabolism helps in cellular response to maintain the cell

growth. Metabolism is perhaps the most studied cellular process, since it is

often altered in diseases [7].

• Genetic information processing: It involves processes associated with the cen-

tral dogma of molecuar biology (see section 1.2, i.e DNA replication, transla-

tion, transcription and DNA repair [22]).

• Cellular process: It involves process related to cell cycle, e.g. cell growth and
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cell death. It also includes cell membrane function [22].

• Organismal systems: This involves organ specific functions such as associated

with immune system, endocrine system, cardio-vascualar system, nervous sys-

tem etc [3].

Many genes are multi-functional and may be active in multiple functional

processes. The aforementioned categories are also not strictly disjoint. Because

each cell type expresses specific set of genes, set of the active biological processes in

a given cell type is unique to it.

1.6 Disruption of biological processes causes dis-

eases

Each of biological process activated in a cell type is necessary for its normal

functioning , and their disruption interferes with normal functioning of the cells.

A severe malfunction manifests into a disease. Disruptions in biological processes

are often mediated by gene expression changes. Various genetic and environmental

factors can affect gene expression patterns in a cell [23].

1.6.1 Mutation

Any alteration to DNA sequence or genetic element is called mutation. Mu-

tations may occur due to errors in DNA replication during cell divisions. It may

also be a result of segmental insertion or duplication caused by mobile genetic el-
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ements [24, 25]. Mutations at single nucleotide level that accumulate over time in

a population, and are present at appreciable degree within the population (for eg.

> 5%), is referred to as single nucleotide polymorphism (SNP).

1.6.2 Coding mutation

Mutations that occur in genes are called coding mutations. Coding mutations

can be of different kinds. A mutation in a gene may have no effect, alter the gene

product, or hamper partially or completely the normal gene function. Most coding

mutations that change amino acid of the resultant protein (called non-synonymous

mutations) are harmful to the organism. For example 70% of non-synonymous mu-

tations are estimated to be harmful in Drosophila [26]. The rest of the mutations are

neutral. Only a few coding mutations are known to be beneficial to the organisms.

1.6.3 Non-coding mutation

Mutations can also occur in non-coding regions (called non-coding mutations)

of the genome. Most mutations in human DNA are known to be neutral i.e they

do not have any discernible effect on phenotype of the organism. However, many

non-coding mutation in regulatory elements, such as enhancers and promoters, can

also be deleterious. These mutations although do not change any protein product

of genes, can severely affect regulatory network within cells. A mutation in a gene

promoter can destroy the TFBS of an essential regulatory TF necessary for its tran-

scription. It will prevent the TF from binding to the promoter, ultimately causing

10



down-regulation of the gene. Therefore, a non-coding mutation in a promoter can

disrupt gene regulation and can have severe phenotypic consequences. For instance,

SDHD is a metabolic gene and mutations in its promoter are known to cause down-

regulation. The mutation in SDHD promoter mutations are associated with gastric

cancer and paraganglioma [27,28].

A mutation in a gene promoter can also affect the gene. A somatic mutation

– mutation that is not inherited, i.e, it does not appear in germ-line cells but in

somatic cell – in promoter of TERT gene over-activates the gene. The occurrence

of somatic mutations are associated with oncogenesis, particularly in melonomas,

bladder and hepatocellular cancer [29].

A mutation in an distal regulatory element can also affect expression of its

target gene, and therefore can contribute to a disease. The disruption of enhancers

by mutations has been linked to both Mendelian and complex disease traits. In

human, sonic hedgehog (SHH) gene is controlled by an enhancer that is almost a

megabase away from it. Further, mutations in the enhancer is shown to result in

pre-axial polydactyly in families [30].

It must be noted that, the impact of non-coding mutations on phenotype

may vary from that of coding mutations, even if the both mutations disrupt same

gene. Mutations in enhancers or promoters only affect expression levels of their

target genes, whereas those in coding regions may alter protein product, stability or

folding [31]. Generally, coding mutations are more detrimental than those of non-

coding mutations. Most enhancers are tissue specific, they are active and regulate

genes in few tissues. Consequentially, a mutation in a tissue specific enhancer will
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manifest into a phenotypic disorder only in specific tissues. In contrast, mutations

in promoters will affect expression more globally. For example TBX5 is a gene

involved in heart and forelimb development. Smemo et al. demonstrated that a

mutation in heart specific enhancer of TBX5 affects heart development and not

forelimb development [32]. Localization of phenotypic effect is another distinction

between the coding and non-coding mutations.

1.7 Heritable mutation disorder

Heritable mutations, mutation which are either inherited from parents, or

occur in germ-line, cause two class of genetic disorders:

1. Monogenic disorders (Mendelian disorder): They are disorders that manifest

due to disruption of a single gene. For example sickle cell anemia is caused by

mutation in haemoglobin gene [33].

2. Polygenic disorders (Complex disorder): They are disorders that are caused

by mutation in multiple genes. For example cardiovascular diseases, diabetes

and hypertension are caused by mutation in multiple genes.

Online Mendelian Inheritance in Man (OMIM) have cataloged around 4,000

diseases which are believed to be caused by alterations in a single gene. Mendelian

disorder are not common and are generally very rare disorder. Since monogenic

disorders manifest due mutation in single gene, it relatively not hard to predict the

disease onset. They are inherited in families, so tracking the genes that cause the
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disease through families is relatively easy. Complex disorders also occur in families,

but the inheritance rules are much more complex. We have poor understanding these

rules of why some family members develop them while others remain healthy [34].

In past decade, association studies are extensively used to identify genetic and

molecular determinants associated with a disease (or phenotype). These studies

were aimed at identifying genomic variants that are associated with phenotypic

traits in the population, specifically at detecting association either between SNPs

and common diseases such as cardiovascular diseases, cancer risk, hypertension,

diabetes etc, or between SNP and gene expression [35]. There are two types of

association studies :

1.7.1 Expression quantitative trail loci (eQTL)

The primary goal of Expression quantitative trait loci (eQTLs) is to iden-

tify genetic variations that determine the expression variation among individuals

in a population and ultimately uncover underlying regulatory network by which an

individual variation leads to expression changes [36].

eQTL studies are conducted using gene-expression and genotype of multiple

individuals. A SNP is deemed associated with a gene if the gene expression is

significantly different in people with one particular allele compared to other.
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1.7.2 Genome wide association studies (GWAS)

The ultimate aim of Genome wide association studies (GWAS) is to determine

genetic risk of an individual to develop a disease and to reveal biological mechanism

that underlies the genetic disease, so that it can be harnessed for prevention and

therapeutics [37].

GWAS are conducted similarly to eQTL, however it requires genotype and

disease information (phenotype) of each individual in a population. If people with a

particular SNP allele have much higher occurrence of disease compared to others, the

SNP is called to be associated. GWAS represents a powerful tool for understanding

molecular underpinnings and genetic makeup of complex polygenic diseases [38–40].

These studies have revealed thousand of risk loci associated with such disorders and

have provided valuable molecular insights into their regulatory architecture [41,42].

1.7.3 Limitation of association studies

In the past decade, numerous association studies were conducted, and yet at

the same time, they have been heavily criticized. The criticisms include association

studies cannot explain enough genetic and phenotypic variation in the population.

However, the major disappointment with the association studies is due to perception

that results they produce are neither biologically relevant nor have any therapeutic

utility [35]. The major limitations [43] and challenges of the association studies are:

• Associated variants in non-coding region: Less than 5% of associated

SNPs fall in coding region of genome (both synonymous and non-synonymous).
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Rest of the associated SNPs fall in non-coding region [44]. Therefore they are

not immediately informative. Further they are hard to validate experimentally.

• Linkage disequilibrium: It is defined as non-random association of alle-

les between different loci. When two alleles occur together significantly more

often than expected by random chance, they are called to be in linkage dise-

quilibrium. Linkage disequilibrium are caused due to variety of factors such as

selection, recombination rate, mutation rate, genetic drift, population struc-

ture, mating system and genetic linkage [45].

In the human genome, each SNP loci are in linkage disequilibrium with hun-

dreds of other SNPs. All SNPs which are in a strong linkage disequilibrium

with a causal variant of a phenotype will also show strong association. There-

fore association does not necessarily imply causality of the factor. Further,

most of the association studies use genotyping and the original causal SNP

may not be in the genotyped chip [44].

• Missing heritability. Only a portion of phenotypic variance is determined

by genetics (called heritability). Further, as any association studies consider

a subset of all possible genetic factors in the analyses, there is upper bound

on how much of heritability, called as narrow sense heritability [38], can be

explained by association studies. This can be estimated by twin studies. How-

ever, phenotypic variance explained by most of GWAS are much smaller than

the estimated narrow sense heritability [38] (difference referred to as missing

heritability).
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• Rare variants (and not common variants) may be causal : Missing

heritability in GWAS points to the fact that rare rather than common variants

may be causal, which are generally missed by SNP array technologies [44].

Further, in order to achieve enough statistical power much larger sample size

will be required to detect associations [38].

• Reproducibility. Many GWAS are conducted on single population and are

not generalizable across studies or populations, suggesting that many of the

associations are false positive and have no biological relevance. [46].

1.7.4 How to improve association studies?

In recent years, multiple association studies have shown strong and consistent

association of thousand of genomic variants with various diseases. However, their

interpretation of the molecular mechanisms remain challenging. Characterization

of missense and nonsense coding mutations offers a solution for coding variants.

Given the abundance of non-coding functions and current state of incomplete anno-

tation of transcriptional regulators and their poor understanding, the challenge of

interpretation is far more formidable for non-coding variants [47–50].

Several recent efforts were geared to provide a comprehensive map of regula-

tory annotations. For example, the Encyclopedia of DNA Elements (ENCODE) [51]

project has released comprehensive map of epigenetic data for many primary cell

lines. Epigenome road-map project [52] has taken initiative to deliver these annota-

tion in primary cells and cultured cells. The explosion of epigenetic data has made it
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possible to detect cell-type-specific regulatory regions [43,47–50], which can be used

to distinguish regulatory SNPs from non-regulatory SNPs in LD blocks. Further it

will help us to interpret non-coding associated variants, which constitute majority

of reported GWAS variants. Finally, the data will help to solve the problem of

limited statistical power to detect associations of rare variants (refer to chapter 3

for details).

1.8 Somatic mutation disorder

Although certain germ-line mutations are known to be associated with risk of

cancer onset, only around 5-10% [53] of cancer incidences are known to be hereditary.

Cancer is mainly caused by genetic alterations that occur in cells within the life span

of an individual, i.e somatic mutations.

1.8.1 Hallmarks of cancer

Genetic diseases, such as Cardio-vascular diseases or hypertension, are result

of a systematic break down of the normal functioning of cells, where regulatory

networks and cellular processes are severely compromised. In contrast, cancer is

a unique genetic disorder where transcription machinery and cellular processes are

hijacked to allow cancer to proliferate continuously.

In cancer, existing cellular processes and regulatory networks are reprogrammed

in systematic manner to tailor the need of malignant cancer cells. In the remodeling

of normal cells to cancerous cells, a tumor undergoes a series of genetic and tran-
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scriptome alterations, each conferring specific proliferative advantage, which leads

to gradual conversion of normal cells to cancer cells. Proliferation and homeosta-

sis of normal cell are governed and limited by check points embedded in a robust

regulatory circuit. Systematic reprogramming in cancer cells allow them to bypass

these checkpoints. Hanahan et. al. suggested six essential alterations in cells that

dictate the oncogensis [54,55]:

• Self sufficiency of growth signal: Normal cells require specific growth sig-

nal (GS) from extracellular signaling molecules to proliferate. Tumor cells, in

contrast, show a greatly reduced dependence on the external growth stimula-

tion. Many oncogenes mimic growth signals in tumors and evade the external

GS dependence. For instance glioblastomas and sarcomas produce growth

factors PDGF and TGFα. Alternatively, cancer can alter the downstream

pathways of GF signaling by permanently activating the pathways that re-

spond to the GFs.

• Insensitivity to growth-inhibitory (antigrowth) signals: Multiple anti-

growth signals operate in cells, blocking the uncontrolled proliferation of nor-

mal tissue, predominately acting through trans-membrane signaling receptors

and intracellular signaling pathways. They either force a cell out of the pro-

liferation in a quiescent state (G0) or permanently switch off the proliferation

potential of a cell.

Cancer evades these antigrowth factor signals to keep proliferating uncontrol-

lably. Much of the insensitivity is achieved by disruption of pRB pathway
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responsible for blocking cell transit through G1 into S phase. Tumor suppres-

sor genes that primarily control the antigrowth signal, are highly disrupted in

cancer so that cell divisions are not prevented in cancer [56].

• Evasion of programmed cell death (apoptosis): Rate of tumor expansion

depends upon proliferation rate and rate of cell death. Programmed cell death,

known as apoptosis, is a major mechanism by which uncontrolled growth is

tackled in the normal cells. The acquired resistance to the apoptosis is a

hallmark of all cancer types [54]

Cancer acquires the apoptosis resistance through a variety of strategies. Most

commonly through mutation in p53, a tumor suppressor gene that regulates

apoptosis. The P53 functional inactivation is observed in more than half of

the tumors [57]. In addition antiapoptic signals are over-expressed in tumors

such as over-expression of AKT/PKB pathway mitigates apoptosis and are

over-expressed in many melonomas. Cancer cells may also alter the capability

to detect DNA damage or abnormalities, thus avoiding the apoptosis.

• Limitless replicative potential: Three acquired capabilities – independence

of the growth signals, insensitivity to antigrowth signals, and resistance to

apoptosis – do not suffice in supporting uncontrolled tumor growth and tu-

morogenesis due to an intrinsic limit on a number of cell divisions allowed.

Once cells have achieved a certain number of doubling they stop dividing, a

concept termed as senescence. This program is independent of cell signaling.

In order for cells to grow in malignant tumor, they must evade this program
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too.

Telomeres located at the ends of chromosomes are the counting devise, which

shorten with every cell divisions. The progressive shortening causes cells to

eventually lose their capability to divide further. Telomere maintenance is

evident in all types of tumors. In most tumors, their maintenance is mediated

by telomerase up-regulation, the enzyme responsible for maintaining telemore

length in stem cells [58].

• Sustained angiogenesis: Nutrients and oxygen are supplied by blood to

each cell and are necessary for maintenance and survival. The formation of

new blood vessels is referred to as angiogenesis. The expanding tumor needs

additional routes for blood supply. Cancer hijacks the angiogenesis to ensure

adequate oxygenation. This is achieved by disruption of the production of

factors that regulate blood vessel formation.

• Tissue invasion and metastasis: Advanced stages of tumors eventually

acquire capability to invade adjacent tissue and metastasize to distant sites.

Most of cancer types do not lead to patient’s death unless they metastasize.

In fact 90% of cancer deaths are due to metastasis [59].

1.8.2 Cancer therapies

The main aim of an anti-cancer therapy is to selectively kill cancer cells, with-

out affecting the normal cells. Current cancer therapies in one way or another target

one of the hallmarks of cancer. For example kinase inhibitor like Gleevec ( iman-
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tinib msylate) selectively kills chronic myeloid leukemia (CML) and gastrointestinal

stromal tumors (GIST) cells. CML is driven by over-activation of growth factor

ABL kinase through a mutation of kinase fusion protein BCR-ABL. Whereas GIST

is caused by over-activation of PDGFR (platelet derived growth factor receptor).

Gleevec effectively inhibits the activity of all of these growth factor kinases. The

therapy shows remarkable initial response in the patient’s where the kinases are

over-active by selectively eliminating tumor cells and in many cases tumors disap-

pear within few regimens of the therapy. Similarly, in lung cancer, epidermal growth

factor receptor (EGFR) inhibitors have great response in tumors with activating mu-

tation in EGFR gene. In lung cancer, clinical responses to epidermal growth factor

receptor (EGFR) inhibitors are associated with point mutations in the EGFR kinase

domain. Nearly 25% of breast cancer patients have over-expressed ERBB2 (HER2)

gene, which drives tumor cell growth. Targeting the oncogene has been shown to be

effective treatment in HER2 positive breast cancer patients [60].

1.8.3 Cancer resistance and molecular reprogramming

Advances in biomarker discovery approaches have led to significant improve-

ments in targeted cancer therapies in the past decade. However, the success of most

of the therapies are short-lived due to emergence of resistance to drugs and eventual

relapse of cancer. The mechanisms of drug resistance share many features such as

activation of drug efflux, alterations in the drug target, and downstream adaptive

responses [61]. A key driving force underlining in the emergence of cancer resis-
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tance to specific drug treatments involves changes in the activity of a gene that can

buffer the inactivation of the specific drug targets. For instance Lapatinib show im-

pressive initial response in HER2 positive breast cancer patient by inhibiting HER2

(ERBB2) gene. However, resistance to the therapy eventually emerges in patients.

Lapatinib resistance is known to be caused either by over-expression of ERBB3

gene that replaces the downstream function of ERBB2, or by over-expression of

other kinases that compensates for the ERBB2 inhibition by over-activating down-

stream target of ERBB2 gene directly [60]. Interaction between genes are likely to

be major determinant of cellular reprogramming that leads to resistance.

1.8.4 Genetic interactions in cancer

In order to better understand the mechanism of drug resistance and long term

effectiveness of cancer therapies, we need to understand landscape of genetic inter-

action in cancer. There are a few well-known and extensively studied types of gene

interactions (GIs). First and foremost are Synthetic lethal interactions (SL), which

describe the relationship between two genes whose individual inactivation results in

a viable phenotype while their combined inactivation is lethal to the cell [62–70].

SLs have long been considered a potential basis for developing selective anticancer

drugs [71–73]. Such drugs are aimed at inhibiting the SL partner of a gene that is

inactivated by genomic alterations in the particular cancer, thus potentially leading

to more selective cancer treatments that primary kill the cancer cells with few cyto-

toxic effects on healthy cells. Another important class of GIs are synthetic dosage
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lethal (SDL) interactions, where the under-activity of one gene together with the

over-activity of another gene is lethal but not each event individually [74]. In a man-

ner similar to SLs, SDL interactions also provide a powerful alternative for targeting

cancer cells, and are potentially promising for targeting tumors with activated onco-

genes, many of which are known to be difficult to target directly. Instead, targeting

the oncogenes SDL partner may selectively kill cancer cells [75].

Fueled by Next Generation Sequencing technologies, TCGA (The cancer genome

atlas) have provided genetic, molecular and clinical annotations of thousands of tu-

mor samples for 27 different tumor types [76]. Capitalizing on TCGA, Jerby et. al.

proposed a direct data-driven approach, termed DAISY [71], for identifying candi-

date SL and SDL-interactions via the analysis of the omics data directly from a large

collection of patient tumor samples. Mapping the first genome-wide pan-cancer SL-

network, they showed SL can successfully predict both gene essentiality and drug

response as well as patient survival [71].

1.9 Computation challenges

With advances in high throughput sequencing, the emphasis have shifted to-

wards analyzing the data using big data approaches. Beside posing a computational

challenge due to size of data, the rapid accumulation of large data poses challenge

to integrate informations from diverse dataset to extract inferences about the adap-

tion, diversity and complexity of biological system. The main computational issues

in the problem covered in this thesis i.e, identifying molecular underpinning of dis-
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eases onset and drug resistance are :

1. Substantial amount of noise in the biological data

2. Integrating the information flow to account for the biological mechanism

3. Over-fitting in modeling

4. Confounding factors

Bayesian approaches are ideally suited for the problems, which need to extract

information from complex data, especially where there exists uncertainty in the

data due to noise. The source of noise may include experimental error or noise,

as well as noise due to intrinsic random variations. In Bayesian approaches it is

imperative to specify a ”prior” distribution before the data is observed. Assigning

priors implies all sources of variance and uncertainty are now treated in the unified

and consistent manner. This forces us not only to integrate our assumptions and

constraints in the model but also integrate our prior knowledge (for eg. mechanism)

about the biological system, which is a philosophically appealing feature of the

Bayesian paradigm [77, 78]. This also provides relatively richer information about

the model parameters. Further, this makes inference robust to outliers and lack of

data [77].

The information flow within a cell are essentially hierarchal. Information in

DNA are transcribed to mRNAs [3]. Transcriptional regulators modulate also the

mRNA, which in turn are modulated by different epigenetic factors. Epigenetic

factors themselves are dependent on DNA and environment. Many of the biological
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problems therefore can be improved in a fundamental manner by modeling the infor-

mation hierarchies. Emphasis, therefore, has now shifted to data driven bottom-up

approaches, integrating the different hierarchies of the information flow to parame-

terize bottom-up mechanistic models of biological processes. Bayesian methods offer

a systematic approach to propagate uncertainty across different levels of modeling

to make inferences. Not surprisingly, Bayesian methods are now a day extensively

used in genetics, bioinformatics and system biology.

When a model fits the training data, but does not generalize to unseen data

is called Over-fitting. It occurs in a statistical model when it tries to describe the

random variation with in the data instead of the underlying relationship. The main

consequence of the over-fitting is that it exaggerates performance of the model and

also will have poor performance in unseen (test) data. The over-fitting is usually

caused by over-parameterization and lack of the regularization. Cross-validation is

the most popular technique to estimate level of the over-fitting and reduce it from

the modeling [79].

The most attractive feature of the Bayesian paradigm is ”integrating out” all

irrelevant variables, which inherently leads to implementation of Ockhams Razor

[78, 80, 81]. Bayesian frameworks in that case automatically prefer a simple model

provided that it is sufficient to explain the observed data. This concept enables to

set regularization parameters and select models without the need for any additional

validation [77].

Confounding factors are the variables that are correlated with both dependent

and independent variables. Due to confounding factors inferences from the model
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are often biased and in many instances completely wrong. For example when de-

termining what gene causes a disease, co-expression between genes is a confounding

factor. It is one of the most challenging issue in computational modeling, which can-

not be automatically corrected but needs explicit correction by including them in

modeling. The presented thesis proposes multiple ways to account for confounding

factors both in Bayesian and frequentist paradigms.

1.10 Significance

Recent advances in high throughput sequencing have made it possible to assay

new arrays of genome-wide biological data. Methods that can capitalize on these to

identify the molecular and genetic underpinnings of disease can significantly advance

not only our understanding of biology but also clinical applications. In consonance,

the thesis presents our computational efforts to bridge the diverse array of genome-

wide biological data into statistical frameworks to make inferences about mechanis-

tic understandings, molecular and genetic underpinning of cardiovascular diseases,

hyper-tension and cancer. In the first part of the presented work, we demonstrate

ways to improve association studies by integrating epigenetic and genetic interaction

information to the association studies. In second part, we discover a new class of

genetic interactions that underlies ongoing molecular reprogramming in cancer in

order to overcome drug treatment and become resilient to external onslaughts like

various drug treatments.
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1.10.1 Cardio-vascular disease and hypertension

Genetic diseases such as Cardio-vascular diseases (CVD), hyper-tension, and

cancer affect millions of people all over the world. Cardio-vascular diseases are the

leading cause of the deaths in US. As per World health organization (WHO) overall

31% of all the deaths worldwide are due to Cardio-vascular diseases which includes

coronary heart diseases and strokes [82]. More people die due to CVDs than any

other cause. It accounts for nearly 17% of total the National health expenditures.

Most of Cardio-vascular diseases can be prevented if people at high risk for CVD are

diagnosed early and therapeutic interventions are personalized. Despite extensive

research, genetic and molecular factors that lead to CVDs in humans remain elusive,

undermining the efforts of the early detection and prevention. Further, it severely

limits our ability to devise new CVD targeted therapies and interventions.

With advances in the next generation sequencing technologies in the past

decade, genomic, epigenomic and molecular data obtained both from patients and

healthy population are rapidly accumulating. Approaches that can systematically

exploit the rapidly expanding data to identify determinants of CVD can signifi-

cantly advance our efforts to detect risk of CVD, prevent and devise novel targeted

therapeutic interventions. The presented thesis first describes our efforts to identify

determinants of CVD followed by developing computational approaches that inte-

grate a diverse array of high-throughput data pertaining to regulation and disease

etiology.
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1.10.2 Cancer

Cancer is also among the leading cause of death worldwide and in US. Around

15 million new cases of cancer and 8.2 million deaths were reported in 2012 [82].

Among all diseases National institute of health devotes highest amount of its bud-

getary allocation to the cancer research. It is expected that the number of cancer

cases will increase by 70% in the next two decades. In the past decade multiple

anti-cancer therapies have been introduced showing a promising initial response.

However, the frequent emergence of resistance to therapies and eventual relapse re-

mains most daunting challenge in fighting cancer. Molecular determinants of the

resistance emergence that limit effectiveness of the current therapies remain elusive

and a pressing challenge in cancer research.

Our computational efforts in cancer research were geared towards identifica-

tion of molecular determinants and mechanisms that determine resistance and ef-

fectiveness of anti-cancer therapies. Indeed, recent studies published in many high-

impact journals have aimed to address this challenge by measuring the molecular

profiles (typically DNA or RNA sequencing) of tumors before and after a given drug

treatment to characterize drug and tumor specific molecular signatures of emerg-

ing resistance (e.g., [83–86]]). Such studies – which are another example of causal

inference – are quite labor intensive and costly, requiring the designated collection

and assessment of pre- and post-treatment data for every specific treatment and

cancer type in dedicated painstaking clinical studies. Moreover, importantly, such

clinical studies are infeasible for estimating the potential of emerging resistance to
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investigational drugs during their development. In the present work, we take a fun-

damentally different and novel approach to address resistance to therapy in cancer.

We define a new class of genetic interactions termed synthetic rescues (SRs) (defined

in Background) that provide fundamental insights into the molecular underpinnings

by which cancers reprogram their molecular activity in response to specific drug

treatments, to rescue themselves from the onslaught. The reprogramming can be

mediated by cellular response (such as changes in regulatory network) to external

onslaughts. Alternatively, such reprogramming can be explained by selection of tu-

mor cells (within a heterogeneous tumor or rapid genetic and molecular alterations

in a tumor) that confer selective advantage to the tumor to cope with the onslaughts.

1.11 Organization of Thesis

Part 1 consists of following two chapters:

In Chap. 2, we present a model to predict human heart enhancer using epige-

nomic data. We then show utility of the model by applying to hypertension data

and showing improvement in identifying regulatory SNPs over traditional associa-

tion studies. [47]

In Chap. 3, we introduce a coupled Bayesian regression approach – eQTeL [87],

which leverages epigenetic data to estimate regulatory and gene interaction poten-

tial, and identifies combination of regulatory SNPs that explain the gene expression

variance. We apply eQTeL to the human heart data and demonstrate its superior

performance in identifying putative causal regulatory SNP over existing eQTL meth-
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ods. The model unravels specific regulatory mediators that participate in interaction

between regulatory SNPs and target genes.

In Part 2 or the thesis we introduce a novel class of gene interactions termed

Synthetic Rescue (SR) that underlies extensive genetic reprogramming emerging

with cancer progression. We also propose a data driven computation framework,

termed INCISIOR, to identify SR in a genome-wide fashion [88]. Applying INCISOR

to mine The Cancer Genome Atlas (TCGA) [76], a large collection of cancer patient

data, we present the first genome-wide pan-cancer compendium of synthetic rescue

(SR) interactions. In the rest of the chapter we (i) comprehensively characterize

emergence and evolution of SR and (ii) demonstrate their role in the emergence of

resistance to current cancer therapies and (iii) determine personalized effectiveness

of the therapies. Finally, we provide therapeutic application emerging from the SR.

Chap. 5 concludes the thesis providing a discussion and a future perspective.

1.12 Contribution

The presented work was only possible due to immense support and guidance

from numerous collaborators. The work shown in this thesis has been done by

the author by collaborating with many others. The collaborator contributions for
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R.B - Ramiro Iglesias-Bartolome, R.A - Radhouane Aniba, Y.P.C - Yen-Pei Christy

Chang, MM - Michael Morley, CSM - Christine S. Moravec, WT - W. H. Wil-
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help from S.J. A.D and S.H analyzed the data and performed the analyses.
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generated the MAGNet data. S.H and A.D wrote the manuscript, with help

from others.
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Chapter 2: EPIGENOMIC MODEL OF CARDIAC ENHANCERS

WITH APPLICATION TO GENOME WIDE ASSOCI-

ATION STUDIES

2.1 Overview

Eukaryotic transcription is intricately regulated at multiple levels including

chromatin reorganization through epigenomic modifications and sequence specific

binding of transcription factors (TF) to either proximal promoter or to distal en-

hancer/repressor regions of the gene [89, 90]. Enhancers can regulate their target

genes from long distances, up to a megabase away and are especially important in

regulating developmental and tissue-specific genes [91, 92]. Numerous genome wide

association studies (GWAS) have revealed genomic loci associated with various hu-

man traits [93]. Going from association to causality is however a major challenge,

because a vast majority of GWAS signals lie in non-coding regions, often far from

any gene, and our understanding of functional consequences of non-coding mutations

is incomplete. It is possible that many of these associations are mediated via reg-

ulatory regions [94]. By investigating putative polymorphic enhancers near GWAS

signals, we might be able to identify the causal links between genetic variability
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and disease, at least in some cases. Thus, both for our fundamental understand-

ing of transcriptional regulation as well as for interpretation of genotype-phenotype

relationships, a comprehensive knowledge of context-specific enhancers is critical.

Large scale identification of enhancers is challenging because they do not have

sufficiently discriminating sequence properties (except for their tendency to harbor

homotypic binding motifs [95]) and their location is not restricted relative to the lo-

cation of the target gene. Moreover, enhancers are often tissue and cell-type specific

and are detectable only under the appropriate conditions. Recent revolution in se-

quencing technologies have triggered several large scale profiling of epigenomic marks

and analysis of these marks have revealed strong associations between enhancers and

specific epigenomic marks (either positive or negative [96–98]). Using genome-wide

profiling of several epigenomic marks, Ernst et al. segmented the genome into 51

segment classes, where each segment class is defined by a specific combination of

epigenomic marks [96, 99]. They designated two of these segment classes as strong

and weak enhancers. Apart from epigenomic marks, histone acetylase P300 is known

to bind to tissue-specific enhancers, with high rate of experimental validation us-

ing mouse transgenic [98, 100]. However, it is argued that while P300 may mark

tissue-specific enhancers, those enhancers are not necessarily active in a specific

context [101]. This assertion is consistent with less than perfect validation rate of

P300 bound regions as enhancers. Despite this, previous approaches to predict en-

hancers have used P300 bound regions as the gold standard to assess the methods

prediction accuracy [102,103].

Here we report an SVM trained specifically on 83 validated cardiac enhancers
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using four epigenomic profiles marks (H3K4me1, H3K27me3, P300 and DNase hy-

persensitivity) in human heart tissue. Our model achieves a cross-validation classi-

fication accuracy of 84% and 92% on positive and negative sets respectively. It was

encouraging that our model can distinguish validated enhancers from those that were

bound by P300 but failed to exhibit enhancer activity in transgenic mouse. Next,

starting with a comprehensive set of 229 SNPs associated with cardiac phenotypes

in 36 GWAS studies, we identified putative enhancers harboring SNPs in linkage

disequilibrium (LD) with the GWAS SNP. We found that our predicted enhancers

are enriched for binding sites for all known core cardiac transcriptional regulators

GATA, MEF2, STAT, NF-AT, Nkx, and FOX. Using a novel approach we show that

the predicted enhancers are likely to regulate the nearby gene. Our predicted en-

hancers uniquely point to a few genes highly relevant to the heart disease. Moreover,

these tendencies of having enriched cardiac transcriptional motifs and likelihood of

regulating nearby genes are more favorable for the predicted enhancers compared

with an approach that uses P300 binding as a marker of enhancer activity. Overall,

we show that a SVM model trained exclusively on validated enhancers performs

better than those that use P300 binding as gold standard and that GWAS studies

can be better interpreted in light of predicted polymorphic enhancers.
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2.2 Background

2.2.1 Expression quantitive trait loci

Expression quantitative trait loci (eQTLs) identifies genetic variations that

determine the expression variation among individual in a population. And aim to

ultimately uncover underlying regulatory network that drives gene expression. [36].

Jansen et. al. first proposed the concept of eQTL mapping in 2001 [104]

and the first eQTL study was conducted on two yeast strains [105]. Since then,

eQTL have attained tremendous amount of attention in understanding of regulatory

variation and its consequence in humans and other species.

eQTL studies identifies genomic regions that effect the expression of on or more

genes. These are inferred based on population studies. Individual in population

vary at multiple loci from each other. In human, any two individual vary at rate

of 1 in 1300, i.e on average any two individual have different sequence at around

4.6 million loci in genome called Single polymorphic nucleotide (SNP). Most of the

variations in an individual are non-functional, i.e. they does not have any phenotypic

consequences. In order to capture large variation in regulation a population with

genetically different individual is required for conducting eQTL.

To conduct an eQTL study two types of data are required. First, DNA se-

quence information of the individuals in the population. This is usually accom-

plished by genotyping (such as SNP micro-array), if the sequence variant in the

population is known. Alternatively, with advances in high throughput technology
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it is now possible to sequence whole genome of individual such that all variants are

collected. The whole genome sequencing approach is becoming more popular due to

decrease in cost of the sequencing. Further, it ensures that rare variants or individ-

ual specific variants are accounted. Second type of data needed for eQTL studies

are expression quantification of each gene in each of the individual. Micorarray and

RNA sequencing are two popular technologies to quantify gene expression. To es-

tablish association between a genomic variant and a gene expression by frequentist

appraoch, individuals are divided into groups according to the alleles for the variant.

The variant is associated with the gene if the gene has significantly higher expression

in one of the group compared to another. The test is conducted for for each variant

and gene combinations.

Cis and trans effects

Expression of a target gene can be directly modulated by an eQTL in its

regulators (such as in its enhancer and promoter). Alternatively, expression of a

target gene can also be modulated indirectly by an eQTL of another gene B (such

as transcription factor genes). The former type of eQTL lies in proximity of the

target gene and hence referred as cis-eQTL. The later type can lie any where within

genome and referred as trans-eQTL.

The successful eQTL will enable to understand of mechanism of gene regulation

and how a mis-regulation manifest into a disease and ultimately to devise personalize

treatment for patients. Amid advancement in next generation sequencing, recent

eQTL have been conducted on larger and larger sample size to detect the rare SNP
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association with gene regulation. However, two fundamental problems remains : (i)

if the associations are causal (ii) if causal, then what is the mechanism by which a

SNP regulate its target. In the third chapter of the thesis, we propose an alternative

to eQTL to address both of the questions using a computation method by integrating

information pertaining to regulations to eQTL.

2.2.2 Genome wide association studies

The ultimate aim of Genome wide association studies (GWAS) is to determine

genetic risk of an individual to develop a disease and to underpin biological mech-

anism that underlies the genetic disease, so that it can be harnessed for prevention

and therapeutics [37].

Analogous to eQTL, it involves DNA sequencing of large population of in-

dividual with and without disease, followed by finding association between Single

nueclotide polymorphisms (SNPs) and the disease. The most popular frequentist

approach to infer association is to calculate p-value of correlation for the null hypoth-

esis (H0) of no association, although many sophisticated approaches are proposed

to overcome the shortcomings of the frequentist approach [?,106,107]. Factors such

as population structure are known to be confounder in association studies. Such

confounder factors are tackled by controlling for confounders in the sampled popu-

lation. Alternatively, many recent studies take into account the confounding factors

by explicitly modeling them in the association studies.

In one of the successful GWAS identified genetics disruption of CFH gene of
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associated with age-related muscular destrophy (AMD). Not only they identified

the association but also they determine precisely how the disruption manifest into

AMD in an individual [108,109].

Besides studying several genetic diseases, multiple GWAS studies are con-

ducted to study various phenotypes. Many recent studies have identified genetic

determinants that leads to variation in the drug response [110,111]. For eg. Harper

et. al. identified genetic variants associated with variation of warafin dosage re-

sponse among humans [111]. The GWAS have been also studied to identify genetics

variation associated with non-deleterious phenotype such as height etc [112].

2.2.3 Epigenetics and regulation

Sequencing of human genome laid the foundation to understand information

stored in the genome. How this information is processed depends upon an additional

layer of heritable biological information referred as epigenetics that have only just

begun to be appreciated in past decade. The term epigenetics, which literally means

above or outside conventional genetics, is now used to describe information stored

in cell via chemical changes to cytosine and to the histones (proteins that regulates

how the genome is packaged inside a cell) [18]. In a cell, how the genome will be

finally read by the transcription machinery in the cells are maintained by these

chemical modifications. They modulate the chromatin structure making available

only part of the genome accessible to the machinery. Thus these modifications decide

cellular fate and how same genome manifests into diverse array of biological state,
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in particular different developmental stages and disease states [21,113,114].

Beside developmental processes, epigenetic modifications are known to be asso-

ciated with two other processes (i) random changes and (ii) environmental changes.

Our understanding how an external factors regulate the epigenetic modifications and

in turn regulate the genome remains limited. However, it is clear now the epigenetic

processes are key mediators that regulates the modification to DNA itself or protein

associated with DNA [115]. The modifications are read and processed by specific

protein and mediates appropriate biological effects.

2.2.4 Epigenetic Modifications

Epigenetics modification occurs in four broad categories: (i) DNA methyla-

tion, (ii) histone modification, (iii) DNA accessibility and (iv) Transcription factor

binding. The CPG methylation occurs mostly at CpG dinucleotide and occur at

lower frequency in at embryonic stages [116] and decreases significantly in somatic

tissues [117]. Riggs et. al. first proposed DNA methylation could stabilize a par-

ticular gene expression pattern through mitotic cell division [118, 119]. Now DNA

methylation is recognized to regulator of the stability of gene expression states,

particularly in chromatin state silencing [120,121].

Histone are protein that is essential of DNA packaging in the cells, DNA wrap

around the histones to make primary cellular packaging. Histones undergoe around

100 different kind of post-translation modifications. The functionality of a histone

modification depends upon two factors type of modification (acetylation, methy-
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lation, phosphorylation, and ubiquitination) and position of modification in the

histone tail. Most of the modifications are currently poorly understood. Modifica-

tions involving acetalyation are associated with DNA accessibility and transcription.

Modifications involving methylation comes in different flavors – H3K4 and H4K36

are associated with transcribed chromatin, on the other hand H3K9, (H3K27), and

H4K20 are associated with repression of gene transcription [18].

2.2.5 Epigenetic Inheritance

The epigenetic factors DNA methylation and histone modification are known

to heritable which is not encoded in the DNA. DNA methylation patterns known

to be propagated through cell division [21, 113]. In addition of DNA methylation,

compelling evidence supports the heritability of specific histone modifications in

multicellular organisms [122]. However, precise mechanism of histone modification

inheritance remains still elusive. It must be noted that heritability of the epigenetic

factor is much lower then DNA sequence, in other words during mitosis, accuracy

with which DNA is replicated (from parent to daughter cell) is several order higher

than epigenetic replication accuracy.

2.2.6 Support vector machines (SVM)

Support vector machines (SVMs) are supervised learning algorithms that among

most popular machine learning metod to perform classification. Here we briefly re-

visit basic of SVM.
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Given the labeled training data {xi, yi}, i = 1, ..., n, where yi ∈ {1,−1} is label

and xi ∈ Rd are d dimensional features of training data i, the goal of support

vector machine is to identify best hyperplane that separates positive and negative

examples [123].

SVM assumes best hyperplane called ”separating hyperplane”, is a linear

model of form w · x + b = 0 (however, the separating plane is linear in trans-

formed (dual) space and not in feature space [123]). Where, w is normal to the

hyperplane. If d+ (d) be the shortest distance from a hyperplane to the closest pos-

itive (negative) example, the separating plane have the properties that it maximizes

the margin d+ + d− Fig 2.1. Therefore, SVM simply searches for the hyperplane

that maximizes the margin [123]. The maximization translates into quadratic pro-

gramming formulation. As seen in the Fig 2.1, in training examples that lies closest

to the separating plane, called as support vectors. They are defined as point in the

training examples whose removal will change the solution of SVM.

2.3 Methods

More on SVM and grid search criteria

In SVM, vector in original feature space is projected onto a higher dimensional

feature space using kernel function (usually non-linear). Because of this the data

which in original space is not linearly separable, may become separable in trans-

formed space, where the SVM tries to find a maximum margin hyperplane that

separates the positive and negative set in the kernel space. SVM, employs a struc-
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Figure 2.1: Support Vector Machine (SVM): SVM illustration for a linear separate
case. Red (green) dot are positive (negative) examples. Support vectors are circled.

tural risk minimization (SRM) method [124, 125] to obtain the hyperplane, which

tries to balance complexity of the model while minimizing the empirical risk. There-

fore, relative to traditional methods based on empirical risk minimization, SVM is

better suited to handle the problem of overfitting. SVM chooses a maximum mar-

gin hyperplane by identifying subset of training data (called support vectors), which

would be closer to the optimal separating plane. Support vectors are cases which

are most difficult to classify as positive or negative. Therefore to ensure good perfor-

mance of SVM classifier, it is necessary to have a set of extreme examples (in both

positive and negative example in the training set) that would qualify as support

vectors.

Our positive training set included 330 (80% of 415) regions while the negative
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training set included 1000 regions. We weighted the positive and negative examples

to accommodate for the difference in sizes. An exhaustive search over the weight

space was conducted to obtain best possible cross-validation result on a tuning

set. The weight used for negative and positive set respectively was 1 and 1.2.

Furthermore, we defined our criteria for grid search based on the observation that

randomly sampled negative set may contain enhancer regions and therefore, it is

not desirable to minimize false positive rate to extreme. In addition, we required

that difference between two rates is below a fixed threshold. This is equivalent

to maximizing the F-score, while keeping difference of true positive (TP) and true

negative (TN) rate below a fixed threshold.

2.3.1 Correlating DNase Hypersensitivity and Gene Expres-

sion

To assess correlation of chromatin accessibility at a putative enhancer to ex-

pression level of a putative target gene, we extracted genome wide DHS as well as

RNA-seq data from 15 cell types from a single study (GSE29692, GSE23316) rep-

resenting a breadth of cell types HepG2, GM12878, A549, HeLa-S3, AG04450, BJ,

NHLF, NHEK, HUVEC, h1-Hesc, HMEC, HSMM, K562, MCF-7, SK-N-SH RA.

For the enhancer region we extracted the DHS tag density in each of the 15 cell

types using bigWigSummary tool. Correspondingly, for the putative target genes

we obtained the gene expression (RPKM) in the same set of cell types. We then

estimated the pearson correlation between DHS and gene expression as an indicator
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of interaction between the enhancer and the gene.

2.4 Results

2.4.1 SVM model for cardiac enhancers

Data

Heart tissue was chosen for our analysis because of the availability of both

relevant epigenetic data (H3K4me1, H3K27me3, P300 and DNase hypersensitivity)

and validated human enhancers. We collected 83 experimentally heart enhancers

validated in mouse transgenic from VISTA browse and split them into 1kb regions

(step size 500 bps) to be used as positive training set. Negative set was constructed

by mixing random samples of 1 Kb long regions from the genome and randomly

selected promoters. H3K4me1, H3K4me3, H3K27me3, P300 and DNase-I epigenetic

markers, which have previously been shown to be associated with tissue-specific

enhancers, were collected for the heart tissue from the GEO database. For each

epigenetic mark we calculated its average signal strength across every 1 Kb genomic

region as feature vector of the region. In order to normalize the feature vectors of

the positive and negative set to zero mean and unit variance, we randomly sampled

40,000 1 Kb regions across the genome to estimate mean and variance of feature

vector.
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Training

Epigenetic marks relevant to enhancers are relatively sparse in the genome. If

the negative example in the training set only included random regions then SVM

would choose subset of these inactive regions as its support vectors and would create

a classifier hyperplane separating inactive regions from any epigenetically active re-

gion, resulting in high false positive rate. Therefore, in our negative set, in addition

to random genomic regions, we added gene promoters as examples of epigenetically

active non-enhancer regions. Figure 2.2 shows the effect of varying the proportion

of promoters region in negative training set. In general, we found that a greater

proportion of promoters in negative set improves positive set accuracy with rela-

tively smaller decline in negative set accuracy, at least initially. This suggests that

including a small fraction of promoters in the negative training set results in a better

classification. Therefore, we constructed the negative training set by mixing 1000

random genomic regions and 250 randomly selected gene promoters.

Testing

We used 5-fold cross validation for positive set accuracy estimate. For negative

test set we randomly sampled 1000 1kb genomic regions. On performing grid search

(see Methods) to train the SVM model the average testing classification accuracy

on positive set was 84.1% and on negative set was 92%. The roc curve for the model

prediction is shown in Figure 2.3. The AUC of the model was 0.9231.

Despite some evidence to the contrary, a number of previous works have as-
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Figure 2.2: Effect of variation of proportion of promoter region on accuracy of model.
Two fold cross validation is used for positive set. Negative set accuracy is calculated
by running the trained model on large number of random 1 kb genomic regions not
including those used for training.

sumed P300-bound regions to be active enhancers and used them as gold standards

to train and evaluate enhancer prediction tools. Next, we tested whether our model

trained on validated enhancer and oblivious of P300 binding can nevertheless distin-

guish active and inactive P300-bound regions. We tested our model with 12 P300

peaks in human heart which were found not to have enhancer activity [126]. Interest-

ingly, the model classified 10(83%) of these cases as non-enhancers. Although based

on a small set of examples, this suggests that our model can distinguish inactive

P300-bound regions from active enhancers.

Narlikar et al. [127] proposed a model based on specific motifs as features for

cardiac enhancer identification. To compare performance of our model with their’s,
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Figure 2.3: ROC curve of SVM model

83 validated enhancers were separated into 60 training and 23 testing instances.

SVM was trained on the 60 instances. We extracted the 1Mb regions flanking each

of the 23 test enhancers and predicted enhancer in those genomic regions using the

trained SVM. We first checked how well P300 can retrieve the validated enhancers.

We found that there are only 69 P300 peaks in adult human heart in the 23 genomic

regions, out of which only one overlapped with a validated enhancer. In other words,

P300 peaks are poor predictor of enhancer activity in this context.

Using our trained SVM model we scored each 1 Kb region in the test set. Car-

diac enhancer predicted in Narlikar et al. [127] are typically much shorter. For fair

comparison with Narlikar et al. [127] (1) we extended each of their enhancer to 1

Kb region flanking the reported location, and (2) used a threshold on the enhancer
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score such that the predictions made by our SVM and the Motif based model cover

almost the same number of enhancers (same basepair coverage as well due to exten-

sion) in the genomic test set. Among the 8522 enhancer regions predicted by the

SVM, 21 of the 23 validated enhancers were included, while among 8551 enhancer

regions predicted by Narlikar et al. [127] only 13 were covered. we repeated the

above comparison between our method, P300 peaks and Narlikar et. al. 10 times

with different sets of 60 training and 23 testing instances out of total 83 enhancers.

Figure 2.4 shows the number of enhancer predicted by each method across different

iterations.

Taken together, these results suggest that the SVM model trained on epige-

nomic data is more suitable for identifying cardiac enhancers than are P300 binding

or motif based models.

2.4.2 Identification of cardiac enhancers near SNPs associ-

ated with cardiac phenotypes

Next, we hypothesized that the causal variants underlying GWAS signals

might lie within an enhancer element and affect gene regulation. We tested this

hypothesis on SNPs associated with a variety of cardiomyopathies. Starting with

NHGRI’s GWAS catalog [93], which includes 1332 studies revealing 6852 SNPs,

we manually selected studies for cardiovascular disease traits. This yielded 229

SNPs from 36 studies. We then extended this seed SNPs set to include all other

SNPs in Linkage Disequilibrium (LD) with a seed SNP using Broad Institutes SNAP
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Figure 2.4: Number of enhancers (out of 23) predicted by SVM, P300 peaks and
Narlikar et. al.

server [128]. We included all SNPs within 500kb from a seed SNP with r2 ≥ 0.3. The

extended SNP were merged from the 1000 Genome Project and multiple HapMap

releases (Consortium 2003; Consortium 2010). For each of the resulting 14233 SNPs,

we scored 1kb flanking region using our SVM model to prioritize them as potential

cardiac enhancers. Of all SNPs, the SVM scored 1054 as having enhancer probabil-

ity ≥ 0.8. We found that distance of these enhancers from the corresponding GWAS

SNP was significantly shorter than expected (Wilcoxon p-value = 3.9E-05).
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2.4.3 Cardiac enhancers near cardiac GWAS SNPs are en-

riched for cardiac regulator motifs

Cardiac transcription is primarily regulated by members of GATA, MEF2,

STAT, NF-AT, Nkx, and FOX families of TFs [129–132]. Next, we tested whether

predicted enhancers near GWAS SNPs are enriched for known cardiac TF binding

motifs. We first constructed three SNP sets: (1) eSNPs: comprised of the top

500 SNPs in LD with a GWAS SNP ranked by the SVM score, (2) pSNPs: the

top 500 SNPs in the LD with a GWAS SNP ranked by mean P300 tag density

(using bigwig summary tool from UCSC) in human heart, (3) gSNPs: The GWAS

SNPs themselves. For each SNP we extracted the 1kb genomic flanking region

resulting in three sets of sequences. For each sequence we determined the binding

sites corresponding to 981 vertebrate motifs in TRANSFAC [133] whose motif match

score (using our own tool [134]) was in the top 95th percentile of scores achievable

by that motif. We then determined the enriched motifs in one set of sequences

relative to the other using Fisher Exact Test. Because enhancers have distinctive

compositions which can bias motif enrichment, we normalized the two sequence sets

for their GC composition via random sampling prior to motif enrichment analysis.

When comparing SVM SNPs to the GWAS SNPs, 50 motifs were enriched with p-

value ≤ 0.05, 11 of which corresponded to multiple representatives of GATA, STAT,

NF-AT, Nkx families. When we compared the P300 SNPs with GWAS SNPs, among

the 34 enriched motifs with GATA, Nkx and STAT families were represented by 4

motifs. Importantly, when we compare SVM SNPs directly to the P300 SNPs,
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GATA, FOX, MEF2 families of TF motifs were found to be enriched among the 32

enriched motifs. Figure 2.5 shows the top 50 motifs significantly enriched in SVM

SNPs compared to GWAS SNPs or P300 SNPs. When we restrict the motif search

to 20 bps flanking the SNP using same parameters, we still observe enrichment of

NF-AT and STAT motifs in SVM SNPs relative to GWAS SNPs. However similar

enrichment is also observed in P300 SNPs. It is possible that the SNP affect the

formation of cis regulatory modules indirectly. Further investigation is required. In

summary, all core cardiac TF families are enriched near eSNP loci, relative either

to GWAS SNPs or to P300-bound regions. The overall conclusion was comparable

when we used top 200 SVM scores and top 200 P300 score to be construct eSNP

and pSNP sets. We note that because of small numbers, the p-values were modest

and did not qualify a strict FDR threshold.

2.4.4 Cardiac enhancers near cardiac GWAS SNPs are likely

to regulate the nearby genes

Next we tested whether the predicted enhancers are likely to regulate genes.

While enhancers can in principle regulate non-neighboring genes, a majority of them

do regulate nearby genes [135], therefore, we focused only on the gene promoter clos-

est to the SNP. For a SNP locus and a gene promoter, we estimated the likelihood

of SNP locus to regulate the gene as the correlation between the DNase-I hypersen-

sitivity (DHS) at the locus and the expression of the genes across 15 cell types in

which DHS and RNA-seq was performed in parallel (see Methods); this approach to
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(a) SVM VS GWAS (b) SVM VS P300

Figure 2.5: Significantly enriched motifs in SVM SNPs. The size of each TF label
is proportionsal to its significance. For instance, the p-value for GATA1 in (a) is
0.001 and in (b) is 0.004. The largest p-value is 0.05.

link a putative enhancer to a target genes is similar to Ref. [99]. We constructed

three comparison SNP sets. gSNP comprised of 229 GWAS SNPs. To construct

eSNP set, we selected the SNP with highest SVM score in LD with each GWAS

SNP as long as the SVM score was ≥ 0.8, resulting in 115 eSNP, all of which were

intronic or intergenic. Similarly, to construct pSNP set, we selected the SNP with

highest P300 mean tag density in LD with each GWAS SNP as long as the P300

tag density was ≥ 1, resulting in 58 pSNP. For each SNP we obtained the closest

gene promoter. We then performed three pair-wise comparisons. For instance, when

comparing eSNPs with gSNPs, we focused on genes that were closest to both an

eSNP and a gSNP. Then we computed two DHS-expression correlations - between
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eSNP locus and the gene and between gSNP and the same gene. Given all such

pairs of correlations we tested whether eSNP-gene correlation was greater than the

gSNP gene correlation using paired one-side Wilcoxon test. We found that eSNP

loci were more likely than gSNP loci to regulate the closest gene (based on 124 genes,

p-value = 0.03), eSNP loci were more likely than pSNP loci to regulate the closest

gene (based on 50 genes, p-value = 0.01), and pSNP loci were not more likely than

eSNP loci to regulate the closest gene (based on 23 genes, p-value = 0.87). We also

checked whether the distance of eSNPs from the closest gene promoter was shorter

than that for gSNP or pSNP and we did not observe a statistical difference. The

results suggest that SVM predicted enhancers are more likely to regulate the nearby

genes relative to both the original GWAS SNPs and P300 predicted enhancers.

2.4.5 Genes near cardiac enhancers are enriched for cardiac

function

Next we tested whether the genes uniquely closest to the eSNPs provide greater

insight into the cardiovascular disease phenotype, relative to genes uniquely closest

either to gSNPs or the pSNPs. We used the same criteria as above to obtain the

closest gene lists, but unlike the expression analysis above we retained only the

unique genes in each list. Unfortunately, the uniqueness requirement greatly reduced

the number of genes with 94 for gSNP, 17 for eSNPs and only 2 for pSNPs. We then

used ToppGene [136] to compare enrichment of disease categories in the three gene

lists. ToppGene uses three sources for disease ontology terms - GWAS, Comparative
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Toxicogenomics Database, and OMIM. We excluded GWAS to avoid circularity. As

expected, the pSNP gene list did not show any enrichment. At FDR≤ 0.05 the genes

near gSNP also did not show enrichment for any disease term. The 17 genes in the

eSNP list include NOS3 and MYH7. NOS3 alone showed enrichment for 2 terms

- “Hypertension, Pregnancy-Induced” and “Coronary Vasospasm”. MYH7 alone

was enriched for 5 distinct terms from OMIM database, all immediately related to

myopathy or cardiomayopathy. The results are based on very limited dataset and

one cannot draw general conclusion but they suggest that SVM can uniquely lead

to genes directly relevant to the phenotype.

2.5 Conclusion

Here we present a SVM model for human cardiac enhancers based on four

epigenomic marks H3K4me1, H3K27me3, DHS and P300, each of which have pre-

viously shown to be associated with enhancers in various cell types. While P300

is known to bind to tissue specific enhancers [100], and have been used as the

gold standard for estimating accuracy of previous enhancer prediction approaches

[102,103,127], many P300 bound regions fail to exhibit enhancer activity [100,101].

Our SVM trained specifically on experimentally human cardiac enhancers validated

in trangenic mouse, can not only predict other validated enhancers with high accu-

racy, it can also distinguish validated enhancers from the regions that were bound

by P300 but failed to exhibit enhancer activity in transgenic mouse.

There are three prior approaches to predict enhancers. Narlikar et al. use
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clusters of known cardiac TF motifs as predictor of cardiac enhancers [127]. Lee

at al. train a SVM model based on genomic features based on cardiac P300 bound

regions [102]. Another SVM model for CD4+ T-cell enhancers based on epigenomic

features, again, using P300-bound regions as the gold standard was proposed in

[103]. We have demonstrated the ability of our SVM model to distinguish between

active and inactive P300 bound sites. Additionally, direct comparison of prediction

accuracy on novel validated cardiac enhancers of our SVM model with that of P300

[102] and Narlikar et al. [127], explicitly shows that active enhancers have specific

epigenomic properties not captured just by P300 binding or by clusters of putative

binding sites. Genomic regions bound by P300 may not be active. Therefore, use

of additional features add the tissue specific context to the model. Furthermore,

kernel transformation of feature space used by SVM builds a non-linear classifiers.

Thus it captures a greater variety of enhancers by recognizing a wider combination

of epigenetic factors.

It has been previously suggested that a better knowledge of context-specific

enhancers can help interpret GWAS signals [96]. However, this reasonable assertion

has not been tested explicitly on a specific disease area. Here we use our enhancer

prediction tool to interpret GWAS studies related to cardiovascular phenotypes. We

found an enrichment of high scoring cardiac enhancers near cardiac GWAS SNPs.

Analysis of these putative enhancers suggest that (1) they are enriched for known

core cardiac transcription factor binding sites, (2) they are likely to regulate nearby

genes, and (3) they can uniquely point to certain genes involved with cardiac function

and heart disease.
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Chapter 3: Bayesian integration of genetics and epigenetics detects

causal regulatory SNPs underlying expression variability

3.1 Introduction

Numerous expression Quantitative Trait Loci (eQTL) studies have been per-

formed to determine the cell-type-specific regulatory architecture of the human

genome [1]. However, since single nucleotide polymorphisms (SNP) within a linkage

disequilibrium (LD) region are statistically indistinguishable from each other, these

studies essentially reveal LD blocks that are associated with a genes expression but

do not reveal the potential causative regulatory SNPs, which limits the utility of

these studies [43,46,47,137,138]. The recent explosion of epigenetic data has made

it possible to detect cell-type-specific regulatory regions [43, 47–50], which can be

used to distinguish regulatory SNPs from non-regulatory SNPs in LD blocks.

Recently, a few approaches have incorporated regulation specific epigenetic

data into association studies [43, 47–51]. However, these methods have utilized the

regulatory information either retrospectively or as an empirical prior to prioritize

eQTL SNPs. Such approaches are prone to missing regulatory SNPs with small

effects due to the severe multiple testing correction (or sparsity constraints) [1].
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Furthermore, these approaches ignore interaction between the region harboring the

SNP and the target gene, which is useful in identifying regulators specific to a

gene. Multiple SNPs are known to regulate single genes [139], yet many current

methods [49, 50, 139] limit the number of causal SNPs per gene to a single SNP. In

this paper, we introduce a new method, expression Quantitative Trait enhancer Loci

(eQTeL), which addresses these limitations. It identifies combination of regulatory

SNPs – including SNPs with small effect sizes – that jointly determine expression

variance.

eQTeL is a fully Bayesian approach (Fig. 3.1), which infers cis regulatory

polymorphisms underlying gene expression variability by integrating: (i) genotype

and gene-expression variance across individuals (ii) epigenetic data in appropriate

cell types [51, 52] (iii) DNAse I hypersensitivity (DHS) variance of SNPs and pro-

moters across cell types [17] (iv) expression variance of genes across multiple cell

types (v) linkage disequilibrium blocks [140], and (vi) imputed haplotypes inferred

from the 1000 Genomes Project [141]. Our approach addresses a number of key

methodological challenges. First, it systematically integrates three characteristics

of a causal regulatory eQTL, i.e, correlation with the target genes expression across

individuals, the regulatory properties of the harboring region, and interaction with

the target gene. Second, it can account for heterogeneity of regulatory regions in

terms of different combinations of epigenetic marks. Third, to learn the regulatory

model, eQTeL leverages regulatory polymorphisms that are not associated with gene

expression in addition to expression-regulators. Fourth, it interrogates the LD struc-

ture to find the optimal combination of explanatory SNPs. Fifth, it implements a
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hierarchical scheme to select a sparse set of SNPs, while simultaneously explaining

a maximal fraction of gene expression variance. Finally, eQTeL is scalable to large

datasets.

We statistically validated our method using human heart data as well as real-

istic simulated data and demonstrated that it can predict an individual’s expression

from the genotype more accurately compared to other methods. SNPs identified

by our method include regulatory SNPs with small effect sizes. Further assessment

of functional relevance of identified SNPs suggest that they tend to (i) overlap a

high resolution DNAse footprint, (ii) have an allele-specific DNAse footprint, (iii)

preferentially disrupt putative binding of core cardiac regulators, and (iv) be spa-

tially proximal to their putative target gene. We also estimate that 58% of SNPs

identified by eQTeL (which we call eeSNPs, Supplementary Data 1) are likely to be

causal. Collectively, these results strongly suggest that eeSNPs have functional role.

3.2 Results

3.3 Quantitative Trait enhancer Loci (eQTeL) model

We first provide a broad overview of the eQTeL model and further details can

be found in Methods. As illustrated in Fig. 3.1, eQTeL is composed of two Bayesian

regression models, an expression model and a regulatory model, which are coupled

through message passing. The expression model is a Bayesian variable selection

model [142, 143] which explains the gene expression variance among samples as a
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Figure 3.1: Overview of eQTeL model: (a) Input and output of eQTeL. eQTeL takes
genotype and gene-expression across samples, epigenetic and interaction features for each
SNP and LD block as input. It outputs regulatory SNPs and their target genes, their effect
sizes and regulatory-interaction potentials, as well as estimated feature importance of
each epigenetic and interaction feature. (b) eQTeL is composed of two coupled regression
models (i) a Bayesian variable selection with informative priors models expression as a
linear combination of SNPs. Given the regulatory and interaction priors, this hierarchical
model first identifies LD blocks and then combinations of SNPs that explains expression
variance and that also have high regulatory and interaction potentials. (ii) a Bayesian
logistic regression specifies the regulatory and interaction potential as linear model of
epigenetic and interaction features in semi-supervised manner. The logistic regression
passes the regulatory and interaction potentials to the variable selection model, while the
variable selection model passes expression-regulators to the logistic regression model.
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linear function of SNP alleles. A distinct feature of the expression model is that it

uses informative prior for each SNP, which depends on the SNPs regulatory [47] and

interaction potential. The regulatory model, which is common for all genes, uses a

Bayesian logistic regression [144] to estimate that informative prior as a probabilistic

function of epigenetic and interaction features. Known expression regulators can

be used to train the regulatory model, while an accurate model of regulatory and

interaction potential can help to identify expression regulators. The expression

model then passes current estimates of expression regulators to the regulatory model,

which in passes current estimates of regulatory and interaction priors for each SNP

back to the expression model. eQTeL starts with estimating expression regulators

assuming equal priors for each SNP and then, using current estimates of expression-

regulators, trains the regulatory-model. In turn, current estimates of regulatory

and interaction potential are used as informative priors to re-estimate expression

regulators. This iterative process continues until convergence. Thus, our eQTeL

model gradually improves estimation accuracy by joint learning.

In our approach (see equations below and Methods for details), expression Y

relates to candidate SNPs X via a standard normal linear model [142,145,146] with

noise σ2. However, for each SNP β, its effect size is non-zero only if its regulatory-

interaction indicator γ is 1, which depends on a function φ ′(θ) of regulatory-

interaction potential θ (Methods). The potential θ of a SNP is modeled as a combi-

nation of (i) features for regulatory potential and (ii) features for SNP-gene inter-

action P, via a logistic function. Vector α represents feature weights that are shared

across all genes, thus we learn a single genome wide model of regulators. This choice
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of modeling α obviates the need to explicitly scale genetic and epigenetic factors.

Y ∼ N(Xγ · βγ, σ2I)

γ ∼ Bern(φ(θ)) ∀SNPs

θ ∼ Bern(logistic({E,P} · α)) ∀SNPs

We use Markov chain Monte Carlo (MCMC) [147] to infer all model parameters

jointly (Supplementary Note 1). At each iteration of the sampler, the decision

whether a region is a regulator (i.e., θ = 1) depends not only on correlation between

corresponding SNP and gene, but also on the regulatory and interaction features,

as well as the current estimates of feature weights. This leads to a semi-supervised

[148, 149] clustering of SNPs into regulators and non-regulators (Supplementary

Note 1). Our MCMC implementation explicitly uses LD [150] block information

to judiciously choose combination of regulatory SNPs by sampling over the model

space hierarchically [147] at the top level it explores combinations of LD blocks and

at the lower level it explores the sparse set of SNPs within each LD block that

optimally explain the expression-variance (Fig. 3.1, Methods, Supplementary Note

1, Appendix A Fig. 1). This approach results in a superior exploration of the model

space relative to approaches that disregard the LD structure. eQTeL uses a Rao-

Blackwell estimate of θ that improves the mixing rate (Appendix A Fig. 1) of the

sampler and leads to robust competition between SNPs within a LD block (Fig. 3.1).

Further, the overall sparsity constraint (equivalent to a multiple testing correction
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in non-Bayesian approaches) of eQTeL is controlled by two factors: (i) the fraction

of SNPs that are interacting-regulators and (ii) the fraction of interacting-regulators

that are expression-regulators. This allows for a less conservative sparsity constraint

and makes it possible to identify SNPs with small effect sizes which are typically

missed by alternative approaches due to severe multiple testing correction. eQTeL

assumes Normal priors on α. Finally, eQTeL implementation allows an option to

select a subset of epigenetic factors important for estimating regulatory potential

through Bayesian variable selection model.

3.4 eQTeL detects expression regulatory SNP in

MAGNet

We applied eQTeL to genotype and gene expression data for 313 human hearts

(procured by MAGNet consortium (www.med.upenn.edu/magnet/)) and compared

to the performance of other eQTL methods (Supplementary Note 2 & 3). To deter-

mine regulatory and interaction potentials, we used 95 epigenetic and interaction

features (Appendix A Fig. 2) for primary tissues and cell lines of heart from EN-

CODE and Roadmap Epigenome project [51, 52]. For expediency we selected 1880

genes with expression deemed to have a significant genetic component according to

the univariate eQTL [139,151].

Consistent with its ability to explain a greater expression variance, eQTeL also

predicts expression of genes much more accurately compared to other methods (Fig.
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Figure 3.2: Comparative performance of different methods applied to human heart data
(MAGNet). The analysis is based on 2428 SNPs identified by eQTeL for which posterior
probability of selection > 0.5. To ensure the same total number of SNPs selected by eQTeL,
eqtnminer and LASSO: for eqtnminer we sort SNPs based on posterior probability and
for LASSO based on absolute estimated effect size and then selected top 2428 SNPs. (a)
Explained expression variance based on three representative methods on human heart
data. (b) Accuracy of predicted expression of three methods. (c) Explained expression
variance for human heart data by potentially functional (approximated by overlap with
a footprint) genotyped SNPs and imputed SNPs. (d) Cross-dataset generalization of
MAGNet eeSNPs: Expression predictability in GTEx by eeSNPs identified in MAGNet.
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3.2b). The mean (cross-validated) Pearson correlation coefficient between predicted

and actual expression is 0.176 -+ 0.065 (in contrast with 0.025 for eqtnminer [49]

and 0.088 for LASSO [152]). The bimodality of distribution of correlation coefficient

implies that for a subset of genes, the expressions are highly predictable by eQTeL.

Because of its ability to discriminate among multiple SNPs based on regulatory

and interaction potentials, eQTeL is expected to be much more advantageous on

imputed data, which has a substantially greater number of linked SNPs. To confirm

this, we imputed [153] around 6.5 million SNPs using the 1000 Genome Project

data [141]. Note that each imputed SNP is derived from the reference SNPs using

the linkage information, and cannot be any more associated (in a statistical sense)

with the gene expression than the reference SNPs, and therefore are not expected to

increase the explained variance (as evident from Fig. 3.2c). However, eQTeL with

imputation is expected to improve detection of causal functional SNPs compared

with the genotyped SNPs [51, 139]. Therefore, restricting our search to potentially

functional SNPs, imputed SNPs should explain the expression better. Restricting

our analysis only to SNPs mapped to a DNAse footprint (as a proxy for putative

functional SNPs), the relative advantage of imputation with eQTeL becomes evident

(Fig. 3.2c). Indeed, with imputed data, there is no significant improvement in

detection of likely causal SNPs if standard eQTL approaches are used. Therefore it

becomes imperative to use an integrative approach, such as eQTeL, in the presence

of a large number of linked SNPs (Fig. 3.2c).

To validate eeSNPs in an independent cohort, we analyzed expression and

genotype of 85 Left ventricle samples from GTEx [1] (Supplementary Note 2). We
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note that compared to an exhaustive eQTL, eQTeL cannot identify novel associated

loci, but instead is designed to identify putatively causal SNPs within an associated

locus. We found that 18.9% of eGenes detected in MAGNet replicates in GTEx

(Supplementary Data 2). To assess the relative generalizablity of eQTeL in inde-

pendent cohort, using the eeSNPs identified by eQTeL in MAGNet, we estimated

the explained variance in GTEx. We repeated this for other methods while control-

ling for the number of eeSNPs as well as other regularization procedures. While, as

expected due to the differences in the datasets, the cross-cohort explained variance

is lower than that within MAGNet (Fig. 3.2b versus 3.2d), relative to other meth-

ods, eQTeL exhibits substantially and significantly greater (in both cases Wilcoxon

test p-value between eQTeL and other methods is < 1.0e− 16) cross-dataset gener-

alizability (Fig. 3.2d, Appendix A Fig. 3).

3.5 eQTeL detects causal SNPs in semi-synthetic

data

To demonstrate that eQTeL can accurately identify putatively causal SNPs,

we use a synthetic data evaluation (Fig. 3.3a) (for additional details refer to Meth-

ods). We used 174800 SNP probes along with their genotypes from 313 MAGNet

samples that were within 1MB from transcription start of 200 genes (Methods).

Since regulatory region may have no effect on genes included in our analyses and

yet can contribute to learning the regulatory-model, eQTeL makes a distinction
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between a regulator and a gene-specific expression-regulator. This distinction was

made explicitly in our simulation by designating 1% of all SNPs as regulators (as an

approximation of previous estimation in humans [154]). We then used a frequency

distribution of expression regulators per gene inferred from MAGNet data to ran-

domly choose gene specific expression-regulators for 200 genes. Using allele status

of 313 samples for expression-regulators, we generated gene expression and added

random noise such that expected explained variance from simulated data matched

MAGNets explained variance (Fig. 3.2a). We generated the epigenetic features

for each SNP using ENCODE epigenetic data and validated heart-enhancers from

VISTA [47]. Thus our simulated data closely parallels the experimental data.

Next we applied eQTeL to the simulated data. The precision-recall plot (Fig.

3.3b) shows that eQTeL significantly outperforms other methods. In fact, the per-

formance of full-eQTeL is close to the theoretically best eQTeL model that uses

the original feature weights (see Methods). The previous integrative method eqt-

nminer [49, 50], the only other current method that uses epigenetic data in eQTL,

shows only a modest increase in precision compared to methods that do not use

epigenetic data.

The immediate effect of increase in precision of detecting expression regula-

tors, especially for SNPs with high regulatory potential, is that eQTeL explains a

significantly greater proportion of expression variability (Appendix A Fig. 4). There

is also significant improvement in correlation between predicted expression and ac-

tual gene expression; mean correlation for eQTeL was 0.298 -+ 0.02 (compared to

0.18 for eqtnminer and 0.23 for LASSO regression, Appendix A Fig. 5). Note that
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Figure 3.3: eQTeL identify causal SNP accurately in semi-simulated data. (a)
Design of simulaton study: Simulation study uses (i) 174800 SNPs from MAGNet Geno-
type (874 SNPs per gene) data for 313 samples (ii) distribution of number of expression-
regulators per gene from MAGNet data (iii) distribution of explained expression variance
estimated from MAGNet data (iv) ENCODE epigenetic data for heart cell lines, and (v)
distribution of epigenetic data for regulators VISTA heart enhancers. Expression regula-
tors per gene were chosen amongst regulators (1% of MAGNet SNPs). Using allele status
of expression regulators in 313 samples expression of 200 genes was generated such that
explained variance distribution matches MAGNets explained variance. Epigenetic data
for regulators were generated using the epigenetic distribution estimated from VISTA
heart enhancers. (b) Comparative performance assessment on simulated data. Methods
include (i) Matrix-eQTL (univariate-eQTL): univariate regression (Lappalainen et. al.),
(ii) LASSO: L1 regularizer multivariate regression, (iii) variable selection: Bayesian vari-
able selection, (iv) eqtnminer: Bayesian variable selection with empirical-priors (Gaffney
et. al.), (v) epigenetic-only: epigenetic feature weights derived from verified enhancers
and used to prioritize SNPs, (vi) eQTeL: proposed method, (vii) known-epigenetic-priors-
eQTeL: eQTeL with fixed epigenetic priors as in epigenetic-only. Number of SNPs each
methods were controlled.
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for this analysis we controlled for the number of SNPs that were selected for each

method, using the most explanatory respective SNPs for each method. Overall,

eQTeL can accurately identify around 75% of putative causal SNPs (at 40% recall)

reinforcing the fact that our method can identify substantial fraction of likely causal

genetic determinants of transcriptomic variance.

3.6 eQTeL detects SNPs with small effect sizes

The statistical power to detect SNPs associated with expression variance (i.e.,

the probability of correctly rejecting the null hypothesis that the SNP is not asso-

ciated with gene expression) depends on various factors such as sample size, noise

to signal ratio, number of hypothesis tested (number of SNPs) and effect size of

SNP. The effect size, in turn, depends on the allele frequency of SNP, thus low al-

lele frequency limits statistical power to detect regulatory SNPs [1, 155]. Another

advantage of eQTeL model is that it can detect SNPs with small effect sizes by

distributing sparsity between: (a) sparsity in the number of regulators and, (b)

sparsity in expression regulators among all regulators. eQTeL employs relatively

relaxed sparsity constraints for SNPs that have high regulatory potential and there-

fore the model has higher statistical power to retrieve a greater fraction of SNPs

with low minor allele frequency (small effect sizes) compared to eqtnminer (Fig.

3.4). Furthermore, eQTeLs statistical power to identify low minor allele frequency

SNPs is greater among SNPs with high regulatory-interacting potential (labeled as

eQTeL-high in Fig. 3.4). This trend of differential statistical power is also observed
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in simulated data, where we know the exact effect size of regulatory SNPs (Appendix

A Fig. 6).

eQTeL leverages LD information to judiciously choose combinations of SNPs

(per gene) which explains a much greater proportion of expression variance (details

in Supplementary Note 2). The power to detect SNPs with low allele frequency is

the primary reason that eQTeL captures substantial proportion of causal genetic

determinants underlying transcriptomic variance. However, it should be noted that

SNPs with small effect sizes are only detected by eQTeL if they have a high regula-

tory potential.

eQTeLs performance gain is potentially due to two factors: (i) integration

of epigenetic data, (ii) allowing multiple causal variants per gene [156]. We as-

sessed relative contribution of the two factors. eQTeLs expression predictability by

functional SNPs increases substantially when multiple SNPs per gene were allowed

(Appendix A Fig. 3.7, Supplementary Note 2), supporting a contribution due to

multiple explanatory SNPs. However, in the absence of epigenomic data, i.e., when

using standard LASSO, we do not see a performance gain, and in general, the per-

formance is substantially worse than the performance of eQTeL. This suggests that

allowing multiple SNPs per gene is useful specifically when functional information

is used.
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Figure 3.4: eQTeL increase statistical power to detect small-effect regulatory SNPs
: eQTeL identify causal SNP accurately in semi-simulated data. Comparsion of
effect-size of SNPs detected by eQTeL and eqtnminer. Number of SNPs for each method
was controlled. eQTeL can detect SNPs with small effect size if the regulatory potential
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potential =1 and eQTeL-low-potential are subset with interacting-regulatory potential <
.1.
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3.7 eeSNPs lie within protein-bound genomic re-

gions

Putative causal regulatory SNPs are expected to be bound by regulatory pro-

teins. Earlier studies have shown enrichment of regulatory elements near causal

SNPs [48–50,139]. Since eQTeL and eqtnminer use epigenetic data, which is known

to be correlated [51] with protein binding, we expect to find enrichment of DNAse

footprints near the identified regulatory SNPs. Using genome-wide high-resolution

DNAse footprint data for 41 cell types [157], we obtained the fraction of eeSNPs

(and control SNPs) overlapping with a footprint; Note that DNAse footprints were

not used in eQTeL so they could be used for validation. 76.3 % of eeSNP have a

footprint overlapping the eeSNP (Fig. 3.5), in contrast to 6.3% of in SNPs detected

by eqtnminer that uses same epigenetic data as eQTeL. The performance of eqtn-

miner did not improve even if the best SNP per gene were chosen for this analysis.

For SNPs chosen by LASSO, which does not use epigenetic data, only 5.95 % of

SNPs have overlapping DNAse footprints. Only 2% of SNPs identified by Lirnet

(for 200 genes) overlap with the DNAse footprints (Appendix A Fig. 3.8). Using

top 8 epigenetic features estimated from eQTeL allowed to improve performance of

eqtnminer, but could not bring it up to eeSNPs enrichment level (Appendix A Fig.

9 & Supplementary Note 4). Notably, the DNAse footprint enrichment is high in the

four heart-related cell types. This result suggests that majority of SNPs identified

by eQTeL coincide with regions of in vivo protein binding and are at least 12 fold
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more likely to be functional than the next closest method.

3.8 eeSNPs exhibit binding and regulatory allele

specificity

To ascertain the functional role of eeSNPs, we checked whether the change of a

SNPs allele would affect their regulatory properties (such as protein binding, histone

modifications etc.). For each cell line, we selected heterozygous SNPs by inspecting

genotyped data or pooled reads from different histone modifications, DNAse-seq

and CTCF. We first assessed allelic differences in footprint reads for human cardiac

myocyte (HCM) (see Methods). As shown in Fig. 3.6, the eeSNPs that overlap

a footprint show significantly greater (with odd-ratio of M = 3.005 and p-value <

3.83E-17) allele-specificity relative to SNPs identified by eqtnminer, consistent with

eeSNP having a regulatory impact (allele-specifity comparison with LASSO is shown

in Appendix A Fig. 10). For eeSNPs, we obtained 6.57-fold more reads mapping

to the allele with more DNA-seq reads compared to the other allele (for eqtnminer,

the average read difference was 1.8). We also found higher allele specificity for

eeSNPs in other heart cell lines (Appendix A Fig. 11, HCF, SKMC) for DNASe-Seq

reads. The trend of higher allelic specificity is also true in heart cell lines for histone

modification H3K4me3, which is associated with active enhancers (Appendix A Fig.

12). Allele-specificity of eeSNPs suggests that they may underlie population variance

in gene expression.
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3.9 eeSNPs are spatially proximal to their target

gene

The spatial proximity of eeSNP with its target promoter is a pre-requisite for

cis-regulation. Spatial proximity has been experimentally determined using chro-

matin interaction analysis with paired-end tags (ChIA-PET) assays [158]. Identified

SNPs that were closer than 100 bps from their target promoters were excluded. We

quantified spatial proximity of each eeSNP and its target by the number of pair-end

reads supporting the proximity, whereby one of the reads overlaps with the target

promoter and other read overlaps with the eeSNP. Analysis of pooled ChIA-PET

data from various cell types suggests that, relative to controls, eeSNPs are signifi-

cantly more proximal to their target genes (Fig. 3.7). This implies that eeSNPs are

more likely to be cis-regulators of their target genes.

3.10 eeSNPs disrupt motifs of cardiac transcrip-

tion factors

A likely mechanism by which a regulatory SNP may affect gene expression

is by disrupting binding of specific transcription factors [159]. For each of the 981

vertebrate TF motifs annotated in the TRANSFAC database [160], we quantified

(see Methods) the TF binding score difference between two alleles of eeSNP. We

only considered the SNPs for which the score was significant for at least one of the
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alleles. As shown in Fig. 3.8, the core cardiac TF motifs (such as FOX, NKX,

GATA) are among the TF binding motifs that are most likely to be disrupted by

eeSNPs. This observation indicates that functional consequence of regulatory SNP

might be heart specific. The disruption of STAT, MEF2, FOX, NKX and GATA

transcription factor families are known to play important role in cardio-vascular

diseases [47, 161–163]. This suggests that identified eeSNPs may have a specific

transcriptional role in the heart.

3.11 Proportion of eeSNPs that are causal

In the absence of extensive experimental data, it is difficult to estimate the

proportion of eeSNPs that are causal. However, similar to a previous approach [139],

we used the proportion of eeSNPs that disrupt potential TF binding relative to the

same for high-confidence putatively causal SNPs, as an independent estimate of

proportion of eeSNPs likely to be causal (see Methods). Based on each TF motif,

that was found to be preferentially disrupted by eeSNPs above, the proportion of

eeSNPs estimated to be causal varied from 17% to 93%, with a mean estimate of

58% (Methods, Appendix A Fig. 12). Lastly, based on mammalian conservation

data, we found that eeSNPs are more conserved than control SNPs (Appendix A

Fig. 13).
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3.12 Methods

3.12.1 Modeling regulatory-interaction potential:

There are R1 epigenetic features Ei that were used to predict if a SNP i lies

in a regulatory region. In addition, we also have R2 interaction features Pij that are

predictive of the interaction between SNP i and gene j. We refer to a SNP that

has high regulatory potential and high interaction potential as interacting-regulator,

regardless of whether it associates with gene expression. Further, if the SNP is

associated with gene expression, we refer to that SNP as expression-regulator. In

our eQTeL approach, we model the regulatory-interaction potential θij between SNP

i and gene j as a combined function of epigenetic features Ei and interaction features

Pij. Specifically, we use a Bayesian logistic regression model:

θij ∼ Bern(logistic(Fij · α))

, where Fij is a concatenated set of features consisting of both Ei and Pij, and Bern

is the Bernoulli distribution. The coefficients α are shared across all genes.

3.12.2 Modeling Gene Expression:

In our model, the expression of gene j depends not only on the allele status

of candidate SNPs, but also on the estimated regulatory-interaction potential of

the SNP i and gene j pair. Specifically, given gene expression in n samples Yj =
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(Yj1, . . . , Yjn), we model the vector of expression Yj for gene j as a linear function of

the allele status for all candidate SNPs, X = {X1, · · · , Xp} where Xi is allele status

of SNP i over the n samples:

Yj|βj,X,γj ∼ N(Xγ,j · βγ,j, σ2j I), (3.1)

where the effect βij of SNP i on the expression of gene j is nonzero only when

indicator variable γij = 1. In other words, γij = 1 signifies whether SNP i is

associated with the expression of gene j. Xγ,j ( and βγ,j ) refers to a subset of SNPs

for which γij = 1.

If a SNP lies within a genomic region that is deemed to be (i) a regulator, and

(ii) interacting with the target gene, then the SNP is likely to affect the gene’s ex-

pression. Thus, the regulatory-interaction potential for each pair of SNP i and gene

j enters our gene expression model through the prior distribution on the indicator

variables γij,

γij|φ(θij) ∼ Bern(φ(θij)) ∀ SNPs i (3.2)

where the function φ(θ) is defined so that φ(θ) = πθπ1−θ0 = π/ρ1−θ with π being

our prior probability for each SNP to be expression-regulator and let π0 = π/ρ

be the prior probability when the SNP does not reside in such a region, where ρ

is an amplification factor. An uniform prior for π ∈ (m/e,M/e) is defined where

m and M are respectively the minimum and the maximum number of expected
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expression-regulators. However, no substantial difference in results was observed

when we just fixed π = m̄/e where m̄ is expected number of expression regulators.

A value of ρ = 100 was used because performance of model was insensitive to choice

of ρ ∈ (100, 1000).

Due to severe multiple testing corrections, association studies miss many po-

tential causal regulators that have relatively small effect on expression. In our eQTeL

model, overall sparsity is controlled by two factors: (a) the fraction of SNPs which

are interacting-regulators i.e. E(θ) and (b) the fraction of interacting-regulators

which are expression-regulators i.e. π. This is because the overall sparsity is a

product of the two factors i.e. logE(φ(θ)) ≈ E(θ)logπ assuming ρ >>> 1. Thus,

the effective sparsity constraints are less conservative on SNPs that lie within an

interacting-regulator in our eQTeL model, which allows us to capture potential

causal expression-regulator SNPs with small (but non-zero) effects on expression

variance (Fig. 3.4 and Appendix A Fig. 3.6; refer to Supplementary Note 5).

We also employ a standard prior distribution, Zeller’s g-prior [146], for our

linear model parameters,

βγ|γ, σ, c ∼ N(0, cσ2(XTγXγ)
−1), p(σ2) ∝ 1/σ2 (3.3)

and we also define the following prior distributions for the rest of the parameters as

c ∼ IG(
1

2
,
n

2
)

α ∼ N(b, 100 · I) (3.4)
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The first element of α, α0 is the bias term, and b is the prior for α, and is set

to 0, except for b0 (the prior for α0), which can be used to control the sparsity on

the number of interacting-regulators. We expect 1% of all SNPs to be regulators. To

achieve this level of sparsity in number of regulators, b0 was set to log(e/(p− e)),

where e is expected number of interacting-regulators, and was set to p/100. That

is, b0 = log(1/99).

Refer to Supplementary Note 1 for the eQTeL’s inference algorithm, initial-

ization and convergence criteria.

3.12.3 Cardiac expression data (MAGNet):

Samples of cardiac tissue (n = 313) were acquired from patients from the My-

ocardial Applied Genomics Network (MAGNet; www.med.upenn.edu/magnet). Left

ventricular free-wall tissue was harvested at the time of cardiac surgery from sub-

jects with heart failure undergoing transplantation and from unused donor hearts.

Genomic DNA was extracted using the Gentra Puregene Tissue Kit (Qiagen, CA) ac-

cording to manufacturer’s instructions. Total RNA was extracted using the miRNeasy

Kit (Qiagen) including DNAse treatment. RNA concentration and quality was de-

termined using the NanoVue PlusTM spectrophotometer (GE Healthcare) and the

Agilent 2100 RNA Nano Chip (Agilent). To assess gene expression, RNA was hy-

bridized with Affymetrix Genechip ST1.1 arrays using manufacturer instructions.

CEL files were normalized with the robust multiarray analysis (RMA) using the

oligo package in Bioconductor [164]. To remove potential batch effects, expression
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values were further adjusted using ComBat, an empirical Bayes method that es-

timates parameters for location and scale adjustment of each batch for each gene

independently [165]. Probe sets were removed if they displayed RMA expression

values < 4.8 on all arrays. This filtering yielded sets of genes present well above

background levels in the human heart. Probeset showing no annotated cross hy-

bridization potential were kept, leaving 15,395 probes for final analysis.

3.12.4 Selection of genes:

The genes were selected such that they had at least one significantly associated

SNPs based on univariate-eQTL (Matrix eQTL). 1880 genes were thus selected using

FDR threshold of 1E-6 using Matrix-eQTL (Lappalanien et. al.). We have no reason

to believe that this selection is favorable to eQTeL.

3.12.5 Pre-procession of gene-expression:

It has been found that removing technical biases and confounding factors can

greatly improve the association studies. Normalization of gene-expression data to

remove confounding factors have been studied extensively ( [166,167]). In association

studies the comparison is across individual and not across genes, and therefore

main aim of the normalization is to make the gene-expression distribution across

samples comparable. Similar to Lappalainen et. al., we use PEER [166] to remove

the confounding factors from expression data as pre-processing. Given expression

data for multiple individuals, PEER identifies hidden factors that explain a large
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proportion of global expression variability. Factors represent covariates that affect

multiple gene and are therefore most likely to be confounding factors or technical

biases. The factors are then regressed out from the expression and residual are used

for performing association studies. In certain cases, such in trans-eQTL, a genetic-

factor can affect multiple SNPs and PEER might remove biologically relevant signal.

However, since the aim of the paper is to identify cis-eQTL, i.e. local effects, we can

safely use PEER.

To determine number of factors (K) to be removed using PEER, we used

approach similar to Lappalaninen et. al. We ran PEER for 16,271 Affymetrix gene

probes from MagNet using parameter K=0, 3, 5, 10, 15 and 20; then we compared

number of genes (eGenes) that have at least one SNPs significantly associated with

expression (p-value < 1 E -6). We chose K=10 because number of eGenes plateaued

at K=10. Factors from PEER were regressed out from the expression and residual

expression was used for further analyses.

Linear regression assumes normality of the expression data. Residual data

from PEER was standardized to normal distribution before performing the associ-

ation analysis.

3.12.6 Genotypes and imputation for cardiac samples:

DNA samples were genotyped using Affymetrix Genome Wide SNP Array 6.0

and analyzed per manufactures instructions. We applied quality control (QC) fil-

ters to exclude unreliable samples, samples with cryptic relatedness and samples
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that were not genetically inferred Caucasian. After QC filtering, 313 individuals

remained. All analyses were conducted using software package PLINK [140]. For

the analysis reported here, we eliminated SNPs with genotype call rate < 95%, with

minor allele frequency (MAF) < 15%, or if there was significant departure from

Hardy-Weinberg equilibrium (p < 10−6). A total of 360,046 SNPs passed QC and

were available for analysis. To improve cross study comparisons, genotype imputa-

tion was performed using the Minimac (v 2012.11.16) [153] program. Imputation

results were filtered at an imputation quality threshold of 0.5 and a MAF threshold

of 0.15.

PLINK [140] was used to infer LD block for the genotypes. Default setting of

SNPs within 200Kb was used to estimate it.

3.12.7 Epigenetic data and Interaction features:

Epigenetic data were obtained from ENCODE, Roadmap epigenome project

and GEO database for following heart tissues: AoAF, HCM, HCF, Fetal-hearts,

Adult-hearts, Left Ventricle, Right Ventricle, Arota, and Right Atrium. Because

DNAse I footprints were used to validate eeSNPs, they were excluded from the

feature importance (α) estimation of eQTeL. Appendix A Fig. 2 lists the epigenetic

and interaction features, that were critical for identification of interacting-regulators.

We assessed the importance of epigenetic factors directly overlapping each SNP

within 50 bps flanking region (suffix .50 in Appendix A Fig. 2). We also assessed

the importance of epigenetic factors in broader context of each SNP within 500 bps
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flanking region (suffix .500 in Appendix A Fig. 2). Interaction features between a

gene-promoter and a region containing SNP were calculated using RNASeq and DHS

data from 15 cell types (A549, Bj, H1hesc, Hepg2, Hsmm, K562, Nhek, Ag04450,

Gm12878, Helas3, Hmec, Huvec, Mcf7, Nhlf, and Sknshra). These features include:

a)correlation and absolute correlation between DHS of the region and DHS of the

promoter b) correlation and absolute correlation between DHS of the region and

RNASeq FPKM of the gene.

Both epigenetic and interaction features were normalized to mean of 0 and

standard deviation of 1. This implies that distribution of each of these features for

a set of random SNPs were expected to have zero mean and one standard deviation.

Therefore, y-axis in Appendix A Fig. 2 shows absolute enrichment over random-

SNPs with units in standard deviation.

3.12.8 Estimating fraction of putatively causal eeSNP:

Using an approach similar to Lappalanien et. al. [139], we estimated propor-

tion of eeSNP that are putatively causal. Clearly, an independent estimation of

proportion of causal SNPs cannot rely on features used to identify eeSNPs, or any

other potentially correlated feature, such as footprints. Thus, for an independent

estimate of the proportion of causal SNPs, we used potential TF binding disruption

by a SNP allele. Following Lappalanien et. al., using Matrixeqtl [151], we first

identified causal SNPs as follows. For each gene we identified best and second best

associated SNPs, and the best SNP was deemed causal if (i) the best SNP associa-
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tion was significant (FDR < 10−6) and (ii) the difference in association score (-log10

pvalue) between the best and the second best SNPs was greater than a threshold

(conservatively, 2.5, a la Lappalanien et al.).

For each TF motif, we obtained the disruption at each SNP (decrease in motif

match scores due minor allele relative to major allele) thus obtaining two distribu-

tions, one for causal SNPs and another for the presumed non-functional background.

Using distribution of motif disruption score for causal SNP, we identified TF mo-

tifs that are preferentially disrupted by causal SNPs. For each of such motif y, we

calculated an enrichment score ccausal,y which is the ratio of means of TF motif

disruption score between the causal and a set of presumed non-causal SNPs. For

motif y, we similarly calculated the enrichment score for eeSNPs ceeSNP,y. Following

Lappalainen et. al., we then estimated the fraction of eeSNPs likely to be causal as

ceeSNP,y−1

ccausal,y−1
. Appendix A Fig. 14 shows these proportion of eeSNP that is likely to be

causal for all selected motifs, suggesting that overall 58% of eeSNPs are putatively

causal.

Functional explained variance and expression predictability was defined as

explained variance by subset of expression-regulators that mapped to a DNAse I

footprint.

3.12.9 Simulation study:

Simulation was done on 200 genes. We used 174800 SNPs (874 SNPs per each

gene) for 313 samples from MAGNet genotype data. 1% of total SNPs were declared
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as enhancers. We estimated, number of causal regulatory SNPs and distribution of

explained expression variance by genotype by running eQTeL in MAGNet data.

Using estimated number of causal regulators from MAGNet, expression-regulators

were selected among enhancer per gene. Effect-size of each expression regulator was

generated from ∼ N(0, 1), that is finally being used to generate expression for each

gene using a linear model. Finally a random noise was added such that explained

variance by expression-regulators will be same as estimated from MAGNet data.

For each regulator SNP, 7 epigenetic features (DNAse, H3K4me1, H3K4me3, P300,

H3K27me3, H3K36me3 and H3K9me3) for heart were generated from distribution

derived from validated heart enhancers [47]. For all other SNPs epigenetic features

were generated from random SNP background.

3.12.10 Motif binding score differential:

For each of the 981 vertebrate TF motif from TRANSFAC database [168], we

scanned the 50 bps flanking eeSNPs (and for 10,000 control SNPs randomly sampled

from 300,000 SNPs) for the presence of motif using pwmscan tool [169], separately

for the major and the minor allele. Only the cases where at one of the two alleles

had a motif hits (p− value < 0.0002) were further considered. For each such case,

the difference in the binding score for the two alleles was computed, as the difference

in log(p-value). For each motif, the binding differential score for eeSNPs and the

control SNPs were compared using Wilcoxon test and the motifs which had at least

1.5 fold greater differential among eSNPs and a p− value < 0.05 were identified.
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3.12.11 DNAse footprint enrichment:

From [157] we obtained a list of genomic locations, for 41 different cell-types,

where significant evidence of in-vitro protein binding event were detected using

DNAse-footprint. For each tissue, we calculated fraction of number of SNP that

have a footprint in the 50 bps flanking it.

3.12.12 Allelic imbalance and ChIA-PET analysis:

DNAse hypersensitivity (DHS-seq) reads for heart cells (HCM sample) were

obtained and mapped to eeSNPs (and control SNPs). Heterozygousity at each SNP

locus was ascertained by the presence of multiple alleles among the reads mapping

to the SNP location. For each such locus, the allelic imbalance was calculated as

the difference in the number of reads mapped to each allele. The allelic imbalance

was plotted against the overall signal intensity rank.

ChIA-pet assay identified spatially proximal genomic regions where at least

one of the region is bound by PolII. Because ChiA-pet data is unavailable for heart-

related cell types, we pooled multiple ChiA-pet data from K562, Hela, Nb4 and

MCF7. For each 50 bps flanking an eeSNP (or control SNP) and the target promoter

pair, number of ChIA-pet reads supporting the spatial proximity of the two loci

were recorded. The ChiA-pet support for each SNP-gene pair was then compared

for different methods after controlling for the genomic distance between the SNP

and its target gene.

In Fig. 3.6 and 7, median “white” lines represent LOESS (local regression) for
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each method. Confidence interval for each median line is estimated using bootstrap-

ping and they are shown in the s using either of following two ways: by thin lines

representing LOESS of each bootstrap, or by colored regions representing confidence

intervals in terms of standard deviation of bootstraps.

3.13 Software availability

The implementation of eQTeL with its source code is freely available at

(www.cbcb.umd.edu/software/goal) as a R-package under MIT license.

For details of other eQTL methods (Supplementary Note 3); expression ex-

plained variance and predictability (Supplementary Note 6); and scalability of eQ-

TeL (Supplementary Note 7) refer to Supplementary Notes.
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Synthetic rescue determinants in cancer
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Chapter 4: Synthetic rescue determinants of resistance and response

to cancer therapy

4.1 Introduction

Resistance to therapy in cancer may arise due to diverse mechanisms including

drug efflux, mutations in drug targets and adaptive responses in downstream molec-

ular pathways [61]. The latter cellular reprogramming alterations mainly involve

network-wide changes in the DNA sequence, copy number, expression, epigenetics

and phosphorylation of proteins that buffer the disrupted function of the drug tar-

gets. Indeed, numerous recent transcriptomic and sequencing studies have identified

different molecular signatures underlying the variable response and emergence of re-

sistance to specific drugs in cancer patients, and potential interventions to improve

the effectiveness of therapies [83,84,170–179].

During cancer progression, fitness-reducing alterations in a particular gene may

be compensated by subsequent alterations in the activity of another gene, restoring

cancer progression and proliferation. In this type of genetic interaction, we term

the former gene a vulnerable gene, the latter gene a rescuer gene, and the functional

relation between them a synthetic rescue (SR). There are potentially four basic types
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of SRs: (1) down-regulation of both the vulnerable and the rescuer gene (DD); (2)

down-regulation of the vulnerable gene and up-regulation (i.e., over-activation) of

the rescuer (DU); (3) up-regulation of the vulnerable gene and down-regulation of

the rescuer (UD); and (4) up-regulation of both vulnerable and rescuer genes (UU)

(see Extended Data Figure 1a-d).

Recent years have seen a surge of interest in studying an inherently different

class of genetic interactions termed synthetic lethality (SL) [180, 181] in which the

inactivation of both SL partner genes is lethal but the inactivation of either gene

alone is viable (see Extended Data Figure 1e). A tumor may become insensitive to

a drug treatment because activity of the SL partner of its drug target is maintained

at wild-type levels to escape conditional lethality [72]. However, cancer cells may

also further over-activate a rescuer gene of the drug target far beyond its wild-type

activity levels to escape lethality [60,83, 84,170–173] (DU-type SR). While the role

of SL interactions in cancer has received tremendous attention [71, 181–183]18,21-

24, only a few instances of SR interactions have been reported in cance [60, 83,

84, 170–173] (and very few reported in micro-organisms [184–186]). Specifically, a

genome-wide approach to identify SR interactions has not been reported.

4.2 Background

Before proceeding further, we briefly revisit some background of genetic inter-

actions in cancer.
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4.2.1 Synthetic lethality

Synthetic lethal (SL) interaction between a pair of genes defines an interac-

tion between two genes when concomitant inactivation of two gene is lethal to cell,

while inactivation of each of gene is not [71]. As shown in a figure an example of

SL interactions between genes BRCA and PARP [187]. In a cell, individual knock-

down of either BRCA or PARP genes are not lethal to cell. However, simultaneous

knockdown of BRCA and PARP genes are lethal to cell. Fig 4.1b. illustrates the

concept of SL in terms on a functional truth table of gene activities. We will use

the functional truth table representation throughout the document to represent any

genetic interaction between two genes. In the functional table samples are divided

based on each of the genes activity. We assume tri-state of gene activity i.e, in-active

(under-expressed), wild-type, over-active (over-expressed).

Synthetic lethality was first noticed first by Cavin bridge in 1922, when he

observed a combination of mutation confer lethality in melanogaster [188]. The term

synthetic lethality was later coined in 1945 [188]. Synthetic lethality offers a unique

opportunity to develop anticancer drugs that will target genes whose Synthetic

Lethal (SL)-partners are inactivated in the specific cancer being treated. SL-based

drugs are therefore expected to kill cancer cells selectively, sparing normal healthy

cells [72, 73, 189]. Towards the realization of this potential, screening technologies

have been developed to detect SL-interactions in numerous model organisms [180]

and in human cell lines [62–70]. However, as every pair of genes can potentially

interact in synthetically lethal manner, the combinatorial search space consists of
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Figure 4.1: A example of synthetic lethal between genes BRCA and PARP. (a) Two
genes form an SL pair if the combined inhibition of both gene products is lethal
to the cells, while the inhibition of either gene product alone is not lethal. (b).
Synthetic lethal functional truth tables: The truth table denotes the cell viability
states - viable (green), lethal (red) - as a function of the activity state of each of the
SL pair genes (down regulated, wild-type and up-regulated).

more than 500 million pairs that ideally should be examined in more than just one

experimental system. Current experimental technologies at our disposal are hence

yet far from being able to address the challenge of identifying the SL interactions

across different cancers on a genome-scale. New bioinformatics approaches are hence

been called for to guide and complement the experimental search for SL-interactions

in cancer.

Previous computational approaches developed to systematically study syn-

thetic lethality in cancer have aimed to infer SL pairs by mapping SL-interactions

in yeast to their human orthologs [190, 191]or by utilizing metabolic models and

evolutionary characteristics of metabolic genes [192–194]. In a recent study Jerby
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et. al. harnessed large cancer genomic data that have been rapidly accumulating

to identify candidate SL-interactions via a direct data-driven approach, termed the

DAta-mIning SYnthetic-lethality-identification pipeline (DAISY) [71].

4.2.2 Computation identification of SL network in cancer

(DAISY)

DAISY identifies candidate SL interactions employing three independent sta-

tistical tests

1. Molecular survival of the fittest: DAISY mines gene expression and SCNA of

tumor samples from TCGA and cell lines data to identify SL gene pairs A and

B having the property that tumor samples with co-inactivation the genes are

significantly less frequent than than what would be expected by observing the

genes individual inactivation rates in the data.

2. The second inference strategy, ”shRNA-based functional examination”, is closely

related to the first. It is based on the notion that the essentiality of a synthet-

ically lethal gene manifests itself when a gene is knocked down in cancer cells

where its SL-partner(s) are inactive (that is, with a markedly low copy-number

and expression). Accordingly, the SL-pairs of a given gene can be identified

by searching for partner genes whose under-expression and low copy-number

induce its essentiality.

3. The third procedure, ”pairwise gene co-expression”, is based on the notion

that SL-pairs tend to participate in closely related biological processes and
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hence are likely to be co-expressed [180].

They show that a genome-wide cancer-SL-network can be robustly identified

from these datasets, and then utilized to successfully predict both gene essentiality

and drug response in cancer cell lines, as well as patient survival [71].

4.2.3 Synthetic dosage lethality

Synthetic dosage lethal interaction between a pair of genes defines an (asym-

metric) interaction such that the over-activity of one of them renders the other

gene essential, i.e independent knockdown of gene A is not lethal to cell, however

knockdown of A in cells where B is over-expresssed is lethal [74]. The concept of

synthetic dosage lethality, although not explored as extensively as SL, may hold

therapeutic potential, especially in case of cancer. One of the hallmark of caner

is over-expression of oncogenes. The over-expression of oncogenes such as MYC

help cells to overcome apoptosis and proliferate rapidly. However, over-expression

of oncogenes creates additional vulnerabilities in cells, specifically in such cells if

SDL partner of the oncogenes are knockdown it will selectively kill the cancer cells.

Therefore, the over-activation associated with oncogenes, unlike loss-of-function as-

sociated with tumor suppressor, can be therapeutically exploited by SDL.

4.2.4 Synthetic rescue

We define synthetic rescue (SR) interactions between a vulnerable gene V and

rescuer gene R as (asymmetric) interactions in which change in activity of V is lethal,
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but subsequent perturbation in gene R makes the cell viable again. Depending on

direction of perturbation there can be following four kinds of SR.

4.2.5 Down-Down (DD) synthetic rescue

In this kind of interaction, inactivation of vulnerable gene is lethal to cell, how-

ever subsequent inactivation of rescuer gene make cell viable. Fig ?? illustrates the

DD interaction. SR interaction have three possible state: (i) ”viable” (green): ac-

tive vulnerable gene active , (ii) ”lethal” (red): inactive vulnerable gene and rescuer

gene active and (iii) ”rescue” (blue): inactive vulnerable gene and inactive rescuer

gene. At first glance it might seem that viable and rescue state should be phenotyp-

ically similar, however as we shall see in case of cancer they are phenotypically very

different. In cancer while viable state represent normal poliferation of cancer cell,

on the other hand rescue state represents resistant state (i.e cells still proliferate

with drug treatment).

Such kind of interaction in are also referred as extragenic suppressor mutations

[195]. However, suppressor mutation definition are limited to mutations, where

mutation in one gene reverses the phenotypic effect due to mutation in other gene.

For eg. mutation in gene UNC-54 can be rescued by mutation in UNC-22 in C.

elegans [196].
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Figure 4.2: Definition of DD type SR: (a) A vulnerable gene and a rescuer gene form
an DD SR pair if the inhibition of the vulnerable gene is lethal unless it is rescued by
inhibition of the rescuer gene. (b) The truth table denotes the cell viability states -
viable (green), non-rescued (i.e., lethal – red), and rescued (blue) - as a function of
the activity state of each of the DD SR pair genes (down regulated, wild-type and
up-regulated).

4.2.6 Down-Up (DU) synthetic rescue

In this kind of interaction, inactivation of vulnerable gene is lethal to cell,

however subsequent over-expression of rescuer gene make cell viable. Fig 4.3

illustrates the DU interaction. Analogous to DD interaction DU have three possible

state.

Other SR interactions are Up-Down(UD) SR and Up-Up SR, where over-

expression of vulnerable gene is lethal and rescued by rescuer in-activation in case

of UD and over-activation in case of UU.
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Figure 4.3: Definition of DU type SR: (a) A vulnerable gene and a rescuer gene
form an DU SR pair if the inhibition of the vulnerable gene is lethal unless it is
rescued by over-activation of the rescuer gene. (b) The truth table denotes the cell
viability states - viable (green), non-rescued (i.e., lethal – red), and rescued (blue) -
as a function of the activity state of each of the DU SR pair genes (down regulated,
wild-type and up-regulated).

Although all four types of SR interactions are important, in the presented

work we concentrate on DU SR interactions because (i) they are most intituive of

SR interaction, (ii) most clinically relevant in cancer and (iii) can be used to devise

anti-resistant cancer therapies.

4.3 INCISOR

Here we set out to study the potential role that SR interactions play in de-

termining drug resistance in cancer, mediated by altered activity of SR rescuer
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partners of drug targets. We developed a new statistical pipeline, termed IdeNtifi-

cation of ClinIcal Synthetic Rescues in cancer (INCISOR) to identify genome-wide

SR networks in cancer. Mining tumor molecular and survival data of cancer pa-

tients, INCISOR predicts SR pairs through a series of four inference steps that

together capture the salient features of an SR pair. We provide a brief overview of

INCISOR for the DU-SR type (see Methods for a comprehensive description and

refer to Appendix B for other types): (1) The first step, termed Molecular survival

of the fittest (SoF) uses molecular data (somatic copy number alterations (SCNA)

and transcriptomics data) and examines the fraction of tumor samples that display

a given candidate SR pair of genes in its DU rescued state that is, where the vul-

nerable gene is down-regulated and the rescuer gene is up-regulated. Scanning all

possible gene pairs it selects pairs that appear in the rescued state (respectively

non-rescued state) significantly more (respectively less) frequently than expected,

testifying to their rescue effect on the tumor fitness. The next three steps examine

patient survival data to further narrow down the SR candidate pairs (identified in

the first step based on molecular data) by eliminating potential false positives: (2)

Vulnerable gene screening aims to identify the vulnerable genes by searching for

genes whose down-regulation improves patient survival (i.e., reduces tumor fitness)

in the subset of tumors where the rescuer partner (as predicted from the first step)

is not up-regulated. (3) Robust rescue effect studies the subset of tumors where the

vulnerable gene is down-regulated. It aims to select the SR pairs where the rescue

of the vulnerable gene is robustly associated with worse patient survival than its

non-rescued state. Finally (4) Oncogene rescuer screening removes false positive
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candidate SR pairs whose rescuers show worse survival when up-regulated regard-

less of the inactivation of the vulnerable gene partners (thus likely to have oncogenic

effects on their own).

More specifically, INCISOR identifies candidate SR interactions employing

four independent statistical tests, each tailored to test a distinct property of SR

pairs. We describe here the identification process for the DU-type SR interactions.

The methods to detect other patterns are analogous and described in the Appendix

B. We identified pan-cancer SRs analyzing gene expression, SCNA, and patient

survival data of TCGA from 7,995 patients in 28 different cancer types. As reviewed

in the main text, INCISOR is composed of four sequential steps (see Extended Data

Figure 1a):

1. Molecular survival of the fittest: We mine gene expression and SCNA of mul-

tiple tumor samples to identify vulnerable gene (V) and rescuer gene (R) pairs

having the property that tumor samples in non-rescued state (that is samples

with underactive gene V and non-overactive gene R shown in red in Extended

Data Figure 1a) are significantly less frequent than expected (due to lethal-

ity), whereas samples in rescues state (that is samples with under-active gene

V but over-active gene R shown in blue in Extended Data Figure 1a) appear

significantly more than expected (testifying to an explicit rescue from lethal-

ity). Specifically, we performed multiple one-sided Wilcoxon rank-sum tests

to identify the pairs that have the above properties (see Appendix B).

The next three steps utilize patient survival data to narrow down which of
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the SR candidate pairs from step 1 are the most promising candidates (Note

that in doing that we take into account both FDR adjusted log-rank p-value

and effect size, ∆AUC, which quantifies the difference in the Area Under the

Curves in the KM survival plot of the two compared groups):

2. Vulnerable gene screening: This step aims to selects vulnerable genes V by

searching genes whose down regulation conditionally improves patient survival,

that is it examines the samples where the gene R is not unregulated and tests

whether the candidate vulnerable gene V is detrimental to cancer progression

(when not rescued by candidate rescuer gene R). Specifically, we perform two

KM analyses testing if the inactivation of vulnerable gene V (without rescue)

improves patient survival (test I) and if the over-activation of candidate res-

cuer gene R when V is inactivated decreases patient survival (test II). Among

candidate pairs that are significant in test I (after FDR correction), we calcu-

late ∆AUC in tests I and II, and then we calculate the difference in these two

∆AUC values. Gene pairs with top 25 percentile of these differences will be

selected for further testing in steps 3 and 4.

3. Robust rescue effect: This step examines the samples where the gene V is not

down-regulated and aims to identify candidate SR pairs where the rescue (blue

in Extended Data Figure 1a) of the vulnerable gene is robustly associated with

worse patient survival than its non-rescued state (red in Extended Data Figure

1a). We compare the survival of patients whose tumors show rescued versus

non-rescued activation patterns for a given SR pair. Based on KM analysis,
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candidate SR pairs where the rescued state is associated more strongly with

worse survival than the non-rescued state are considered likely SR candidates

and are passed to the final, 4th step. In order to augment the robustness

of the rescue effect we employed bootstrapping within TCGA samples, which

improves cross-dataset generalizability of rescue effect of SR pairs. Specifically,

we aggregated the results over 50 bootstraps of the samples set to identify

robust rescue effects [152].

4. Oncogene rescuer screening: Some pairs found significant in step 3 might show

an effect on patient survival simply because the rescuer gene is an oncogene,

irrespective of any synergy between the rescuer and the vulnerable gene. This

step aims to correct for such false positives by eliminating the SR pairs with

the lowest 90% of rescue effect (measured by ∆AUC in KM patient survival

curves) among all pairs that include a given rescuer gene.

Finally, INCISOR tailors a log-rank statistical test (two-sided) for the three

survival analyses (steps 2-4) to account for differences in survival time between

cancer types. Specifically, to compare survival of any two groups, we estimate the

expected number of deaths in each group for each cancer type separately assuming a

hypergeometric distribution. We then sum the cancer-specific estimates of expected

and observed number of deaths to infer pan-cancer expected and observed number

of deaths. Finally a 2-test (two-sided) comparing the pan-cancer expected and

observed death gives the final pan-cancer survival difference between any two groups

tested.
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4.4 Validations of INCISOR

We applied INCISOR to mine the TCGA data, which spans 7,995 samples

across 28 different cancer types [197]. We focus our description on DU-SR analysis

as it has the greatest survival predictive power and most importantly, DU rescuer

genes can be targeted to reduce emerging resistance to cancer drug therapies. The

resulting pancaner DU-SR network has 2,033 interactions involving 686 rescuer genes

and 1,513 vulnerable genes (Figure 4.4 , Extended Data Figure 1g). The Gene On-

tology (GO) distance (Appendix B) between pairs of vulnerable and rescuer genes

is less than that of random pairs (Wilcoxon rank-sum P < 4.4E-05) and shuffled

DU-SR pairs (Wilcoxon rank-sum P <0.03), suggesting that SR partners are func-

tionally related. An interesting example involves RPL23, which suppresses tumor

progression by stabilizing P53 protein. It is a moonlighting gene, having two ad-

ditional secondary functions as a ribosomal protein and an inhibitor of cell cycle

arrest. A GO analysis of its 12 predicted rescuer partners shows that they indeed

span such secondary functions, compensating the loss of RPL23 (Appendix B Ta-

ble 2). Only a small fraction (2.5%) of the DU protein pairs physically interact

with each other, indicating that more complex and indirect regulatory and signal-

ing mechanisms mediate most SR functional interactions. The relative significance

of each of the four screening steps in determining the final DU-SR network was

benchmarked in an independent gastric cancer dataset, showing that each step of

INCISOR significantly contributes to the final prediction accuracy (Extended Data
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Figure 4j,k) [175]. Descriptions of the other pan-cancer DD (Extended Data Fig-

ure 6a), UD (Extended Data Figure 6d) and UU (Extended Data Figure 6g) SR

networks are provided in Appendix B.

We tested the clinical significance of the DU-SR network in an independent

METABRIC breast cancer (BC) dataset [198] by comparing the survival of patients

that have many vs. few (top vs. bottom 10%) SR pairs in their DU rescued state

in tumor (Methods, Extended Data Figure 1a). We find that tumors with many

rescued SRs have markedly worse patient survival than tumors bearing a low load

of rescued SRs (true for all four SR types; see Figure 4.5a-d), and that this is not

merely due to differential activation of vulnerable genes (Figure 4.5e, Extended Data

Figure 8e, Extended Data Figure 8f) or other confounding factors (Cox regression

in Appendix B Table 1). The pancancer DU-SR network predicts patient survival

also in other cancer types, as determined by cross validation evaluation over dif-

ferent TCGA cancer types (Extended Data Figure 2a) and in another independent

(ovarian) cancer dataset with a sufficiently large number of samples33 (Extended

Data Figure 2b). Combining INCISOR-inferred SL interactions (Extended Data

Figure 5e, Appendix B) with SR interactions further improves survival predictive

power (Figure 2f). Finally, we find that the copy number of DU rescuer genes is

significantly higher when their vulnerable genes are mutated vs wild type (data

not used in the INCISOR inference, Wilcoxon rank-sum P <1.2E-100), and so is

the rescuers gene expression (Wilcoxon rank-sum P < 1.1E-17, Extended Data Fig-

ure 2c,d). Breast cancer specific SR networks inferred using TCGA breast cancer

samples only are also predictive of patient survival in the METABRIC dataset (Ex-
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tended Data Figure 8a-d, Appendix B). Patient outcomes were also predictable by

SR networks built specifically for each of four major BC subtypes (HER2, Luminal

A, Luminal B and TNBC, Extended Data Figure 10).
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Figure 4.4: Pan-cancer DU-type SR network. (a) Pan-cancer DU-type synthetic rescues
network with 686 rescuer genes (green) and 1,513 vulnerable genes (red) encompassing
2,033 interactions. The size of nodes indicates their degree in the network. (b,c): Gene
Ontology enrichment of vulnerable and rescuer genes. (b) The vulnerable genes are en-
riched with cell adhesion, protein modification, metabolism and deubiquitination. (c) The
rescuer genes are enriched with mitotic cell cycle phase transition, chromatid segregation,
cell migration and RNA transport. Only significant pathways (one-sided hypergeometric
FDR adjusted P<0.05) are shown in the figure.

We next investigated the dynamics of SR pairwise activity as cancer progresses.

We stratified the BC patients in the METABRIC dataset into six different cancer

progression bins based on their survival data and quantified the number of rescued

DU-SR pairs in samples in each bin. We find that tumors associated with shorter

survival times (i.e., likely to be more advanced) have a higher fraction of rescued

DU-SR pairs (Extended Data Figure 8g,h). Based on the patient stratification,

we further distinguished between two kinds of DU-SR interactions: reprogrammed

SRs (rSR), where the rescuer gene up regulation (over-activation) is inferred to

follow after the down-regulation (inactivation) of the paired vulnerable gene (and

hence likely to occur in response to it), and buffered SR (bSR), where the rescuer

gene up-regulation is inferred to precede the down-regulation of the vulnerable gene

(Appendix B). Indeed, we find that while SRs carry a significant predictive survival

signal irrespective of their order of occurrence (as shown throughout and also in

Extended Data Figures 8a-d,10), the emerging resistant-associated responsive rSRs

have a significantly stronger predictive survival signal than bSRs ( Appendix B).

Interestingly, a DU-SR analysis may also provide insights to carcinogenesis,

since the cellular response to the inhibition of a vulnerable gene may result in the
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Figure 4.5: The four types of SR networks successfully predict cancer patients survival.
(a-d) A Kaplan-Meier (KM) analysis comparing the survival of patients whose tumors have
many rescued SRs (top 10 percentile (N=800), rescued) to those with the few (bottom 10
percentile (N=800), non-rescued). The difference in the areas under the curve between
rescued (blue) and non-rescued (red) samples (δAUC) and their logrank p-values are
denoted. (e) Patients with tumors having a large fraction of vulnerable genes that are not
down-regulated (termed viable, green curve) have only intermediate levels of survival, less
than those patients whose tumors are highly rescued. (f) Survival prediction by integrating
both SL and SR networks. The subset of non-rescued patients in Figure 4.5a that also have
many functionally active SLs (top 10 percentile (N=87); Appendix B) show remarkably
better survival than the subset of rescued patients that also have few functionally active
SLs (bottom 10 percentile (N=158)).

up-regulation of oncogenic rescuers. Indeed, by mining the data of carcinogenic

agents and their targets [199, 200], we found that drugs that inhibit vulnerable

partners of known oncogenes [189] are known to be carcinogenic (hypergeometric

P<0.03, Appendix B). For instance, Lindane, which inhibits GLRB, is shown in the

literature to be carcinogenic through the activation of RAS/MAPK/ERK pathway

[201, 202] which in turn activates MDM2 [203, 204]. Nitric oxide, which targets

guanylyl cyclase (GUCY1A2), is known to be closely associated with KRAS-driven

tumorigenesis [203, 205]. These observations are consistent with our predictions of

DU-SR interactions between GLRB and KRAS/MDM2 and between GUCY1A2 and

KRAS, suggesting that screening for agents targeting vulnerable genes rescued by

oncogenes may offer a new way for identifying carcinogens on a pan cancer, genome

scale.

We next set out to experimentally test our SR predictions in vitro focusing on

a subset of the predicted SRs involving mTOR, a major kinase regulating cancer

growth and survival. We studied rSR and bSR predictions of the DD-SR type as

they can be readily validated by in vitro knockdown (KD) experiments. Our investi-
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gation was performed in a head and neck squamous cell carcinoma (HNSC) cell-line,

where mTOR is known to be essential for cancer progression and its inhibition by

Rapamycin interferes with cancer progression [206,207] (also confirmed in our anal-

ysis, Wilcoxon rank-sum P < 4.5E-15, Appendix B). In difference from its overall

effect, we hypothesized that when mTORs predicted vulnerable DD-SR partners are

knocked down, Rapamycin treatment will not inhibit but induce cancer progression

as per the DD definition (Extended Data Figure 1b). To test this predicted reversal

of effect, we tested 10 (pan-cancer) DD-rSR pairs where mTOR is the predicted

rescuer gene via shRNA knockdowns of the vulnerable partner gene followed by

Rapamycin treatment (Methods). The KD of mTORs vulnerable partners hampers

tumor proliferation both in an in vitro tissue culture (Paired Wilcoxon rank-sum P

<1.3E-5) and in an in vivo mouse model (Paired Wilcoxon rank-sum P < 6.5E-6, see

Appendix B). We observed a significant reversal effect of Rapamycin treatment on

proliferation in 6 out of 10 vulnerable gene KDs (Figure 4.6a, aggregate Wilcoxon

rank-sum P< 2.1E-8). The experiments testing the shRNA KD of five different sets

of control (non-vulnerable) genes followed by mTOR treatment reassuringly failed

to produce a significant rescue signal (see Figure 4.6a,b). A similar but less marked

rescue effect is observed when mTOR is the vulnerable gene in DD-bSR interac-

tions (Figure 4.6b, P<4.3E-4 across 9 predicted SR interactions), consistent with

the observation of superior predictive power of rSR above. An experimental testing

of the predicted HNSC-specific DD-type rescuers of mTOR yielded an additional

validation of the predicted mTOR DD partners in an analogous manner (Extended

Data Figure 5g, Methods).
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As an additional validation test we investigated the extent to which SR in-

teractions can provide a unified network-level account of transcriptome resistance

signatures that have been published recently (Methods, Figure 4.6c). One promi-

nent case involves resistance emerging to treatments targeting BET and AR; the

predicted SR rescuers of the BET inhibitor (hypergeometric FDR P< 1.9E-5) and

the AR inhibitor (FDR P< 5E-7) are enriched with Wnt signaling pathways, in line

with recent reports [83, 84]. Further, we identified MYC as a common rescuer of

BET and AR, which confirms its known association with the resistance to both AR

and BET inhibition [84,171]. In another recently published case involving resistance

to an EGFR inhibitor, the predicted SR rescuers are enriched with signaling path-

ways associated with the hepatocyte growth factor receptor (hypergeometric FDR

P< 1E-3), including PI3KCA that has been associated with the resistance to EGFR

inhibition [171]. A detailed description of this analysis is provided in Methods.

To test the utility of SRs in predicting emergence of resistance we analyzed

longitudinal expression and sequencing data from tumors of 81 ovarian cancer pa-

tients (OC81 dataset), some of whom initially responded to drug treatment but

later relapsed. The patients had been treated with two drugs: Taxane, which has

18 rescuer genes linked to 3 drug targets in the treatment specific DU-SR network,

and Cisplatin (Figure 4.7a)16. We find a significantly higher expression of the 18

rescuer genes in initial non-responder versus responder patients (Wilcoxon rank-

sum P<1.5E-4; expression and copy number alterations were significantly higher

than those observed in randomly selected genes, empirical P<0.045; Extended Data

Figure 5a). The SR network successfully predicts patient-specific gene activation al-
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Figure 4.6: Experimental shRNA screening validates the predicted DD-SR rescue interactions
involving mTOR in a head and neck cancer cell-line: Predicted DD-SR pairs involving mTOR
both as (a) a rescuer gene and as (b) a vulnerable gene were tested (Methods). The vertical axis
shows the cell count fold change in Rapamycin treated vs. untreated (i.e., in the rescued versus
the non-rescued state), and the significance was quantified using one-sided Wilcoxon rank-sum test
for three technical replicates with at least 2 independent shRNAs per each gene in each condition.
Several sets of control genes (5 genes in each set that is total of 25 genes) that are not predicted
as SR partners of mTOR were additionally knocked down and screened for comparison. These
control sets include proteins known to physically interact with mTOR, computationally predicted
SL and SDL partners of mTOR, predicted DD-SR vulnerable partners of non-mTOR genes, and
DD-SR predicted rescuer partners of non-mTOR genes. The horizontal black line indicates the
median effect of Rapamycin treatment in these controls as a reference point. Experiments were
carried with at least 2 independent shRNAs for each gene of interest and controls. (c-e) The SR
network successfully predicts the response to cancer drug treatments. (c) The SR network of a
few cancer drugs whose resistance mechanisms were recently published (see text). The network
includes the drug targets (red) and their rescuers (green). The rescuers are involved in Wnt
signaling (diamond), and hepatocyte growth factor receptor and actin cytoskeleton (box). (d) The
drug-DU-SR network includes 170 interactions between 36 cancer drug targets genes (red) and a
103 rescuer genes interacting with them (green). The drugs (purple) are linked to their targets. (e)
Logrank p-values per drug denote how well treatment response (measured by survival) is predicted
(KM plots for each drug are provided in Extended Data Figure 3).

terations after treatment, where patients that initially responded but then relapsed

had increased rescuers activation in the relapsed tumors relative to the primary tu-

mors (testified by gene expression and SCNA alterations, overall Wilcoxon rank-sum

P< 5.8E-5, empirical P<4.0E-4; Figure 4.7b). Many but not every single rescuers

show significant difference above, which may be at least partially due to the hetero-

geneity between and within tumors.

Remarkably, the rescuers gene expression at the pretreatment stage already

provides a clear predictive signal for future emergence of resistance (AUC=0.77 for

SVM predictor, P<2.2E-16, Extended Data Figure 5b, markedly superior to the

predictive performance obtained using the predicted SL partners of these drug tar-

gets for this task (AUC=0.52, Extended Data Figure 5c)). The expression of the

multidrug resistance (MDR) genes inversely correlates with the expression levels

of the predicted rescuers in resistant samples (Spearman = -0.63 (P<0.03), Figure
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4.7c), suggesting a complementary relationship between these two resistance mecha-

nisms. A similar resistance prediction analysis of 155 primary breast cancer patients

treated with Tamoxifen45 shows that the expression of 13 rescuers of Tamoxifens

targets can significantly predict patient relapse also in this dataset (AUC=0.74, P

<2.2 E-16, Extended Data Figure 5d).

4.5 Application of SR

Next we assessed whether SR interactions can help predict drug efficacy in a

specific tumor based on the active SR partners of the drugs target. The original SR

networks are based on highly stringent significance criteria and hence do not include

many of the target genes of current cancer drugs. We hence applied INCISOR to

build a drug-DU-SR network that includes a large number of drug targets and

their rescuer genes by using lower significance cut-offs to select the interactions

(though still highly significant after multiple hypotheses correction, see Methods

and Figure 4.6d). We next used the drug-DU-SR network alongside with gene

expression data from cancer patients to predict the response of 3873 patients (from

the TCGA dataset) to 37 common anticancer drugs (≥ 30 treated patients per drug).

Specifically, patients with tumors having many up-regulated DU rescuers of a given

drug target(s) were predicted as non-responder to that drug, and patients with

just few such up-regulated rescuers were predicted as responders. By comparing

our predictions to the actual patient survival data we confirmed that we correctly

classified the patients to responders and non-responders in a significant manner for
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Figure 4.7: The DU-SR network identifies key molecular alterations associated with tumor re-
lapse after Taxane treatment. (a) The OC81 dataset includes gene expression, copy number, and
mutational information for primary (N=81) and relapsed (N=11) tumors. The tumors were classi-
fied as refractory (N=12), resistant (N=37), and sensitive (N=32). (b) Post-treatment activation
in the relapsed tumors (blue) of rescuer genes compared to their activation level in pre-treatment
primary tumors (red) of the 11 patients. Significant genes are marked by stars (one-sided Wilcoxon
rank-sum P¡0.05). (c) SR- (blue) and MDR- (red) mediated responses co-vary in the patients de-
veloping resistance to Taxane treatment in the 11 patients: The horizontal axis denotes the extent
(-log10(one-sided Wilcoxon rank-sum P)) of post-treatment increase in MDR genes activation and
the vertical axis represents the extent of post-treatment increase in the predicted rescuers activa-
tion (-log10(one-sided Wilcoxon rank-sum P)) (d) The likelihood of developing drug SR-mediated
resistance following treatments. (e) The predicted clinical impact of rescuer gene down-regulation:
Key rescuer genes and their corresponding drugs are listed on the vertical axis, and the survival
increase associated with suppression of rescuer over-activation is presented on the horizontal axis.
(d,e) are generated via an SR mediated data-driven analysis of the TCGA collection (see main
text).

28 of the 37 drugs (Figure 4.63), a result that was reconfirmed in several additional

datasets (see Appendix B).

To test the utility of SRs in predicting emergence of resistance we analyzed

longitudinal expression and sequencing data from tumors of 81 ovarian cancer pa-

tients (OC81 dataset), some of whom initially responded to drug treatment but

later relapsed. The patients had been treated with two drugs: Taxane, which has

18 rescuer genes linked to 3 drug targets in the treatment specific DU-SR network,

and Cisplatin (Figure 4.7a) [179]. We find a significantly higher expression of the

18 rescuer genes in initial non-responder versus responder patients (Wilcoxon rank-

sum P<1.5E-4; expression and copy number alterations were significantly higher

than those observed in randomly selected genes, empirical P<0.045; Extended Data

Figure 5a). The SR network successfully predicts patient-specific gene activation al-

terations after treatment, where patients that initially responded but then relapsed

had increased rescuers activation in the relapsed tumors relative to the primary tu-

mors (testified by gene expression and SCNA alterations, overall Wilcoxon rank-sum
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P< 5.8E-5, empirical P<4.0E-4; Figure 4.7b). Many but not every single rescuers

show significant difference above, which may be at least partially due to the hetero-

geneity between and within tumors.

Remarkably, the rescuers gene expression at the pretreatment stage already

provides a clear predictive signal for future emergence of resistance (AUC=0.77 for

SVM predictor, P<2.2E-16, Extended Data Figure 5b, markedly superior to the

predictive performance obtained using the predicted SL partners of these drug tar-

gets for this task (AUC=0.52, Extended Data Figure 5c)). The expression of the

multidrug resistance (MDR) genes inversely correlates with the expression levels

of the predicted rescuers in resistant samples (Spearman = -0.63 (P<0.03), Figure

4.6c), suggesting a complementary relationship between these two resistance mecha-

nisms. A similar resistance prediction analysis of 155 primary breast cancer patients

treated with Tamoxifen45 shows that the expression of 13 rescuers of Tamoxifens

targets can significantly predict patient relapse also in this dataset (AUC=0.74, P

<2.2 E-16, Extended Data Figure 5d).

Uncovering cancer SR networks raises new treatment strategies options in

which rescuer hubs can be targeted in a specific manner alongside traditional chemother-

apy to enhance treatment response and counteract resistance. As a first step, by

quantifying the number of samples in the TCGA dataset with rescued interactions

among the patients that receive a specific drug, we provide estimates of the emer-

gence of DU SR-mediated resistance following each current cancer treatment (Fig-

ure 4.7d, Methods). Interestingly, microtubule-destabilizing therapy (Vinorelbine)

has a much lower likelihood of resistance emerging with rescuer activation than
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microtubule-stabilizing therapies (Paclitaxel, Docetaxel). Next, we analyzed the

TCGA collection and provide a list of cancer type-specific rescuer hubs (Appendix

B Table 3), many of which have been already associated with resistance (see Ap-

pendix B). Interestingly, none of these predicted rescuer hubs are targeted by current

anti-cancer therapies. We estimated the effect of targeting each of these key rescuer

genes following specific contemporary cancer treatments on patient survival by com-

paring the survival time of the treated-patients with and without up-regulation of

the DU rescuers (Figure 4.6e, Methods). Notably, a considerable fraction of the DU

rescuers are housekeeping genes [208] (27.3%, hypergeometric P<0.03) and hence

their complete inhibition is likely to have adverse side-effects. However, as they are

up-regulated their rescue effect may be abolished by inhibiting their activation to

moderate levels, potentially thus having lesser effects on healthy cells.

In summary, this work presents a new concept of synthetic rescue interactions

in cancer, and a data-driven framework INCISOR for inferring genome-wide SR

networks. We find that SR reprogramming is widespread across cancer types and

is predictive of patient survival and drug response. Previous studies of cancer resis-

tance to therapy have been typically conducted in a supervised manner by identifying

gene signatures that differentiate between responders and non-responders, requiring

exhaustive clinical studies. In difference, INCISOR is the first approach capable of

predicting drug response and resistance utilizing the growing body of publicly avail-

able tumor data to this end in a universal and unsupervised manner. As we have

shown, given the extent of SR interactions, resistance may potentially emerge due

to alterations in any of the multiple alternative rescuers. The actual rescuers that
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lead to resistance may vary across patients (or even within a heterogeneous tumor),

calling for the integration of personalized tumor omics data with the SR networks

to devise an optimal treatment [209]. Indeed, we show that the down regulation

of specific individual rescuers of some specific drugs may have considerable clinical

value. Ideally, on the longer run, one would strive to devise new drugs whose targets

have as few rescuers as possible. Therefore, identifying SR interactions in cancer

networks, which is likely to further improve with the incoming flux of cancer data

sets, bears considerable future translational importance, mainly: (a) for assessing

the likelihood that resistance will emerge; this is relevant both to optimizing the

treatment of individual patients and for prioritizing new drug targets in specific

cancer types, and (b) for targeting key rescuer genes in a new class of adjuvant

cancer therapies aimed at counteracting resistance.

4.6 Additional Methods

4.6.1 Evaluating the predictive survival signal of the in-

ferred SR networks

To evaluate the aggregate survival predictive signal of the pan-cancer SRs we

applied INCISOR to pan-cancer TCGA samples (training set) to identify the SR

pairs and tested their clinical significance in a completely independent METABRIC

dataset (test set) to avoid potential risk of over-fitting, which includes the gene

expression, SCNA, and survival of 1981 breast cancer patients. Based on the number
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of functionally active SRs in each tumor sample, the top 10 percentile of samples

were considered as rescued and the bottom 10 percentile as non-rescued. We then

estimated the significance of improvement of survival in the rescued vs non-rescued

samples using a logrank test.

4.6.2 Tracing the number of functionally active SR pairs in

tumors during cancer progression

To study the functional activation of SRs as cancer progresses we divided the

breast cancer patients in METABRIC dataset into 6 classes of cancer progression

(removing censored data), by dividing them equally into 6 bins according to their

survival times (N=627). First, in each bin, we counted the mean fraction of func-

tionally active SRs. Such pairs are defined by the under-activation of the vulnerable

gene and the over-activation of the rescuer gene, where the latter are determined

based on their SCNA and gene expression values (Extended Data Figure 8g). Sec-

ond, we defined a vulnerable gene as rescued if more than N number of rescuers are

over-activated with the threshold N running from 0 to 4, and counted the mean frac-

tion of rescued vulnerable genes in the six progression bins (Extended Data Figure

8h).
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4.6.3 Identifying the clinical significance of reprogrammed

SR and buffered SR

Using the cancer progression classes described above, we classified the DU

SRs identified by INCISOR based on the relations of three frequency values: res-

cuer over-activation (fr), vulnerable gene inactivation (fv), and functional activation

of SR (fSR). An SR pair is defined as reprogrammed SR (rSR) if the inactivity

of the vulnerable gene A occurs first (in an earlier stage) and is followed by the

over-activation of rescuer gene B (i.e., occurring in a later stage). Accordingly, we

classified an SR pair as an rSR if fr and fSR are highly correlated while fv and fSR

are not, and fSR increases as cancer progresses. Similarly, an SR was classified as

buffered (bSR) when the over-activation of rescuer gene B precedes the inactivation

of vulnerable gene A. We classified as an SR pair as a bSR if fv and fSR are highly

correlated while fr and fSR are not, and fSR increases as cancer progresses.

4.6.4 The Cancer-Drug SR Network (drug-DU-SR) and pre-

dicting pan-cancer drug response

To show the utility of SR network in predicting drug resistance and response we

constructed a cancer-drug DU SR network (drug-DU-SR) using pan-cancer TCGA

data. Gene targets of 37 drugs that are included drug-DU-SR were identified using

Drugbank database [210]. In identifying the original genome-wide DU-SR network,

we have applied a very conservative criteria (FDR < .01 wherever applicable) at each

127



steps of INCISOR. As a result, the network contained only 2033 interactions (3.5E-

4 % of all possible gene pairs), leaving out many potential rescuers of many drug

targets. To capture DU-type rescuers of anti-cancer drug targets in a more com-

prehensive manner we modified INCISOR as follows: (i) Vulnerable gene screening

was eliminated (because inhibition of the cancer drug targets that we studied are by

definition known to hamper cancer progression) (ii) An FDR correction was applied

only at the last step, and (iii) The SR significance P-value threshold were relaxed to

accommodate weaker SR interactions. The resultant network drug-DU-SR includes

the targets of most of the 37 cancer drugs that were administered to TCGA patients,

encompassing 170 interactions between 36 vulnerable genes (drug targets) and 103

rescuer genes (Figure 4.6d). A pathway enrichment analysis shows that the rescuers

are highly enriched with lipid storage/transport, thioester/fatty acid metabolism,

and drug efflux transporters (Extended Data Figure 4.5g). Using the drug-DU-SR,

we analyzed 3,873 TCGA patient samples that have been treated [197], including

drugs that were used to treat at least 30 patients. For each drug tested, we divided

the treated samples into rescued (predicted non-responders) and non-rescued (pre-

dicted responders) groups based on the number of over-active rescuers of the drug

target genes in the drug-DU-SR network. We then analyzed patient survival data of

treated patients to evaluate the predictive power of drug-DU-SR by comparing the

decrease in survival in the rescued group compared to the non-rescued group using

a logrank test (Figure 4.6e, Extended Data Figure 3).
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4.6.5 Charting molecular mechanism underlying drug resis-

tance using SR networks

We analyzed multiple drug response and resistance datasets where gene ex-

pression (and SCNA for limited cases) was measured from the patients treated with

targeted therapy [175–178]. For each dataset we identified drug targets from Drug-

bank [210] and the rescuer genes were specifically inferred by applying the relaxed

condition described above in the section The Cancer-Drug SR Network (drug-DU-

SR) and predicting pan-cancer drug response to the specific treatment of interest.

To check the over-activation of rescuers in post-treatment samples (relative to pre-

treatment), we performed a paired one-sided Wilcoxon rank-sum test. To associate

the over-activation of rescuers in non-responders (compared to responders) we first

divided samples into rescued and not-rescued groups based on the number of over-

active rescuers, and performed a one-sided Wilcoxon rank-sum test between the two

groups. When information on patient survival is available (instead of drug response)

we performed a logrank test between the two groups using progression free survival

and/or overall survival. To predict emergence of resistance based on pre-treatment

gene-expression (and/or SCNA) in an unsupervised manner, we divided the samples

into predicted resistant and sensitive groups based on the number of over-activated

rescuers in pre-treatment samples, and then performed a one-sided Wilcoxon rank-

sum test. The supervised predictor was built using SVM with rescuer expression

profile as input feature, and the accuracy of the supervised predictor was determined

using cross validation. To compare the resistance arising from multidrug resistance
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and synthetic rescues, we considered the post-treatment increase of gene activation

level of the rescuer partners of the given drug targets with the gene expression levels

of 12 MDR-associated genes [211] in relapsed tumors. To validate our SR network

with the recent findings on pathways associated with the resistance of 4 different

drug treatments (BET [83, 84], AR [170], EGFR [171] and BRAF [172] inhibitors),

we first applied INCISOR to identify treatment-specific DU-SR rescuers. We then

performed a pathway enrichment analysis of them, and observed that there are sig-

nificant overlaps in the cellular processes to which these rescuers belong and the

resistance gene sets reported in these studies. The details and additional analysis

for each such dataset are provided in Appendix B.

4.6.6 Experimental analyses

We used Rapamycin because it is a highly specific mTOR inhibitor and hence

enables targeting of a predicted rescuer gene by a highly specific drug, combined

with the ability to knock down predicted vulnerable genes in a clinically-relevant

lab setting. We used HNSC cell-line HN12, which, like most HNSC cells, is highly

sensitive to Rapamycin [207]. For this we applied INCISOR to identify top 10

vulnerable partners and 9 rescuer partners of mTOR in a pan-cancer scale. We also

identified HNSC-specific DD-type vulnerable partners of mTOR (see Appendix B

for complete description).

We performed the shRNA knockout and mTOR inhibition in the following

steps (Extended Data Figure 5f). Each of these mTORs vulnerable/rescuer part-
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ners together with the controls were knocked down in HN12 cell lines, after which

mTOR was inactivated via Rapamycin treatment. HN12 cells were infected with a

library of retroviral barcoded shRNAs at a representation of 1,000 and a multiplic-

ity of infection (MOI) of 1, including at least 2 independent shRNAs for each gene

of interest and controls. 25 genes were included as controls (71 shRNA in total).

At day 3 post infection cells were selected with puromycin for 3 days (1g/ml) to

remove the minority of uninfected cells. After that, cells where expanded in culture

for 3 days and then an initial population-doubling 0 (PD0) sample was taken. For

in vitro testing, the cells were divided into 6 populations, 3 were kept as a control

and 3 where treated with Rapamycin (100nM). Cells where propagated in the pres-

ence or not of drug for an additional 12 doublings before the final, PD13 sample

was taken. For in vivo testing, cells were transplanted into the flanks of athymic

nude mice (female, four to six weeks old, obtained from NCI/Frederick, MD), and

when the tumor volume reached approximately 1cm3 (approximately 18 days after

injection) tumors where isolated for genomic DNA extraction. Mice studies were

carried out according to National Institutes of Health (NIH) approved protocols

(ASP # 10569 and 13695) in compliance with the NIH Guide for the Care and

Use of Laboratory Mice. shRNA barcode was PCR-recovered from genomic sam-

ples and samples sequenced to calculate abundance of the different shRNA probes.

From these shRNA experiments, we obtained cell counts for each gene knock-down

at the following three time points: (a) post shRNA infection (PD0, referred as initial

count), (b) shRNA treatment followed by either Rapamycin treatment (PD13, re-

ferred as treated count, 3 replicates) or control (PD13, referred as untreated count,
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3 replicates) (c) shRNA infected cell injected to mice (tumor, referred as in-vivo

count, 2 replicates). To obtain normalized counts at each time point, cell counts of

each shRNA at each time point were divided by corresponding total number of cell

count. To estimate cell growth rate at treated, untreated and in vivo time points for

each gene X, normalized counts were divided by initial normalized count as follow:

growth rate(X) =
normalized count(X)

initial normalized count(X)
(4.1)

Effect of Rapamycin treatment on cell growth on knockdown of gene X was

calculated as:

rapamycin effect(X) =
treated growth rate(X)

mean treated growth rate(X)
(4.2)

To quantify the lethality of vulnerable knockdown, we performed a one-sided

Wilcoxon rank-sum test between initial normalized count with in vivo normalized

count for in vivo lethality (and with untreated normalized count for in vitro lethal-

ity). To compare rescue effect of Rapamycin treatment between shRNA knockdown

of mTORs vulnerable gene partner and control gene knockdown, we performed a

one-sided Wilcoxon rank-sum test between Rapamycin effects of mTOR partner

vulnerable genes and control genes.
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4.6.7 Predicting adjuvant therapy candidates for counter-

acting the emergence of resistance via DU-SR inter-

actions

Down-regulating DU-SR rescuers provides a unique opportunity to mitigate

drug-resistance. For each drug in TCGA collection, we first identified all DU-SR

rescuer partners of its drug targets. We then investigated the impact of the down-

regulation of these rescuers by comparing the survival of patients whose rescuer

activation is low vs. high (using a logrank test) per each drug treatment. We

selected the top rescuers of each drug that show the highest improvement in patient

survival when inactivated, and reported 19 drug-rescuer pairs that have significant

clinical impacts.

4.6.8 Estimating the likelihood of developing resistance to

anti-cancer drug treatments via DU-SR interactions

The proportion of patients who have over-activated rescuers provides an esti-

mate of likelihood of developing SR-mediated resistance. For 25 anti-cancer drugs,

whose response is predictable by SR network, we estimated the drugs likelihood

to develop resistance by the fraction of patients whose tumors harbor significantly

over-activated DU-SR rescuers of the drug targets.
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Chapter 5: Discussion and perspective

The presented thesis addresses emerging challenges in the improving detection

and therapy of diseases, focusing on cardio-vascular diseases and cancer. To this end

we developed novel computational methods for the integration of high-throughput

data, and utilized them to study the genetic and molecular determinants of disease

onset and drug resistance. The prediction of disease onset was accomplished, as de-

scribed in Chapter 3., via a Bayesian integration of epigenetic and genetic data that

enable the prediction of regulatory elements in genome and in turn the regulatory

variants that drive transcriptome variations. The prediction of drug resistance in

cancer was accomplished by proposing and identifying a novel type of gene interac-

tion, synthetic rescue.

The first part of the thesis begins with the presentation of a simple scheme to

improve association studies. The scheme was further extended and leveraged in a

Bayesian framework in Chapter 3 that significantly improved the association studies.

The second part of the thesis, in order to understand cancer-drug-resistance, defined

synthetic rescue gene interactions and proposed a data driven approach, INCISOR,

to identify the interactions. It concludes with presenting an array of translation

applications of synthetic rescue.
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Below we provide in details discussion and future perspective of these parts of

the thesis.

5.1 Discussion

5.1.1 Association studies

In Chapter 3, we introduce a novel Bayesian approach, eQTeL, that integrates

genetic and epigenetic data in a statistically consistent manner to identify putatively

causal genetic variants underlying the expression variance. We have shown that (i)

eQTeL identifies combinations of SNPs (eeSNPs) that, compared to other methods,

explain substantially greater portion of expression variability, (ii) eQTeL is especially

effective in identifying SNPs with small effect sizes, (iii) 58% of the identified eeSNPs

are likely to be causal, (iv) eeSNPs can predict sample specific expression much

more accurately, (v) eeSNPs are much more likely to be bound by a regulatory

factor in an allele-specific manner, (vi) eeSNPs preferentially disrupt core cardiac

transcription factor binding, and (vii) eeSNPs tend to be spatially proximal to their

target genes. Taken together, our results strongly suggest that eQTeL captures a

substantial proportion of putative causal regulatory genetic determinants underlying

transcriptomic variance.

It is important to note limitations of eQTeL. First, eQTeL can only detect

cis-eQTL and not trans-eQTL. Second, like other model-based association methods,

eQTeL’s computational speed is a bottleneck; however, using parallel cores and cer-
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tain reasonable compromises in parameter estimation procedure, the computational

burden can be substantially reduced. Third, eQTeL assumes normality of expres-

sion data, therefore the expression data needs to be pre-processed accordingly, which

can be particularly problematic for certain kinds of high throughput data. Fourth,

eQTeL can only detect SNPs with small effect sizes if they have high regulatory po-

tential. Finally, eQTeL statistically infers the potentially causal SNPs and further

experimental validations are required to establish causality.

eQTeL can effectively resolve LD and discriminate putative regulatory SNPs

from myriad associated SNPs. This lays a foundation for future experimental stud-

ies to characterize genetic variants underlying disease risk. Finally, eQTeL can

be extended by integrating additional layer of molecular data – easily achieved in

Bayesian framework – to directly infer SNPs that cause disease.

5.1.2 Synthetic rescue in cancer

In Chapter 4 we introduce and rigorously define a new concept of synthetic

rescue reprogramming occurring in cancer. We developed INCISOR, a data-driven

framework to infer genome-wide SR networks. We extensively studied evolutionary

properties of SR pertaining to cancer. Our study reveals that cellular reprogram-

ming is widespread across cancer types, shows significant clinical importance and is

associated with patient survival, drug sensitivity and emergence of resistance.

SR provides multiple therapeutic opportunities. The functional activity of

SL and SR networks determines tumor aggressiveness and patient survival. We
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demonstrated that the clinical impact of the combined SR and SL networks is more

significant than their individual impacts (Figure 4.5f). The SL network provides

information on the selectivity and efficacy of a given drug [71]. On the other hand,

the SR network provides complementary information on the likelihood to incur

resistance. Combining SL and SR networks, we can predict a drug that has the

highest efficacy/selectivity and lowest chance of developing resistance.

SR reprogramming can be used to develop two novel classes of sequential

treatment regimens of anticancer therapies. First, almost all cancer patients who

initially respond to a drug, have the potential to develop resistance to the treat-

ment and experience tumor relapse. Currently, we do not have the ability to access

and prepare for the second line of treatment for the relapsed tumors, till it hap-

pens to the patients, which is often too late. SR provides a way to infer, together

with pretreatment expression screening, whether resistance will emerge quickly and,

more importantly, the possible mechanisms of the emergence of resistance and how

they can be mitigated by subsequent treatments (as demonstrated in Figure 4.7d).

Therefore, SR can guide decisions on the second line of action without biopsies from

the relapsed tumors.

Second, some of the gene-targeting drugs are known to be more efficient and

effective in treating cancer (eg. kinase inhibitors) than other drugs, provided tumors

are homogeneously addicted to the target gene. In such a scenario, using concept

of SR reprogramming, it is possible to first induce homogeneous addiction to such

targetable genes by first targeting vulnerable partner of the targetable gene. In order

to survive the cell will over-activate the targetable genes which will lead to oncogenic
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( or non-oncogenic) addiction. In the second line of treatment, the targetable gene

can be targeted to eradicate the homogeneously addicted tumor population, thus

efficiently treating cancer.

INCISOR has limitations arising from the scarcity of available data, the spe-

cific design of the pipeline, and the diverse mechanisms of the emergence of drug

resistance. It is well-known that many genes are correlated based on their expres-

sion and the proximal genes have correlated SCNA values, which make it difficult

to identify the true rescuers from spurious ones. INCISOR mitigates some of these

problems by selecting pairs only when they are supported by both gene expression

and SCNA, however, it may not completely resolve this issue. INCISOR is also

based on patient survival data, which is known to be noisy. INCISOR does not

incorporate other genetic, epigenetic and post-transcriptional mechanism of gene

inactivation partly due to the unavailability of these data for cancer patients.

INCISOR is designed to identify the rescuer genes for targeted therapies, so it

cannot be used to predict drug response/resistance analysis for non-targeted ther-

apies such as generic chemotherapy (e.g. Cisplatin). By definition, SR reprogram-

ming events are context-specific to a cancer type or a sub-type. Our pancancer

SR network focuses on the generic SR interactions that are prevalent across multi-

ple cancer types, and the same pipeline can be applied to specific cancer types or

sub-types as presented in the main text and Supplementary Information for specific

cancer types and subtypes.

It must be noted that resistance does not always emerge due to SR reprogram-

ming. This is because there are multiple mechanisms for development of resistance
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including drug efflux via multi-drug resistance mechanism or the modification of

drug target that makes drug ineffective. We nonetheless note that SR interactions

are so widespread in multiple cancers that they are highly likely to be a contributing

factor. Our analysis shows that only a small subset of SR interactions are mediated

by physical contacts, and further studies are needed to identify the mechanism of

SR reprogramming in giving rise to drug resistance.

We expect the fast growth of the publically available omics/survival patient

data, both within the TCGA collection and beyond would help us designing a better

pipeline and improving our identification of the SR interactions, and lead to a deeper

understanding of their mechanism in a context-specific manner.

It is necessary to be aware of the difference between SL and SR. First, as

revealed in Extended Figure 1a-e, their molecular states are different. In SR, the

inactivation of the vulnerable gene is lethal, only over-activation of rescuers retains

the cell viability under the condition (i.e. normal expression level is not enough to

rescue the cell). However, in SL, the inactivation of one of the SL partners is not

lethal unless the other partner is inactivated (i.e. normal expression level does not

lead to a lethal state). In other words, the inactivation of a vulnerable gene is in

general lethal in SR, unless it is rescued, but the inactivation of a single gene is not

lethal in SL pairs. In our analysis we made a clear distinction between SL and SR.

In ovarian and breast cancer analysis, the activation profile of SL partners of the

drug target genes have poor predictive potential for tumor relapse (Extended Data

Figure 5c), while over-activation profile of rescuers show great predictive potential

(Extended Data Figure 5b,d). Also, the predictive power for drug response is sig-
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nificantly reduced if a vulnerable gene is defined rescued when its rescuer partner is

not over-activated but only normally activated (Extended Data Figure 2f).

Second, in SL, if any two partner genes are both inactive, it will be lethal

irrespective of activity of any other genes. But in SR, the inactivation of a rescuer

partner of a vulnerable gene does not guarantee lethality because an alternative

rescuer may have been over-activated to rescue the cell. Third, while SL has two

cellular states of viable and lethal; SR have additional third state rescued, where

cancer is often more aggressive than in both viable and lethal states (see Figure

4.5e). Fourth, both SL and SR may play roles in determining effectiveness of cancer

therapy. In SL, targeted treatments, which inactivate one of the SL partners, lead

to the activation of the other partner from inactive state to escape conditional

lethality. On the other hand in SR, in response to the inactivation of the vulnerable

gene due to targeted therapies, a cancer cell rewires the pathways associated with

the targeted cellular function by changing wild-type activity of its rescuer gene (to

over-active or inactive state) to escape lethality. In sum, SL is an inherent property

of the system, but SR is an adaptive cellular response, where cells reprogram their

molecular activity state to evade lethality.

These differences have therapeutic implications. Unlike SL, therapy based on

SR is likely to be used only in combination with other primary therapies. While

SL-based therapy can selectively kill cancer cells, SR based therapy, on other hand,

may not be selective. However, if the primary therapy is selective and SR interaction

is highly synergistic (implying selectivity), then the combined therapy will be also

selective.
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The inference from SL and SR can be combined to identify drugs that target

cancer cells ( and not normal cells) and that are not likely to develop resistance (as

shown in Fig. 4.5). In particular, SL gene pairs with no rescuers would be best drug

targets.

Our analysis reveals a frightening aspect of SR reprogramming, namely that

critical vulnerable genes for cancer progression have not one but multiple rescuers,

implying the presence of multiple ways of developing resistance. Thus, targeting a

single rescuer may not be enough. This has been already known in the case of La-

patinib resistance, where ERBB3 over-expression leads to resistance but inhibiting

ERBB3 can be overcome by over-expression of other kinases. Many patients that

go through sequential treatments, where each treatment targets a new gene, show

initial response; however cancer relapse after every treatment might be due to the

fact that many of target genes have multiple rescuers. In this light, it is necessary to

chart a complete SR network to avoid emergence of resistance by focusing on drug

targets that have little chance of being rescued (a limited number of rescuers).

Synthetic rescue reprogramming has a considerable translational importance.

Targeting the rescuer hubs can offer a new class of treatments for adjuvant cancer

therapies aimed at counteracting resistance and may also be efficient in treating het-

erogeneous tumor cells. This is because targeting rescuer hubs makes cancer cells

vulnerable to the inactivation of different vulnerable genes. Alternatively, vulnera-

ble genes with few or no rescuer can be important drug targets because targeting

such genes would be least likely to evolve resistance due to SR reprogramming.

Further, the probability of a new drug to develop resistance can be efficiently eval-
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uated using SR, which will significantly reduce the time and cost of clinical trials or

enable to assess long-term effect of a drug, which is often impossible. Finally, SR

reprogramming can predict mechanism of emerging resistance using pre-treatment

gene expression. By periodically monitoring patients gene expression, we can pre-

dict when resistance will emerge, and accordingly develop a sequential regimen for

patients.

SR reprogramming can contribute to precision and personalized cancer medicine

in the following manner: (i) ranking drugs by its likelihood to develop resistance, (ii)

recommending a drug for patients based on their gene expression before treatment,

(iii) predicting (aggressiveness of ) emerging resistance in patients, time of relapse

and second line of action (iv) drug-repurposing to target rescuer hubs or vulnerable

genes that have no rescuer. (v) identifying new drugs that target rescuer hubs and

can lead to development of a new class of anti-resistance drugs. (vi) SR network

can be combined with SL prediction to identify drugs that only target cancer cells

and at the same time are unlikely to develop resistance.

5.2 Perspective

We conclude the thesis by placing it in a wider academic perspective, and

exploring some unresolved questions. Finally, we point out potential follow up and

new exciting projects that emerged from the thesis but are beyond the scope of this

work.

In Chapter 4, at the regulatory mechanism level, eQTeL uncovers genetic
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regulatory network that controls gene expression in cells. Specifically, it provides

genomic regions that regulate the genes such that a variation within one of the

regions changes the expression of its target. The analysis also reveals many of the

regulatory elements are far away from its target, pointing out that most of the

variation that causes transcriptomic changes are distal regulators.

Because some of the identified SNPs are common in the population, the anal-

ysis suggests that these genomic variations are not deleterious (since they can ac-

cumulate in the population). The expression variance associated with this set of

genomic variation also does not manifest into deleterious phenotypes.

Our analysis in Chapter 4 provides a basis to find contributions of each epige-

netic factor in regulatory element. In particular, whether presence of an epigenetic

factor activates regulators (in turn having activating effect on expression of target

genes), or in-activates them. Thus the framework can be used to identify marker of

different regulatory elements and also their functional characterizations.

The human heart data (MAGNet) is composed of data for individuals with

and without heart failure, therefore a major portion of expression variance in the

samples will be due to heart failure. Consequently, the identified genomic variants by

eQTeL that explain the major portion of expression variance will explain a portion

of phenotypic variance due to heart failure. Thus, these variants will be associated

with cardiovascular disease risk to a large extent. Importantly, identified variants

are likely to be causal in expression regulation, and thus they are likely to be causal

with regards to cardio-vascular disease risk as well.

eQTeL is important from a translational point of view, because it not only
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provides regulatory variants, but also identifies specific genes that are highly dis-

rupted by the regulatory variants. This gives us an opportunity to devise therapies

in a personalized manner. For example, if a eeSNP over-expresses its target gene in

a cardio-vascular patient, targeting the gene by an inhibitory drug may mitigate the

risk of the heart failure. eQTeL also provides epigenetic and regulatory mediators

thus providing additional means to mitigate the risk by targeting those mediators.

In Chapter 5 we introduce a concept of synthetic rescues that dictates extensive

cellular reprogramming in tumors. Our analysis also reveals that multiple types

of SR participate in the reprogramming. As cancer advances, synthetic rescuing

becomes increasingly rampant. This indicates that cancer cells become increasingly

refractory, confirming Darwinian kind of evolution of cancer cells in tumors. Tumors

undergo gradual but extensive cellular reprogramming, each conferring additional

advantage to cancer in terms of proliferation and viability in the event of external

onslaughts.

Synthetic rescues will change the current paradigm of how anti-cancer inter-

ventions are devised. It illustrates at molecular level how resistance to a therapy

emerges in a cell. Synthetic rescuing plays the role of a double-edged sword for

cancer cells because it not only develops additional refractoriness, but also devel-

ops many additional vulnerabilities that can be capitalized on for cancer therapies

against resistance.

For instance, if a kinase is a (DU) rescuer of a vulnerable gene, inhibiting

vulnerable gene in cells will not only over-express the kinase, but also will make the

cells addicted to the kinase. Targeting such kinases with our repertoire of available
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kinase inhibitors will efficiently eliminate the cancer cells. Thus SR raises very

promising therapeutic possibilities.

From a computational point of view, the thesis demonstrates that Bayesian

approaches can be used to integrate diverse set of data in a statistically consistent

manner. eQTeL harnessed two advantages of Bayesian approaches : (i) seamless

integration of different type of data through belief propagation, and (ii) develop-

ing bottom-up computational framework that can leverage known mechanisms and

hierarchies of information flow.

Therefore the approaches are ideally suited to tackle myriad of biological

datasets that are being generated with ever increasing pace and building computa-

tional framework to obtain superior inferences.

The thesis also proposes simple means to control various confounding factors

in statistical tests. These include controlling cancer type confounders in Kaplan-

Meier survival analyses. Such simple techniques can also be utilized and extended

to remove confounding factors in many of published genomic studies.

5.2.1 Alternatives

There is a number of ways the proposed methods can be improved. for in-

stance, a Bayesian approach in INCISOR will significantly improve the SR prediction

algorithm. Another elegant alternative to Kaplan-Meier analysis used in INCISOR

is Cox regression, which resolves the issue of individual gene effect to uncover ge-

netic interactions. In SR analysis, the emphasis was on introducing the concept of

146



synthetic rescues and consequently we choose to sacrifice elegance over simplicity of

the method used in INCISOR.

Bayesian approach used in eQTeL needs a complicated and computationally

intense algorithm. In case of eQTeL, an alternative approach that can be used for

data integration is a simple empirical approach. In fact, it was employed in the

initial phase, showing superior performance over than existing association methods.

However, the performance of empirical approach was inferior with respect to eQTeL

(refer to Appendix A).

5.2.2 Unresolved question

The analyses in the presented thesis opened up some interesting, yet unan-

swered questions that require further follow up analyses:

• In enrichment analysis of eeSNP in section 3.10, regions around eeSNPs were

enriched with two types of transcription factor motifs: (i) core-cardiac motifs

and (ii) enhancer specific motifs. However, only core-cardiac TFs were pref-

erentially disrupted by eeSNP and not enhancer specific TFs. This indicates

the possibility that enhancer specific motifs are avoided by regulatory SNPs.

The landscape of transcription is enriched with regulatory variants and it is

currently unexplored which ones among them are disrupted by regulatory vari-

ants. The variation of the landscape across different tissues and other disease

might be an interesting direction to pursue.

• In SR analyses, we identified many genes that have multiple rescuers. A
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natural question that arises in such cases is if activation of any single rescuer

suffices for the rescue, or the rescue occurs with collective over-expression of

all rescuers. The rescue behavior may be variable across genes; for certain

genes the rescue may occur by over-expression of any rescuer and for others

over-expression of multiple rescuers may be required. For instance, genes with

multiple functions require all their functions to be rescued to promote cell

viability (see chap 4).

• Another intriguing question that was raised with our analyses is based on can-

cer heterogeneity. Our analyses suggest that resistance landscape is quite het-

erogeneous and resistance to a drug can arise through multiple routes. There

is large variation among patients in terms of molecular causes of resistance.

Does the variance of resistance mechanism also tranlate into tumors due to

heterogeneity? Does a different set of cell activates a different set of rescuers

to avoid lethality due to the inactivation of the same gene?

5.2.3 Potential follow up and new project

The thesis opens up and provides a basis for several new research directions.

We are currently pursuing some of them.

• Extending eQTeL to GWAS eQTeL model can be easily extended to

GWAS. Based on the causal SNPs identified by eQTeL a hierarchical model

can be developed for genotype-phenotype relationship that includes additional

layers corresponding to gene expression and biological pathways mediating the
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genotype-phenotype relationships.

• Drug response prediction by eQTeL Tissue specific predicted transcrip-

tome by eQTeL can be harnessed to predict drug efficacy in a personalized

manner. Using eQTeL tissue specific expression before and after drug treat-

ment can be predicted for each individual. Relating the pre and post-treatment

transcriptome to phenotype [212], drug efficacy can be evaluated in a person-

alized manner.

• Predicting anti-biotic/anti-microbial resistance by synthetic rescue

Emerging microbial resistance to antibiotics is as a serious challenge in the

effective prevention and treatment of infections caused by microbes including

bacteria, viruses and fungi. It is already proving to be a serious menace

and expected to keep growing rapidly in the next decade, poseing a serious

challenge to all nations. In 2014, alarming increase in resistance cases to HIV

drugs were also reported [82].

Applying INCISOR to a large dataset of bacterial transcriptome data, we will

be able to predict synthetic rescue landscape specific to the infectious bacteria.

Similarly to cancer, this will enable us to predict molecular mechanisms of

emergence of antibiotics resistance.

• Devising new targeted cancer therapies by estimating clinical essen-

tiality of a gene One of the popular approaches of precision oncology [213]

is mouse transgenics. Tumor samples from a patient are first inserted into im-

muniodeficient transgenic mice and then treated with an array of anti-cancer
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drugs, finally recommendation is provided to the patient based on the drug

response in the mice. There are multiple shortcoming of these approache, in-

cluding the fact that mice are immunodeficient and conclusion in mice does

not translate to human patients completely. A major limitations is also it

takes around 6 months to get back a recommendation.

The analysis of estimating SR activation on patient’s survival (section 4.5 )

can be simplified to identify genes that are essential for cancer progression in

patients (i.e whose independent inhibition improves patient survival). Thus

it provides an alternative to mouse transgenic precision oncology with added

advantages: (i) the effects are predicted directly in clinics and (ii) much faster

prediction (compared to transgenic mice that takes around six months).

• Carcinogen identification: Our SR analysis in section 4.4 suggests that

carcinogenicity of many agents are mediated by synthetic rescues. Given our

SR network, not only we can detect mechanism of carcinogenicity of existing

carcinogens, but also discover unknown carcinogenic agents (or estimate risk

of a chemical to show long term carcinogenic effect in an unbiased manner).

• Genetic interaction: Until now, including in the presented work, the spot-

light was focused on three types of genetic interaction(SL, SDL, SR), however

the genetic perturbations that rewire the complex molecular networks toward

malignancy are likely to involve other types of GIs that are waiting to be dis-

covered. In the context of cancer as a competing population of autonomous

cells, the emergence of beneficial novel GIs leading to greater fitness during
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cancer evolution is highly plausible and indeed expected. There are poten-

tially 512 different types of additional interactions! Clearly, many of those are

probably infrequent and have no functional role, but it is likely that several

new GI types, which have not yet been even defined, let alone searched for,

may play a critical role in cancer.

A statistical approach similar to INCISOR can be used to identify other pat-

terns. However, there are many challenges remaining in the identification of

all possible genetic interactions including:

1. Multiple hypothesis correction testing becomes complicated.

2. It is difficult to control for individual gene effect.

3. It is not clear how to assign a pair to the best gene interaction pattern.

In such case maximum likelihood approaches might be required for the

model selection.

4. It will be hard to biologically interpret many of the genetic interaction

patterns.

• Experimental method of inducing gene inhibition indirectly: Our SR

analysis suggests that if a pair of genes have SR-DD interaction, inhibiting the

vulnerable gene will inhibit the rescuer. Therefore, genes which are not effi-

ciently inhibited by existing experimental technologies, call for SR-DD based

experimental methods to be indirectly inhibited.
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Appendix A: Bayesian integration of genetics and epigenetics detects

causal regulatory SNPs underlying expression variabil-

ity
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With block sampling
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Figure A.1: Mixing rate of eQTeL with and without block sampler. ( Note: regu-
latory and interaction priors were removed for this exposition). The block sampler
leverages information of Linkage disequilibrium (LD) blocks to choose sparse set
of SNPs within each LD block. In the current example, there are two (identical)
SNPs within each LD block. The sampler without block sampler are more often
stuck at previously selected SNPs in consecutive MCMC iterations compared to the
block sampler. This problem will exponentially increase with growing number of
SNPs in LD block. On the other hand, block sampler chooses subset of SNPs with
a LD from their full posterior distribution in each iteration independently using a
MH sampler. Relatively higher number of combinations of SNPs will be explored
by block sampler. The block sampler chooses comparatively better subset of SNPs
since it explores relatively larger fraction of the model space.
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Figure A.2: Feature-analysis: Significant features (p − value < 10−6) are sorted
by their enrichment in eeSNPs relative to random SNPs (Note: features are not
independent). Lists the epigenetic and
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Figure A.3: Validation of eeSNPs in GTEx: Comparative performance of SNPs de-
tected by eQTeL, LASSO and eqtnminer in terms of explained variance. Number
of SNPs were controlled for each method (as in Fig 2). SNPs from eQTeL were
selected using posterior probability > 0.5. The figure shows (5 fold) cross-validated
explained variance and correlation between predicted expression using alleles of iden-
tified SNPs for each methods.
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Figure A.4: Comparative performance of eQTeL in terms of explained variance
in simulated data: Number of SNPs were controlled for each method (as in Fig
2). SNPs from eQTeL were selected using posterior probability > 0.5. SNPs from
eQTeL were identified with posterior probability > 0.5. The figure shows (10 fold)
cross-validated explained variance for each method.
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Figure A.5: Comparative performance of eQTeL in terms of expression predictability
in simulated data: Number of SNPs were controlled for each method (as in Fig 2).
SNPs from eQTeL were selected using posterior probability > 0.5. The figure shows
(10 fold) cross-validated correlation between predicted expression using alleles of
identified SNPs for each method.
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Figure A.6: Comparison of recall-rate of different methods (controlled for overall
effective sparsity). eQTeL-high is eeSNPs with high regulatory potential (above 75
quantile). eQTeL-low is eeSNPs with low regulatory potential in lower 25% quantile.
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(b) top 2 SNPs per gene
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(c) top 3 SNPs per gene
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Figure A.7: Comparative performance of eQTeL as number of SNP per genes are
increased in imputed data.
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Figure A.8: Lirnet enrichment of DGF footprint: This analysis is based on 162
SNPs identified by eQTeL and Lirnet. We analyzed footprint in 42 cell lines from
Neph et. al. overlapping the SNP within 25 bps the SNP loci by using bedtools for
each of the method. The heart-related-tissues are highlighted in red in the figure.
The left-most bar represents pooled data from all heart-related cell types.
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Figure A.9: Eqtnminer subset selection. The eqtnminer with 8 dimensional features
(from 95 dimensional features), selected based on feature importance estimated
by eQTeL. Non-redundant features were chosen. The performance of eqtnminer
improves substantially compared to 95 dimensional eqtnminer.
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Figure A.10: DNAse hypersensitivity at eeSNPs shows greater allele specificity in
HCM. X axis: rank of DHS read counts, Y axis: absolute log-ratio of read counts
mapping to the two alleles at a SNP. SNPs from different methods are selected
similar to Fig 5. The median white lines represent LOESS (local regression) for each
method. Confidence interval for each median line is estimated using bootstrapping
and are represented either by thin lines representing LOESS of each bootstrap, or
by colored shades representing confidence intervals in terms of standard deviation
of bootstraps. Note the allele-specificity at SNPs detected by eQTeL and eqtnminer
remains same even if we control for number of SNPs per gene.
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(a) SKMC (b) HCF

Figure A.11: Relative allele specificity (in terms of DHS reads) by SNPs identified
by different methods: X axis: rank of DHS read counts, Y axis: absolute log-
ratio of read counts mapping to the two alleles at a SNP. SNPs from different
methods are selected similar to fig 5. The median white lines represent LOESS (local
regression) for each method. Confidence interval for each median line is estimated
using bootstrapping and they are shown in the figures using either of following two
ways: by thin lines representing LOESS of each bootstrap, or by colored shades
representing confidence intervals in terms of standard deviation of bootstraps. Note
the allele-specificity at SNPs detected by eQTeL and eqtnminer remains same even
if we control for number of SNPs per gene.
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Figure A.12: Relative allele specificity by SNPs ( in terms of H3K4me3) identified
by different methods: X axis: rank of DHS read counts, Y axis: absolute log-
ratio of read counts mapping to the two alleles at a SNP. SNPs from different
methods are selected similar to fig 5. The median white lines represent LOESS (local
regression) for each method. Confidence interval for each median line is estimated
using bootstrapping and they are shown in the figures using either of following two
ways: by thin lines representing LOESS of each bootstrap, or by colored shades
representing confidence intervals in terms of standard deviation of bootstraps. Note
the allele-specificity at SNPs detected by eQTeL and eqtnminer remains same even
if we control for number of SNPs per gene.
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(a) Explained variance
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Figure A.13: Comparative performance of Lirnet: Comparative performance of Lir-
net in terms of explained variance and expression predictability for 200 genes. Num-
ber of SNPs were controlled for each method (as in Fig 2). SNPs from eQTeL were
selected using posterior probability > 0.5. The figure shows (10 fold) cross-validated
correlation between predicted expression using alleles of identified SNPs for each
method.
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Figure A.14: Proportion of causal SNPs detected by eQTeL: Highly putatively causal
were identified SNPs using difference in association between best-associated SNP
and second-associated SNP for each gene. Y axis shows mammalian TF motifs that
are preferetially disrupted by causal SNPs. For each of these motifs, proportion of
causal SNPs among eeSNPs was estimated using ratio of relative enrichment (over
background) of motif disruption score ( differential binding score between major
allele and minor allele of SNP) between eeSNPs and causal SNPs.
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Figure A.15: Conseravation of eeSNPs. Distribution of mammalian PhasCons scores
for eeSNPs and the control SNPs. The ratio of the two means is 1.49 and Wilcoxon
test p-value < 5 ∗ 10−5.
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Inference

We used a combination of Gibbs and Metropolis-Hasting sampling [214] to

jointly estimate the full posterior distribution of our model parameters.

Sampling γ parameters accounting for Linkage Disequilib-

rium

We estimated linkage disequilibrium block using PLINK [140], by using default

setting of SNPs within 200kb. The effects of SNPs in Linkage Disequilibrium are

dependent on each other because the SNP alleles are highly correlated. Gibbs or

Metropolis-Hastings samplers that ignore the LD structure of SNPs can get stuck in

local minima while failing to explore high probability combinations of γ (Fig. S15).

To overcome these poor mixing properties, we devise a block MCMC sampler that

explicitly uses LD-block information to sample from the posterior probability of a

LD-block i.e.

p(γLD|.) =
P(Y |γLD,γ−LD)

∏
i p(γi|θi)∑

γ ′
LD
P(Y |γ ′

LD,γ−LD)
∏

i p(γ
′
i |θi)

where, γLD and γ−LD are γ of set of SNPs respectively within and outside the

LD-block. The resulting sampler mixed much faster (Fig. S15) by exploring high

probability models in a hierarchical fashion: we use a Gibbs sampler to sample

highly-probable combinations of LD blocks and within these sampled LD block, and

then a Metropolis-Hasting sampler is used to sample a sparse combination of SNPs

that explain expression variance.
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Sampling α and θ parameters

We follow the latent variable Gibbs sampling strategy of [144] to sample the

logistic regression parameters α. Specifically, we can sample latent variables from a

Pólya-gamma distribution,

wi|α ∼ PG(1, Eiα)

(A.1)

and then sample α from a normal distribution,

α ∼ N(mw, Vw)

where, Vw = (FTΩF + B−1)−1, mw = Vw(F
Tκ(θ) + B−1b) with κ(θ) = (θ − .5)

and Ω being a diagonal matrix of the wi’s. Then, for each SNP i and gene j, the

regulatory-interaction potential θij is sampled from its posterior distribution as

P(θij = 1) =
φ(γij)logistic(Eiα)

φ(γij)logistic(Eiα) + (1− φ(γij))(1− logistic(Eiα))
(A.2)

where φ(γ) = πγπ1−γ0 . If θ were estimated based only on whether the correspond-

ing SNP was an expression-regulator (i.e based on value of γ ), then the result-

ing estimation of regulatory-interaction potential would be equivalent to supervised

learning. On the other hand, if θ were sampled on posterior that depended only on

current estimate of α and not on γ, the resulting estimation be equivalent to clus-
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tering. eQTeL, however, uses both in its posterior sample and therefore induces a

semi-supervised clustering of genomic regions into interacting regulator and neutral

regions. This approach to model θ induces a semi-supervised clustering of genomic-

region into interacting-regulators and noninteracting-regulators, since each MCMC

iteration produces a sample of θij for each SNP that depends on its γij in addition

to its current estimate of regulatory and interaction potentials.

Inference of β, σ2 and c

For simplifying the notations, in the section we only consider subset of SNPs

which were selected by the model so that X represents Xγ (this is n × q matrix,

where n is number of samples and q is total number of SNP selected in the model).

The generative model for β, σ2 and c are:

Y|β, X, γ ∼ N(XTβ, σ2I)

β|c, σ ∼ N(0, cσ2(XTX)−1)

σ2 ∼ IG(ν/2, νλ/2)

c ∼ IG(
1

2
,
n

2
) (A.3)
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For Zellner’s g-prior ν is usually assumed to be zero. β, σ2 and c are sampled from

the full posterior distribution as:

P(β, σ2, c|Y, X) ∝ c3/2exp(−n/2c)

σ−2(ν/2+1)σ−n(cσ2)−q/2

exp{−
1

2σ2
νλ

−
1

2σ2
(Y − Xβ̂)T(Y − Xβ̂)

−
1

2σ2
(β− β̂)TXTX(β− β̂)

−
1

2cσ2
βTXTXβ} (A.4)

Where, β̂ = (XTX)−1XTY

P(σ2/.) ∝ σ−2(ν+n+q
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Convergence of sampler

Convergence of the MCMC sampler was assessed by running 10 independent

chains and diagnostics of MCMC chain was performed using R-package “coda”. In

general, we found that the Markov chains converge within 5000 iterations of the

sampler.

Initialization

We use univariate-eQTL to initialize different parameter of the eQTeL model.

Further investigation into the reasons for eQTeL’s

performance gain

In this paper, we have chosen to compare performance of eQTeL against eqt-

nminer since it is the only method that mostly explicitly incorporated epigenomic

data in eQTL as opposed to traditional eQTL approaches. First eqtnminer esti-

mates Bayesian factor (likelihood of association) of each SNP, assuming at most

one SNP per gene to be causal; this assumption can be limiting, because it cannot
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identify combination of SNPs that jointly explain the expression variance. It then

estimates posterior probability of each SNP to be causal regulator by modeling prior

probability as a function of epigenetic data. However, eqtnminer parameter estima-

tion relies on maximizing a likelihood function, which is prone to get stuck in local

maxima due to correlation among different types of epigenetic data (demonstrated

in supplementary note 6 and Fig S9). Further, they do not explicitly model relative

weights of genetic and epigenetic factors in determining causality of SNPs. Another

approach by Lee et al. [2], does not have the limiting assumption of single causal SNP

per gene but it does not incorporate epigenomic data, making comparison infeasible.

Recently, Lappalainen et al. [139] uses Matrix-eQTL (essentially a univariate eQTL

method) to find associated SNPs, and estimates the proportion of causal SNPs by

comparing their epigenomic profiles with that of the most associated SNP per gene

as a gold standard (which is a strong assumption). Since they do not explicitly iden-

tify causal SNPs amongst associated SNP (the only estimate proportion of causal

SNPs), this method is not directly comparable with our method.

To assess performance of eQTeL, we also chose LASSO as a representative

of multivariate regression eQTL approaches, because of its good performance and

scalability to larger datasets. Other approaches to date [215–217] that identify

causal variants in GWAS, but not in eQTL studies and therefore are not directly

comparable.

eQTeLs performance gain is potentially due to two main factors (i) inte-

gration of epigenetic data, (ii) allowing multiple causal variants per gene (cite

http://www.ncbi.nlm.nih.gov/pubmed/25104515). In quantifying the relative con-
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tribution of each of these factors, we note that the mean correlation between actual

and predicted eQTeL-predicted gene expression, when a single causal SNP per gene

is allowed, is 0.154. This correlation improved substantially to 0.289 when 5 causal

SNPs per gene are allowed in eQTeL (Fig S8). However, in the absence of epige-

nomic data, i.e., when using standard LASSO, we do not see any such performance

gain, and in general, the performance is substantially worse than that for eQTeL.

This strongly suggests that allowing multiple SNP per gene is useful in identifying

regulatory SNP specifically when functional information is used.

Another advantage of eQTeL is that it models heterogeneity in epigenetic sig-

natures of expression regulators. eQTeL is a hierarchical Bayesian model as opposed

to empirical Bayes model. Unlike empirical Bayes, hyper-parameters of model are

drawn from unparameterized distributions. For this reason in eQTeL all parame-

ters are estimated using MCMC sampling and EM approximation was not required.

Empirical prior models [2, 49, 218, 219] assumes a single signature for all regulators

and therefore cannot account heterogeneity in the type of regulators of different

genes. The eQTeL accommodates such heterogeneity because it allows variation in

parameter combinations.
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Other methods for comparison

Eqtnminer

The software tool related to Gaffney et. al. was downloaded from http://

eqtnminer.sourceforge.net. For each of the comparative analysis, the initial set

of SNPs per gene was kept same for both eqtnminer and eQTeL for fair comparison.

We obtained Bayesian factor for each SNPs using eqtnminer. The parameters to

calculate epigenetic prior were estimated using maximizing equation (9) of Veyrieras

et. al. The parameters were initialized as recommended by Veyrieras et. al.

To generate Fig 2, we controlled for total number of SNPs selected by eQTeL

and eqtnminer. To do so, we sorted SNPs based on eqtnminer prior probability and

selected top 2428 SNPs. As Gaffney et. al. recommend the eqtnminer for single

SNP per gene, we compared the performance of eqtnminer in main manuscript (Fig

5, 6 and 8) using single SNP per gene for footprint enrichment, allele-specificity

and ChiA-PET enrichment analyses. We repeated that analysis by controlling for

number of SNPs per gene between eQTeL and eqtnminer; the eQTeL still outperform

eqtnminer in that case. To generate Fig S8, for each gene we selected N (= 1,2, 3

and 5) top SNP(s) based on eqtnminer posterior probability.

LASSO

R-package GLMNET was used for L1 regulaizer multivariate regression (LASSO).

LASSO estimates effect size (regression coefficient), for the SNP included in the
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model. We used 10-fold cross validation to estimate the hyper-parameter (lambda,

regularization parameter). For each of the comparative analysis, the initial set of

SNPs per gene was kept the same for both LASSO and eQTeL for fair comparison.

To generate Fig 2, we controlled for total number of SNPs selected by eQTeL

and LASSO. To do so, we sorted SNPs based on absolute value of effect size esti-

mated by LASSO-selected top 2428 SNPs. To generate Fig S8, for each gene we

selected N (=1,2,3 and 5) top SNP(s) based on absolute value of estimated effect

size estimated by LASSO.

Matrix-eQTL /univariate-eQTL (Lappalainen et. al.)

We used R package matrix-eQTL (http://www.bios.unc.edu/research/genomic_

software/Matrix_eQTL/), to perform univariate-eQTL as recommended by Lap-

palainen et. al.

Epigenetic-only model

In simulation study, α parameters were learned, in supervised manner, by

using enhancers as training example. Bayesian logistic regression [144] was used to

learn α. Based on learned α, SNPs were sorted based on their regulatory potential.

Known-epigenetic-prior-eQTeL

Known-epigenetic-prior-eQTeL, is a version of eQTeL (for simulation study

only) where instead of estimating α, the α used to generate regulatory potential for
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simulation study was used. Thus it is a theoretically best model for eQTeL.

Variable selection method

Variable selection model was implemented by modifying eQTeL model as fol-

lows: (a) informative prior was changed to uninformative priors. (b) hierarchical

sampling SNP (based on LD block) was switched off; each SNP were processed

sequentially, similar to Liang et. al. [146].

Lirnet

Lirnet was downloaded from (http://homes.cs.washington.edu/~suinlee/

lirnet/). Because of computational limitation of lirnet (it takes 13 days of CPU

processing in a 64 core machine to process 200 genes), this analysis was limited

to 200 random genes. Hyper-parameter of the model was set by cross-validation

as recommended in Lee et. al. [2]. For comparing the performance of Lirnet with

eQTeL we ran eQTeL with same set of 200 genes.

Figure A.13 demonstrates that eQTeL outperforms Lirnet in terms of explained

variance and prediction accuracy ( we controlled for number of SNPs selected by each

methods). Figure A.8 also demonstrates that higher fraction of of SNPs detected by

eQTeL overlaps with footprints, suggesting eeSNPs are more likely to be functional

compared to SNPs detected by Lirnet.
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Eqtnminer subset selection

We used 95 dimensional epigenetic and interaction features, (Fig A.2) to learn

interacting-regulatory potential by eQTeL. Many of the features have very high

correlation between them. When the 95 dimensional features were used for learning

prior in eqtnminer, the alpha parameters (feature importance) were not learned

accurately. This is most probably due extreme correlation between different input

features that might cause the maximization function to stuck in a local maximum.

To analyze this further, we used 8 features of the 95 dimensional features, which were

given high feature importance by eQTeL and does not have extreme correlation. The

performance improved substantially, although eQTeL performed better compared to

eqtnminer(Supplementary Fig. A.9).

Multiple hypothesis correction/sparsity constrains

Here we demonstrate that eQTeL model can detect causal expression-regulatory

SNP even if they have small effect size by analyzing sparsity constraints by asso-

ciation methods on the simulated dataset. Normally, due to multiple-hypothesis

test correction (equivalent to sparsity constraint in Bayesian models), expression-

regulators with small effect on expression are missed. Fig. A.6. shows effect-size

distribution of identified causal SNPs by univariate-eQTL and eQTeL when the

same number of SNPs is selected by each methods. Univariate-eQTL cannot identify

causal SNPs with low effect-size because of severe multiple-hypothesis correction.
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eQTeL, however, detects causal SNPs with small effect-size. Although the recall-rate

decreases with the effect size for eQTeL it can more effectively retrieve causal SNP

with small effect size, particularly those with relatively high interacting-regulator

potential. Since there are fewer SNPs which are within an interacting-regulator,

selection of expression regulators among those SNPs can be made under a relatively

less severe sparsity constraint (or equivalently, multiple hypothesis correction). This

is evident from from Fig. A.6. Moreover, recall rate of eQTeL is relatively higher

for top 50% causal SNPs with stronger interacting-regulatory potential (eQTeL-

high) than for the bottom 50%. This suggests that eQTeL applies a relatively lower

sparsity constraint on interacting-regulators.

Explained variance and expression predictability

Different methods are known have biases in estimating effect size β. For in-

stance, LASSO is know to over-shrink the parameters, therefore it is recommended

that first LASSO be used for feature selection and then β be estimated indepen-

dently for selected features [79]. To remove such biases and compare performance

of different methods in an unbiased manner, each methods were used for regulatory

SNPs identification only and β was independently estimated using cross-validation

training set as follows.

For each method, explained variance and expression predictability was esti-

mated using k fold cross-validation. Samples were randomly partitioned into k

subsamples. k − 1 of subsamples were used for estimating β for selected SNPs as
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β̂train = (XTX)−1XTY, while retaining one subsample for validation. In the validation

subsample expression was predicted as Ŷtest = XT β̂train. Expression predictability

was defined as Pearson correlation between Ytest and Ŷtest. Explained variance was

calculated as 1− var(Ytest−Ŷtest)
var(Ytest)

. This process is repeated k times, using each k sub-

samples for validation exactly once. The mean and standard deviation of explained

variance of expression predictability and explained variance was calculated for k test

subsamples.

Scalability and computation

eQTeL uses shared memory multiprocessing to process genes in parallel. This

makes it feasible to run Gibbs sampler to process thousands of genes with mil-

lion of putative SNPs. In order to calculate Bayesian factor of SNP, we use fast

Choleksy-update algorithm described in Dongarra et al. (Ch 10. [220]). Further,

while calculating feature importance α at each Gibbs iteration we randomly sample

subset of interacting-regulator and non-regulators to: a) speed up the eQTeL model

and b) avoid over-fitting while estimating α.

The software GOAL that implements the eQTeL model uses the multiple cores

to speed up the process. In addition, we use several efficient algorithms from LA-

PACK to efficiently update the Choleskythe most computation intensive part of

eQTeL. GOAL can efficiently handle million of SNPs for thousand of genes because

it process each genes in parallel in a separate thread. In addition, the epigenetic

importance can be estimated using subset of genes; and given the importance esti-
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mated each of genes could be processed independently.
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Appendix B: Synthetic rescue determinants of resistance and response

to cancer therapy

Extended data figures

185



186



Figure B.1: (a-e) Synthetic rescues functional truth tables: The truth tables of the
four SR and SL interaction types. Each truth table denotes the cell viability states
- viable (green), non-rescued (i.e., lethal – red), and rescued (blue) - as a function
of the activity state of each of the SR pair genes (down regulated, wild-type and
up-regulated). The states are enumerated as state 1 to state 9.: (a) (DU-SR): Down-
regulation of a vulnerable gene is lethal but the cancer cell is rescued (retains via-
bility) by the up-regulation of its rescuer partner; (b-d): Analogous functional truth
tables for (DD, UD, and UU) SR types. (e) In an SL interaction, in difference, the
down-regulation of either gene alone is viable but the down-regulation of both genes
together is lethal. (f) Overview of INCISOR. INICISOR takes inputs as expression,
somatic copy number of alternations (SCNA) and survival of patients sample as
input and output SR pairs. It composes of 4 steps: SoF performs 4 Wilcoxon test
to compare expression between groups highlighted in red and black (and similar 4
wilcox test for SCNA). Next three step survival data uses survival data and perform
KM analyses to compare survival between the groups highlighted in red and black.
(g-i) DU-type SR network and functional characterization. (f) Pairwise gene enrich-
ment analysis: The Extended Data Figure shows relationship between vulnerable
gene biological processes (red) and rescuer gene biological processes. Edges between
a vulnerable process and rescuer process represents enrichment of the vulnerable
process in vulnerable gene partner of rescuer process genes. (g) SR-DU network
of metabolic genes and functional characterization. The figure depicts synthetic
rescues network with 152 vulnerable genes (green) and 210 rescuer genes (red) of
131 metabolic genes (diamond) encompassing 258 interactions. The size of nodes
indicates their degree in the network as in (c).
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Figure B.2: (a) Pan-cancer clinical significance of SR network. X axis shows 23
different cancer types, and Y axis shows the fraction of significant pan-cancer SR in
each cancer type. Pan-cancer TCGA dataset was divided into two halves. DU-SR
network was identified by applying INCISOR using one half of the data, and clinical
significance was determined in the other half of the data. (b) Clinical predictive
power of pancancer DU-SR pairs in an independent ovarian cancer dataset. The
KM plot compared the survival of rescued (top 5-percentile; blue) vs non-rescued
(bottom 5-percentile; red) ovarian cancer samples (N=92). The rescued samples
show worse patient survival (logrank p-value<0.017, ∆ AUC=0.4). (c-e) Rescuer
activation associated with the vulnerable gene inactivation due to somatic muta-
tions. (c) Rescuer activation per each vulnerable gene. The horizontal axis lists
vulnerable genes with somatic mutations in TCGA samples, and the vertical axis
denotes the significance of rescuer gene-activity between samples with vs. without
vulnerable gene mutations. (d) Rescuer activation per each rescuer. The horizontal
axis lists rescuer genes with somatic mutations in TCGA samples and the verti-
cal axis denotes the significance of rescuer gene-activity between samples with vs.
without vulnerable gene mutations. (e) The KM plot depicts the aggregate clinical
predictive power of rescuers of CDH11 gene, among patient with CDH11 mutation.
(f) Predictive power of SR when they are treated as SL. In this predictor an acti-
vation of SR as defined as when a rescuer expression is wild type and vulnerable
gene is inactive Specifically, for each patients we count number of rescuer activity is
wild-type, patients with the higher count (top 10 percentile) were considered as non-
responder and lower count (bottom 10 percentile) were considered as non-responder.
(g) GO-term enrichment analysis with rescuers of the drug targets. Rescuers are
enriched with lipid storage/transport, thioester/fatty acid metabolism, and drug
efflux transporters.
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Figure B.3: TCGA drug response. Drug response of top 15 anti-cancer drugs using
drug- DU-SR in TCGA data. Each subplot represents a KM analysis of responder
(red) v/s non-responders (blue) for a drug. The name of drug, log-rank p-value and
∆AUC is indicated in each subplot.
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Figure B.4: (a-d) SR network successfully predicts the response to cancer drug
treatments in breast cancer. (a) Expression fold change (pre- versus post- drug
treatment) is shown for the rescuer genes of the four vulnerable genes that are
targeted by a drug cocktail in a cohort of 25 clinical breast cancer patients (i.e., from
the BC25 dataset). Box plots aggregate rescuer expression changes for all rescuers
of a given vulnerable target across patients that are clinical responders (blue) and
non-responders (red). Ranksum p-values denote differences in overall rescuer fold
change between these responder groups for each target gene. (b) Expression fold
changes are shown for clinical responders and non-responders of BC25 for the 5
rescuers of the gene target BCL2. In (a) and (b) significant genes are marked by
stars (ranksum p-value<0.05). (c) The 20 DU gene pairs active in the BC25 dataset
are ranked by degree of potency (i.e., by the ranksum p-value denoting differential
responder- versus non-responder pre- to post- drug fold change) (y-axis), and also
ranked by their rescue effect (as calculated using the BC-DU-SR network as in
step 2 of INCISOR) (x-axis). These measures correlate (Spearman = -0.54, p<1e-
3). (d) Receiver Operating Characteristic (ROC) curve for an SVM predictor of
patient treatment response, trained on the BC25 dataset. Area under the curve
(AUC) is 0.71 for the predictor (blue), as compared to 0.54 for a random predictor
(red). (e-k) SR network successfully predicts the response to cancer drug treatments
in gastric cancer (e) The bar plot shows the significance of over-expression of 15
rescuers of THYMS in the tumors of patients who acquired resistance to Cisplatin
and Fluorouracil compared to the patients who did not acquire resistance. (f,g) The
KM plots depict the clinical significance of rescuer over-expression in patient tumors
in terms of progression free survival (f) and overall survival (g). The patients with
highly rescued tumors (>90 percentile) have significantly worse survival compared
the patients with lowly rescued tumors (<10 percentile). The KM plot compares
the difference in survival rates between rescued patients with many rescuers over-
expressed (top 10 percentile) and non-rescued patients with fewer rescue events
(bottom 10 percentile) for random chosen rescuer genes (h) for over-all survival and
(i) progression-free survival. Both figures show no statistical significance.(continued
in the next page). (j) The contribution of the 4 steps of INCISOR in predicting over-
activation of rescuers. The rescuers identified by combining 4 steps of INCISOR
show the highest significance, and this is followed by significances of rescuers over-
expression identified with each of the step separately: robust rescue effect (step
3), oncogene rescuer screening (step 4), molecular survival of the fittest (step 1),
vulnerable gene screening (step 2), and random control.
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Figure B.4: (continued in the previous page): (k) The clinical significance of the res-
cuer up-regulation (rescue effect) of the 4 steps of INCISOR (estimated in ∆AUC).
The rescuers identified by all 4 steps of INCISOR have the most significant clini-
cal impact, and this is followed by those identified by robust rescue effect (step 3),
molecular survival of the fittest (step 1), oncogene rescuer screening (step 4), and
vulnerable gene screening (step 2).
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Figure B.5: Extended Data Figure 5. (a,c) Synthetic rescue interaction in ovarian
cancer dataset: (a) Rescuers are up regulated in non-responders: We compared ac-
tivation of 18 rescuer genes (of the treatment drugs 3 targets) in non-responders
(blue) vs. responders (red) before primary treatments. Ranksum p-values denote
significant non-responder vs. responder expression differences. Significant genes
are marked by stars (ranksum p-value<0.05). (b) A binary classifier based on pre-
treatment rescuer gene expression predicts patient relapse among 32 initial respon-
ders (AUC=0.77 (blue), vs. AUC=0.53 (red) for an 18-gene random classifier). (c)
Pre-treatment SL partners expression is insufficient to predict future relapse among
initial responders in ovarian cancer. An ROC plot showing the prediction accuracy
obtained by a linear SVM based on 18 SL partners (AUC=0.52) compared to the
accuracy obtained based on 18 random genes (red line, AUC=0.52) in ovarian can-
cer. (d) Pre-treatment rescuers expression successfully predicts future relapse among
initial responders in breast cancer. An ROC plot in breast cancer shows the pre-
diction accuracy obtained by a linear SVM (AUC=0.74) compared to the accuracy
obtained based on 13 random genes (red line, AUC=0.57). (e) Clinical significance
of SL pairs identified by INCISOR Patients were scored based on number of func-
tionally active SL pairs. Kaplan-Meier analysis shows the survival of patients who
belong to top 10 percentile (SL+) is better than the survival of those belonging to
bottom 10 percentile (SL-). (f-g) Experimental shRNA screening validates (DD)
rescue effects of mTOR. (f) Summary of pooled shRNA experiment. Time points,
treated and control samples are explained in the figure. (g) 19 predicted vulnerable
partners for mTOR are knocked down using shRNA. Next, Rapamycin is used to
inhibit mTOR. The vertical axes show fold change in cell counts after versus before
Rapamycin treatment (i.e., in the non-rescued versus the rescued state). SR part-
ners of mTOR are compared to several control genes that are not in SR pairs with
mTOR.

196



197



Figure B.6: DD-type SR network and functional characterization (a) The figure
depicts synthetic rescues network with 531 vulnerable genes (green), 422 rescuer
genes (red) encompassing 977 interactions. Red denotes vulnerable genes and green
denoted rescuers genes, while the size of nodes indicates their degree in the network,
such that large nodes point to major vulnerable and rescuer hub genes. (b) Vulner-
able genes are enriched with transmembrane ion transport signaling. (c) Rescuers
are enriched protein location processes, WNT signaling, T cell regulation, protein
folding and proteolysis. (d-f) UD-type SR network and functional characterization
(d) The figure depicts synthetic rescues network with 1134 vulnerable genes, 789
rescuer genes (red) encompassing 2637 interactions. Red denotes vulnerable genes
and green denoted rescuers genes, while the size of nodes indicates their degree
in the network, such that large nodes point to major vulnerable and rescuer hub
genes. (e) Gene enrichment analyses of vulnerable genes. (f) Gene enrichment anal-
yses of rescuer genes. (g-i) UU-type SR network and functional characterization
(g) The figure depicts synthetic rescues network with 1083 vulnerable genes, 430
rescuer genes (red) encompassing 1515 interactions. Red denotes vulnerable genes
and green denoted rescuers genes, while the size of nodes indicates their degree in
the network, such that large nodes point to major vulnerable and rescuer hub genes.
(h) Gene enrichment analyses of vulnerable genes. (i) Gene enrichment analyses of
rescuer genes.

198



199



Figure B.7: BC-SR network and its functional characterization. (a) DU: The fig-
ure depicts synthetic rescues network among 433 vulnerable genes (green) and 583
rescuer genes (red), encompassing 2298 interactions. Rescuers are enriched with
lipoprotein metabolism and G-protein coupled and chemokine receptor pathways.
Vulnerable genes are enriched with linoleic acid metabolism and IL2 signaling path-
way. (b) UU: The figure depicts synthetic rescues network with 1056 vulnerable
genes (green), 311 rescuer genes (red) encompassing 3096 interactions. Rescuers are
enriched with negative regulation of immune response and histone phosphorylation.
Vulnerable genes are enriched with GTPase activity and extracellular matrix orga-
nization. (c) UD: The figure depicts synthetic rescues network with 635 vulnerable
genes (green), 176 rescuer genes (red) encompassing 1189 interactions. Rescuers are
enriched with cell morphogenesis. Vulnerable genes are enriched with cytochrome
P450 and fatty acid metabolism. (d) DD: The figure depicts synthetic rescues net-
work with 244 vulnerable genes (green), 110 rescuer genes (red) encompassing 781
interactions. Rescuers are enriched with proteasome complex and IL6 pathway.
Vulnerable genes are enriched with protein folding and methytransferase.
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Figure B.8: a-d) Clinical significance of 4 types of SR interactions in breast cancer:
The Kaplan Meier (KM) plot depicts the difference in clinical prognosis between
patients with rescued tumors (>90-percentile of number of functionally active SR
pairs, blue) vs patients with non-rescued (<10- percentile of number of functionally
active SR, red) samples. As predicted, a large number of functionally active rescuer
pairs renders significantly marked worse survival based on all four different SR net-
works: (a) DD, (b) DU (c) UD and (d) UU. The logrank p-values and ∆AUC are
marked, and DU shows the strongest clinical significance. (e) Illustration of effect
of non-rescued, viable and rescued states on survival due to SR interaction between
FGF10 (vulnerable gene) and EEA1 (rescuer gene) SR interaction. Patients were
divided based on state of FGF10/EEA1 SR interaction: i) in viable state EEA1
was WT in patients, ii) in non-rescued state EEA1 was inactive and FGF10 was
not over-active, and iii) in rescued stated EEA1 was inactive and FGF10 was over-
active. (f) Rescue effect of SR network is due to interaction: Shuffling the vulnerable
genes in SR network and KM analysis similar to Figure 4.5e. (g-h) The functional
activity of SR increases as cancer progresses. (g) The number of functionally active
SRs (green) and random gene pairs (red) as cancer progresses. (h) The number
of rescued inactive vulnerable genes with varying number of active rescuers (from
single rescuer with darkest blue line to five rescuers with the lightest blue line) as
cancer progresses. (i-l) The breast cancer SR-DU network predicts drug response in
cell lines and cancer patients. (i) The rescuer activity profiles of individual cell-lines
predict drug response of 9 out of 24 drugs. We compared the experimentally mea-
sured drug response (IC50 values) between predicted rescued vs. non-rescued cell
lines using a ranksum test. The horizontal axis represents the 24 drugs in CCLE
database, and the vertical axis denotes the ranksum p-values. (j) The rescuer ac-
tivity profiles successfully predict the survival of patients whose tumors are rescued
vs. those whose tumors are non- rescued (the latter patients have better survival)
for 15 out of 37 drugs as quantified by a logrank test. The horizontal axis lists the
37 drugs in TCGA BC dataset, and the vertical axis represents the logrank p-values
examining the separation between predicted rescued and non-rescued tumors. (k)
The expected clinical impact of rescuer genes knockdown: Key rescuer genes and
their corresponding drugs (in parenthesis) are listed on the vertical axis, and the
expected clinical benefit of the rescuer knockdown is presented in the horizontal
axis. The clinical impact was measured by comparing the survival of drug-treated
patients with and without the corresponding over-active rescuer (l) The likelihood
of developing drug resistance: The probability of developing SR mediated resistance
(vertical axis) for each drug (horizontal axis) is estimated by the fraction of samples
that have non-zero over-activation of rescuers.
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Figure B.9: (a-b) Characterization of rSR and bSR. (a) We identified rSR by se-
lecting SR pairs whose rescuer activation (green) consistently drives the functional
activation of SR (blue) as cancer progresses. (b) We identified bSR pairs by selecting
SR pairs whose vulnerable gene inactivation (red) drives the functional activation.
(c-j) Clinical impact of rSR and bSR (c,d) The KM plots depict the patients with
highly rescued tumors (red; >90 percentile) have worse survival than the patients
with lowly rescued tumors (blue; <10 percentile). The rSR shows more significant
clinical rescue effect (logrank p- value<1E-300) than bSR (logrank p-value <1E-
8) in comparison to rescuer controls (g) and (h). (e,f) The KM plots depict the
difference in the survival between two groups of patients whose tumors are highly
vulnerable (red; >90 percentile) vs. lowly vulnerable (blue; <10 percentile) given
over-activation of rescuer genes. The rSR shows more significant impact (logrank
p-value<1E-300) than bSR (logrank p-value <1E- 8) in comparison to vulnerable
controls (i) and (j).
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Figure B.10: Clinical significance of SR network in breast cancer subtypes The KM
plot depicting the differences in clinical prognosis between rescued (>90-percentile
of number of functionally active SR, blue) vs non-rescued (<10-percentile of number
of functionally active SR, red) samples in her2 subtype (first row), triple-negative
(second row), luminalA (third row), and luminalB (fourth row). The high fraction
of rescue renders worse survival in all 4 different types of SR: DD (first column),
DU (second column), UD (third column), and UU (fourth column). Their logrank
p-values and the ∆AUC are represented.
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The INCISOR pipeline

INCISOR identifies candidate synthetic rescue (SR) interactions with four

independent statistical tests, each tailored to test distinct properties of SR pairs. We

describe here in detail the identification procedure of four types of SR interaction

(Extended Data Figure 1f).

Molecular survival of the fittest (SoF) (Step 1):

To reliably define the activity of a gene, we used gene expression (GE) and

somatic copy number alteration (SCNA). A gene is inactive (respectively, overac-

tive) if its expression level is less (greater) than the 20th-percentile (80th-percentile)

across samples and its SCNA is less (greater) than -0.1 (0.1). A gene has its normal

activation level if its expression level is between the 25th and 75th percentile (across

samples).

To identify an SR pair from cancer molecular data, we performed the following

four Wilcoxon tests, examining all possible pairs of a vulnerable gene V and a rescuer

gene R.

For DU (DD) type, we confirmed if: (a) the SCNA levels of vulnerable gene V

are not significantly different in samples with wild-type levels of rescuer R from its

levels in samples where rescuer R is inactive (respectively, over-active) [Test I]; (b)

the SCNA levels of vulnerable gene V are significantly lower (higher) in the samples

where rescuer gene R is over-activated (inactivated) than in the samples where
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rescuer R is inactivated (over-activated) [Test II] and in the samples with wild-type

levels of rescuer gene R [Test III] test I, III distinguish DU- (DD-) type SR from SL

(SDL); and (c) the SCNA levels of rescuer genes R are significantly higher (lower)

in samples when the vulnerable gene V is inactive compared to samples where gene

V is not inactive [Test IV]. (Here SDL stands for synthetic dosage lethality, where

over-activation of one gene renders lethality to another gene.)

For UU (UD) type, we confirmed if: (a) the SCNA levels of vulnerable gene

V are not significantly different in samples with wild types levels of rescuer R from

its levels in samples where rescuer R is inactive (over-active) [Test I]; (b) the SCNA

levels of vulnerable gene V are significantly higher (lower) in the samples where

rescuer gene R is over-activated (inactivated) than in samples where rescuer R is

inactivated (over-activated) [Test II] and in the samples with wild-type levels of

rescuer gene R [Test III]; and (c) the SCNA levels of rescuer genes R are significantly

higher (lower) in samples when the vulnerable gene V is overactive compared to

samples where gene V is not overactive [Test IV].

For each type, we performed, analogously, four Wilcoxon tests examining the

corresponding activity of candidate genes V and R at the gene-expression level. The

molecularly inferred SR candidates were defined as those gene pairs that pass all 4

tests.
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Vulnerable gene screen (Step 2)

This step tests whether the candidate vulnerable gene A is actually lethal when

not specifically rescued by candidate rescuer gene B: we performed two Kaplan-Meier

(KM) analyses testing if vulnerable gene A inactivation for DU/DD (over-activation

for UU/UD) without rescue improves patient survival [test I]; and if vulnerable

gene A inactivation for DU/DD (over-activation for UU/UD) with rescue decreases

patient survival [test II]. Specifically, we calculated ∆AUC due to vulnerable gene

A inactivation in DU/DD (over-activation in UU/UD) for the patients with rescuer

B over-activated in DU/UU (inactivated in DD/UD), and for the patients where

rescuer gene B is not over-activated in DU/UU (not inactivated in DD/UD), and

then we calculated the difference in the ∆AUCs. Gene pairs with top 25percentile

of these differences were selected as final SR pairs.

Robust rescue effect (Step 3):

This step selects the candidate gene pairs that provide consistently high pre-

dictive patient survival signal across multiple datasets and across multiple cancer

types. For DU-type, we compared the survival of rescued inactive vulnerable gene A

(rescuer gene B over-activated; state 3 in Extended Data Figure 1a) vs non-rescued

gene A (states 1, 2). For DD-type, we compared the survival of rescued inactive

vulnerable gene A (rescuer gene B inactive; state 1) vs non-rescued gene A (states

2, 3). For UU-type, we compared the survival of rescued over-active vulnerable gene

A (rescuer gene B over-activated; state 9) vs non-rescued gene A (states 7, 8). For
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UD-type, we compared the survival of rescued over-active vulnerable gene A (res-

cuer gene B inactive; state 7) vs non-rescued gene A (states 8, 9). The extent of

decrease in survival of rescued samples from non-rescued is termed as rescue effect.

We aggregated the results over 50 bootstraps of the samples set to identify robust

rescue effect across datasets [221].

Oncogene rescuer screen (Step 4):

This step tests whether the rescue effect observed so far for a given pair A->

B is mediated by true synergy between the genes as desired or is just a false positive

effect caused by a single gene, candidate rescuer B, that is not pair specific. For

each candidate rescuer gene B we calculated its rescue effect (∆AUC) when each of

the candidate vulnerable genes is inactivated for DU/DD-types (over-activated for

UU/UD-types). For the analyses only those SR pairs that show significant rescue

after FDR correction are considered. The top 10-percentile of vulnerable genes A

among those vulnerable genes with significant rescue effect was labeled as having

synergistic effect with the rescuer gene B.

Pan-cancer KM analyses: combining survival analysis of dif-

ferent cancer types.

INCISOR was applied to pan-cancer TCGA (the Cancer Genome Atlas) data

[76], and breast cancer and its four subtypes. For pan-cancer analysis INCISOR

tailors a log-rank statistical test for the three survival analyses (steps 2-4) to ac-
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count for differences in survival time between cancer types. Specifically, to compare

survival of any two groups, we estimate expected number of deaths in each group

for each cancer type separately assuming a hypergeometric distribution. We then

sum the cancer-specific estimates of expected and observed number of deaths to

infer pan-cancer expected and observed number of deaths. Finally a 2-test compar-

ing the pan-cancer expected and observed deaths gives the final pan-cancer survival

difference between any two groups tested. For cancer type-specific analysis (breast

cancer (BC) and BC subtypes), we performed a regular log-rank test.

Pan-cancer SR network

DU network

We applied INCISOR to the pan-cancer TCGA data spanning 7,995 samples

across 28 different cancer types. SR interactions are overwhelmingly asymmet-

ric, where only 10 genes (ARL2BP, FOXL1, GLDN, JAM2, MT1A, PLEKHM2,

SLC19A3, TMEM39B, UACA, UBE3B) are both rescuers and vulnerable genes.

The pan-cancer DU-SR network has 2,033 interactions involving 686 rescuer genes

and 1,513 vulnerable genes (Figure 4.4a, full network Extended Data Figure 1g inter-

active network in Supplementary Data 1). We carried out gene enrichment analyses

using ClueGO [222] (refer to Supplementary Information Sec 3.1). Vulnerable genes

are enriched with cellular process regulation, protein metabolic and developmen-

tal processes and the rescuers are enriched with mitotic cellular, macromolecule
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metabolic and embryo development processes (Figure 4.4b,c), and in pairwise the

inactivation of genes involved in metabolism and adenylate kinase activity is rescued

by genes in mitotic cell cycle, and nuclear membrane, respectively (Extended Data

Figure 1h). To check whether SR interaction is mediated by physical contact of pro-

teins, we compared a protein-protein interaction (PPI) network [223] and our SR

network. We found a small fraction (2.5%) of SR-DU interactions (hypergeometric

p-value=0.70) are mediated by physical protein interactions.

If a cellular response to the inhibition of a vulnerable gene results in over-

activation of an oncogenic rescuer, such inhibition will be carcinogenic. Indeed, by

mining the data of carcinogenic agents and their targets [199,200,224] we found that

drugs that inhibit vulnerable partners of known oncogenes [189] are known to be

carcinogenic (hypergeometric P<0.03, Supplementary Information). We considered

the DU-rescuer oncogenes that have more than 5 vulnerable partners, and identified

their association with the drug targets of the carcinogenic agents identified above

using DrugBank [210].

Clinical significance of SR DU network across cancer types

To determine clinical significance of DU-type network across different cancer

types, we divided the TCGA dataset by half for each cancer type into a training set

and a testing set. We first identified SR pairs by applying INCISOR to the training

set, and we tested the clinical significance of the pairs by the fraction of SR pairs

that are individually significant in testing set. Extended Data Figure 2a shows the

fraction of significant SR pairs in each different cancer types. This is a natural way
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Factors coef exp(coef) se(coef) z Pr(>|z|) Signi
fica
nce

Synthetic	
  rescue 1.45E-­‐01 1.16E+00 1.85E-­‐02 7.826 5.00E-­‐15 ***
Age	
  at	
  diagnosis 1.33E-­‐02 1.01E+00 3.41E-­‐03 3.908 9.30E-­‐05 ***

Size 1.30E-­‐02 1.01E+00 1.80E-­‐03 7.182 6.87E-­‐13 ***

Lymph	
  nodes	
  
positive

6.65E-­‐02 1.07E+00 5.50E-­‐03 12.083 <2.00E-­‐16 ***

Genomic	
  instability 1.27E-­‐05 1.00E+00 2.39E-­‐05 0.53 0.5961

ERBB2 -­‐6.66E-­‐01 5.14E-­‐01 3.34E-­‐01 -­‐1.992 0.0464 *

ESR1 2.34E-­‐01 1.26E+00 9.72E-­‐02 2.402 0.0163 *

ESR2 -­‐5.67E-­‐02 9.45E-­‐01 2.22E-­‐01 -­‐0.256 0.7981

PGR -­‐4.71E-­‐01 6.24E-­‐01 2.97E-­‐01 -­‐1.584 0.1132

Table B.1: Survival Cox regression in METABRIC dataset with features as DU-
SR network and other confounding factors. The table summarizes the Cox re-
gression analysis of patient survival based on DU-SR network and other factors
in METABRIC dataset. DU-SR is significant (p − value < 5E − 15) even after
controlling for other confounding factors.

to estimate the clinical significance in each cancer type because many of the cancer

types have lower than 200 samples in TCGA.

Clinical significance of SR DU network in other cancer types

In the main text, we identified DU-SR network (and others) using TCGA data,

and validated it in an independent METABRIC breast cancer cohort dataset [198].

We compared the survival of patients whose tumors have many vs. few functionally

active DU-SRs, and found that rescued tumor samples typically accompany worse

patient survival (Figure 2a). This collective clinical significant in METABRIC data

is not simply due to lower expression or copy number of the vulnerable genes in the

rescued samples. The mRNA expression and SCNA of the 1,513 DU-SR vulnera-

ble genes are in fact higher in non-rescued samples than rescued samples (overall
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ranksum P<2.2E-16 for both), and found 108 (166) of them are significantly up-

regulated (amplified) and 700 (1,036) of them are significantly down-regulated (lost

their copies) in rescued samples (ranksum p-value<0.05). This shows that the clin-

ical rescue effect is not simply mediated by differential activation of the vulnerable

partners.

We also tested the clinical significance of the pan-cancer DU-SR network in

another independent dataset for an ovarian cancer patient cohort from International

Cancer Genome Consortium (ICGC) [225]. We analyzed copy number alteration,

gene expression and patient survival data of 81 patients, and compared the survival

of rescued vs non-rescued tumor samples. We observed rescued samples show worse

survival compared to non-rescued samples (logrank p-value<0.017, ∆AUC=0.4) (Ex-

tended Data Figure 2b). We also observed 9.5% of the individual pan-cancer SR-DU

pairs show significance (logrank p-value<0.05) in this dataset.

TCGA (single nucleotide) mutation analysis

We examined the TCGA mutation profile to infer causality of SR interac-

tion (DU-type) in pancancer-scale. (The single nucleotide polymorphism mutation

profile has not been used in the SR prediction pipeline and hence can serve for

independently validating INCISOR predictions.). If the vulnerable genes inactiva-

tion leads to selection for rescuer activation, we expect more rescuers will be active

(over-expressed and/or increased copy number) when their vulnerable partner suf-

fers deleterious mutation. We tested this hypothesis using TCGA mutation profile

that spans 5,031 patients of 23 cancer types, and we considered SR interactions
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of 341 genes that have mutations in at least 30 patients. We identified the res-

cuers of the 341 genes by applying less conservative INCISOR. Using Wilcoxon test,

we statistically compared the GE and SCNA of the rescuers in patients with and

without vulnerable gene mutations. Indeed, we found that the copy number of

rescuers were significantly higher in samples with mutated vulnerable genes than

without such mutation (Wilcoxon P <1.2e-100). The expression of rescuer genes

was also significantly higher in samples with mutations in vulnerable genes than in

those where they are intact (Wilcoxon P < 1.1E-17). Overall, 81% of 341 mutated

vulnerable genes showed higher copy number of rescuers in the event they were mu-

tated; with 33% of the genes having such a statistically significant increase in their

rescuers copy number (Wilcoxon p < 0.05). Only 2.8% of the genes showed sta-

tistically significant decrease in rescuers copy number. In terms of mRNA, 17% of

the mutated vulnerable genes showed significant under-expression of corresponding

rescuers. Extended Data Figure 2c shows the key vulnerable genes, when mutated,

whose rescuers show significant increase both in copy number and gene-expression.

Extended Data Figure 2d shows the key rescuer genes that show significant increase

both in copy number and gene-expression when their vulnerable gene partners are

mutated.

Interestingly, we also identified 7 vulnerable genes whose rescuers have signifi-

cantly lower copy number variation in mutated samples. We suspected that somatic

mutations in these 7 genes might increase its activity. Indeed we found that 3 genes

mutations are significantly associated with higher copy number variation or higher

gene-expression. In particular, samples with mutations in GATA3 have both higher
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copy number and gene expression variance.

Our analysis revealed that CDH11, a membrane protein that mediates cell-

cell adhesion and is related to ERK signaling pathways [226], is highly rescued

when mutated. It was mutated in 2.1% of TCGA samples. INCISOR predicts

IFT172 and MSH2 as DU rescuers of CDH11. MSH2 protein is part of mismatch

repair complex (MutS), whose deregulation is associated with emergence of drug

resistance. In samples where CHD11 is mutated, these rescuers shows significant

increase in copy number (Wilcoxon P<2.6E-6) and expression (Wilcoxon P<0.03).

To investigate whether the cells are indeed functionally rescued by over-expression

of rescuers genes, we examined the patients with CDH11 mutation and compared

the survival of these patients when rescuers of CDH11 are highly activated to their

survival when they are not. As anticipated, patients whose inactivated CHD11

is rescued show much poorer survival (Extended Data Figure 2e). This analysis

demonstrates that a somatic mutation that inactivates a key cancer driver gene can

be buffered/rescued by activation of rescuer genes.

Cancer-drug DU SR network

In identifying the original genome-wide SR-DU network, we have applied a

very conservative criterion (FDR < .01 wherever applicable) at each steps of IN-

CISOR. As a result, the network contained only 2033 interactions (6.2E-4 % of all

possible gene pairs), leaving out many potential rescuers of many drug targets. To

capture DU-type rescuers of anti-cancer drug targets in a more comprehensive man-

ner we modified INCISOR as follows: (i) Vulnerable gene screening was eliminated
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(because gene targets are by definition known to inhibit cancer progression) (ii)

An FDR correction was applied only at the last step, and (iii) The SR significance

P-value threshold were relaxed to accommodate weaker SR interactions. The re-

sultant network cancer drug SR network (drug-DU-SR) includes the targets of the

majority of 37 key cancer drugs administered to patients in TCGA. drug-DU-SR

network includes 170 interactions that consists of 103 rescuers of 36 targets (vulner-

able genes) of 37 anti-cancer drugs (Figure 4.6d). A pathway enrichment analysis

shows the rescuers are highly enriched with lipid storage/transport, thioester/fatty

acid metabolism, and drug efflux transporters (Extended Data Figure 2g).

Drug response prediction in breast cancer patients

To verify that DU rescue is an adaptive response of cancer (as opposed to

occurring in some cells simply because there is higher basal expression of rescuer

genes), we sought to determine if drug treatment stimulates a larger change in res-

cuer gene expression in clinical non-responder patients versus in responder patients.

We used a dataset of 25 breast cancer patients (BC25 dataset) for which expres-

sion data was available before and after they were treated with a cocktail of three

drugs (epirubicine, cyclophosphamide, and docetaxel), which collectively target four

vulnerable genes in our treatment-specific SR-DU network [177]. Remarkably, we

found a significantly higher expression fold change (pre- versus post- drug treatment)

among the 19 predicted rescuer genes for clinical non-responders vs. responders (17

and 8 patients per group; ranksum p-value<1E-7 when pooling expression of all

rescuers across all targets per group; see Extended Data Figure 4a,b for per-target
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breakdown). By next re-calculating this fold change metric on a per-rescuer-gene

basis, we were able to rank DU pairs (there were 20 total, incorporating the 19

rescuers) by degree of potency (i.e., by their p-values). We found this ranking to

be highly consistent with the rescue effect of the same DU pairs calculated using

the BC-DU-SR network (as in step 3 of INCISOR) (Spearman =0.54, p<1E-3; see

Extended Data Figure 4c), a reassuring cross-check.

Identification of markers to predict drug response is a key challenge. To address

this using our insights from the SR expression data, we built an SVM predictor of

treatment response of the BC25 patients based on the pre-treatment expression of

the 19 rescuer genes (AUC of 0.71, Extended Data Figure 4d). We specifically

used the rescuer overexpression profile (a binary vector specifying whether the 19

rescuers are overexpressed or not) as input for the SVM classifier. Feature selection

revealed two genes, ATAD2 and PBOV1, that are the most predictive of patient

drug responsiveness. ATAD2 is required to induce the expression of a subset of

target genes of estrogen receptor including MYC [227], and is also known to be

associated with drug resistance to Tamoxifen and 5-Fluorouracil [228,229]. PBOV1

is overexpressed in prostate and breast cancer, and its knockout was reported to

disrupt the emergence of resistance to Taxane treatment in prostate cancer.

Survival prediction in gastric cancer patients

We further studied pre-treatment and post-treatment expression from 22 gas-

tric cancer patients that acquired resistance to chemotheraphy regiment of Cisplatin

and Fluorouracil [81]. INCISOR identified 15 rescuers of TYMS gene, a target of
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Fluorouracil using pancancer TCGA data. The expression of the rescuers was sig-

nificantly over-expressed in post-treatment samples compared to the pre-treatment

samples (Wilcoxon p < 1.3e-12). Out of 15 rescuers, 11 were significantly over-

expressed while the expression of only one rescuer was significantly down regulated

(P < 0.05, Extended Data Figure 4e). Next, we analyzed a larger cohort of 123 gas-

tric cancer patients treated with Cisplatin and Fluorouracil for which we have the

pre-treatment tumors gene expression and the patients progression-free and overall

survival rates. Based on the number of highly over-expressed rescuers in each sam-

ple, we divided the samples into predicted rescued samples and not-rescued samples.

Indeed, we found that overall survival was significantly worse in predicted rescued

samples compared with non-rescued samples (Extended Data Figure 4f), and the

progression-free survival of the patients was significantly worse in rescued samples

as compared to non-rescued samples (Extended Data Figure 4g). Reassuringly,

overall-survival and progression-free survival were not associated with randomly

chosen rescuer genes (Extended Data Figure 4h,i).

In order to benchmark the four steps of INCISOR, we identified SR pairs indi-

vidually by each step of SR using TCGA and analyzed their molecular and clinical

significance in the gastric cancer dataset. Specifically, for each INCISORs step we

ranked all possible DU rescuer of TYMS gene using TCGA pan-cancer data and

identified the top 20 most significant DU rescuer genes of TYMS gene for each

step separately. We then analyzed the over-expression of predicted rescuer in post-

treatment (acquired resistant) samples of gastric cancer relative to pre-treatment

samples (Extended Data Figure 4j). Rescuer genes identified by Robust rescue ef-
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fect, Oncogene rescuer screening and SoF shows significant over-expression in post-

treatment samples. Expectedly rescuer genes identified by Vulnerable gene screen-

ing and random genes does not show any over-expression. Next, in order to analyze

clinical significance of each rescuer, we analyzed expression and progression-free sur-

vival of 123 gastric cancer patients. Analogous to Extended Fig 4f, we compute the

decrease in patients progression free survival (∆AUC) in rescued samples over non-

rescued samples separately for each step (Extended Data Figure 4k). The expression

of rescuer genes identified by each of the 4 steps predicts progression free survival.

Predicting acquired resistance in breast and ovarian cancer patients

Beyond initial drug response, our overarching hypothesis suggests that SR

circuits might contribute to adaptive evolution in tumors after a drug insult, and

thus to tumor relapse. To test this, we analyzed longitudinal expression and se-

quencing data of 81 stage-II, III ovarian cancer patients (OC81 dataset), who were

treated with platinum-based therapy and Taxane [179] (Figure 4.7a), focusing on

the activation level of Taxanes 18 identified rescuer genes (of its 3 drug targets),

which includes MYC known to play an important role in Taxane resistance in ovar-

ian cancer. Here, the gene activation is measured by the rank of gene expression

(GE) or SCNA across all samples in the dataset. In line with our previous ob-

servations, we first found significantly higher expression of the 18 rescuer genes in

initial non-responder versus responder patients (Wilcoxon rank-sum p-value<1.5E-

4; expression and copy number were also significantly higher than for random genes,

empirical p-value<0.045, Extended Data Figure 5a). Six out of 18 rescuers (respec-
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tively, none) showed significant higher (lower) activation in non-responders than in

responders (individual Wilcoxon rank-sum p-value<0.05, which is not expected for

18 random genes, empirical p-value<0.036). We then went further and analyzed

the patients that initially responded but then relapsed, and found remarkably that

rescuer genes became over-active in these relapsed resistant tumors (overall ranksum

p-value< 5.8E-5), and to a significantly higher degree than 18 random genes (empiri-

cal p-value<4.0E-4, Figure 4.7b). Five out of 18 rescuers (respectively, none) showed

significant post-treatment increase in gene activation (decrease) compared to pre-

treatment (individual Wilcoxon rank-sum p-value<0.05, which is not expected for

18 random genes, empirical p-value<0.05). Characteristically high expression pro-

files of the 18 rescuer genes at the pretreatment stage gave a clear predictive signal

for future emergence of resistance (AUC=0.77 for SVM predictor, Extended Data

Figure 5b).

To get more insight into the rescuer-relapse relationship in the OC81 dataset,

we examined the rescuer genes that most contributed to the accuracy of our SVM

relapse predictor. The most important rescuer, CLLU1OS is known to be up-

regulated in chronic lymphocytic leukemia [230], and the second most predictive

rescuer, XKR9, plays an important role in apoptosis [231], and the methylation of

the third most predictive rescuer, NPBWR1, is a key prognostic factor for lung

cancer patient survival [232].

Notably, an analysis of multidrug resistance (MDR) genes expression shows

a marked inverse correlation between their activation and the level of rescue re-

programming occurring in Taxane resistant samples (Spearman correlation = -0.63
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(p-value<0.03)). Specifically, we considered the gene activation level of 12 MDR

genes [211], and the gene expression level of 18 rescuers. Our analysis classifies two

different groups of patients who develop resistance through either MDR activation

or SR reprogramming (Figure 4.7c).

We further analyzed the expression data of 155 primary breast cancer patients

who were treated with Tamoxifen [233], where tumor relapsed in 52 patients within

5 years. With the activity states of 13 rescuers of Tamoxifens 6 drug targets, our

binary classifier was able to predict the patients whose tumor will recur (AUC=0.74,

Extended Data Figure 5d). The strongest predictor of acquired resistance, RAN,

associated with RAS oncogene and androgen receptor (AR), is known to play a

role in the resistance to anti-androgen drugs [234]. The third strongest predictor,

MAN1C1, is known to be over-activated in cancer cell lines, which would later de-

velop resistance [235]. The function of the second strongest predictor, TMEM200B,

a trans-membrane protein, is not known well, indicating its potential role in emerg-

ing drug resistance.

It is expected that the synthetic lethal partners of the drug targets will also

become active in response to the drug treatment; however, our analysis shows that

the activation profile of SL partners does not carry information on tumor relapse. To

distinguish the predictive power of SR-DU partners versus SL partners, we built an

SVM classifier based on the activity states of 18 SL partners of Taxanes 3 drug tar-

gets in ovarian cancer. The accuracy of our classifier was not higher at all compared

to the accuracy of 18 random genes (AUC=0.52, Extended Data Figure 5c).
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Recent resistance data analysis

Due to the limited number of samples of colorectal, acute myeloid leukemia

(AML), prostate cancer, and melanoma in TCGA dataset; we combined samples

from all cancer types for identifying DU rescuers of BET, AR, EGFR, and BRAF

inhibitors [83, 84, 170–172]. To account for cancer type specific mRNA and CNV

differences, we normalized omics data within each cancer types. We then applied

INCISOR to the normalized TCGA pan-cancer data.

Gene ontology distance and moonlight gene analysis

In order to estimate functional relationship between a rescuer and its vulnera-

ble gene partner, we used most common gene ontology (GO) distance measure [236],

which quantifies semantic similarity between GO terms. When multiple GO terms

were associated with a single gene similarity score, maximum similarity score was

taken as combined similarity score (when we change the combining method to av-

erage we obtain similar significance). For each SR-DU pair (Extended Data Figure

1g), we computed the similarity measure. The significance of the similarity mea-

sure was determined with two set of controls: (a) SR-DU pairs were shuffled to

break the original SR-DU interaction. (b) Random pairs. For each set of control

we determined the similarity measure in analogous manner. Rank-Sum Wilcoxon

test provided the significance of similarity. A particularly interesting case involves

RPL23, which suppresses tumor progression by stabilizing P53 protein. It is a moon-

lighting gene [237], having two additional secondary functions as a ribosomal protein
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and an inhibitor of cell cycle arrest [238]. A GO analysis of its 12 predicted rescuer

partners shows that they include its secondary functions (Table B2).

Deliverables

Cancer-specific Rescuer hubs Targeting the rescuer hubs, the rescuers

that have a large number of vulnerable partners, will reduce likelihood of develop-

ing resistance and should supplement current chemotherapy. For each cancer type,

we identified the rescuer hub whose activation was best associated with a decrease

in survival of patients (in TCGA). The list of genes provided in Table B3, can

serve as target whose inhibition will reduce the likelihood of developing resistance.

ODCI is a rescuer hub in general across cancer types, and specifically kidney cancer,

acute myeloid leukemia (AML), and prostate cancer. Its over-expression is known to

cause chemoresistance by overcoming drug-induced apoptosis and promoting pro-

liferation [239]. Similarly many other rescuer hubs are reported to be associated

with resistance. Interestingly, none of the rescuer hubs are targeted by current anti-

cancer therapies. This may be due to the fact that rescuers become critical for cell

proliferation only after vulnerable gene knockdown in cells. This also underscores

that targeting rescuers has not been harnessed and SR can provide an entirely new

class of drugs.

Second line of therapy against emergence of resistance Currently,

there is no mechanistic approach to recommend a second line of therapy in case

patients acquire resistance to a therapy. SR network provides a unique opportunity

to recommend such therapy based on molecular mechanism. We provide a list of
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drug targets rescuers that get over-expressed to bypass progression lethality of drug

that can serve as an effective second line of action to the relapsed tumors for each

drug (Figure 4.7d). For each drug, we identified a rescuer of the drug target that is

most clinically significant.

Estimating the likelihood of emergence of resistance to anti-cancer

drug treatments If resistance emerges for a drug through the mechanism of SR

activation, then the proportion of patients who have rescuer over-activation will

provide a conservative estimate of the likelihood of developing resistance. To that

end, for the drug whose response is predicted by the SR network, we estimated the

drugs likelihood to foster resistance. Figure 4.7e shows the proportion of patients

with an over-activated rescuer for each drug whose response was predicted by the

SR network (Figure 4.6e). For each drug this proportion provides the likelihood

that a patient treated with the drug will acquire resistance.

SR partners of cancer drivers and metabolic genes Next, we provide

a list of SR interactions that involve main oncogenic driver genes. A rescuer or

vulnerable partner of a cancer driver gene can play an important role in cancer,

specifically in resistance emergence or drug effectiveness. These partner genes might

be a viable target for a drug to mitigate cancer progression or resistance. First

we compiled a list of oncogenic driver genes from three sources (i) CancerQuest

(http://www.cancerquest.org/), (ii) Tumor Portal [240], and (iii) oncogenic drivers

and associated genes8, summing up to 327 genes. Next, using the INCISOR pipeline,

we identified rescuers of 33 cancer genes, and the vulnerable partners of 32 cancer

genes (Table B4).
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We also provide a list of SR interactions that involve metabolic genes. Deregu-

lated metabolism is a hallmark of cancer, and their SR partners may play important

roles in the process and offer key information on how to counteract cancer progres-

sion or resistance. We analyzed the DU-SR network of 1496 metabolic genes using

INCISOR pipeline, and identified rescuers of 83 metabolic genes, and the vulnerable

partners of 52 metabolic genes (Extended Data Figure 1g).

Pancancer DD, UD and UU networks

Next, we applied INCISOR to pancaner TCGA to identify the genome-wide

DD-SR network. The resultant network has 317 interactions that are composed of

159 vulnerable and 197 rescuer genes (Extended Data Figure 6a). Gene enrichment

analysis revealed that the vulnerable genes are enriched with processes associated

with Tolllike receptor signaling pathways and nerve development (Extended Data

Figure 6b). These vulnerable genes are rescued by extracellular matrix disassembly,

neuromuscular process and glutathione transferase activity (Extended Data Figure

6c).

In a similar manner, we identified and analyzed the UD (Extended Data Figure

6d, interactive network as Supplementary Data 3) and UU (Extended Data Figure

6g, interactive network available as Supplementary Data 4) SR networks. The UD

SR network contains 505 vulnerable genes and 371 rescuer genes, encompassing 926

interactions. The UU SR network contains 169 vulnerable genes and 68 rescuer

genes, encompassing 212 interactions. Gene enrichment of the UD network revealed
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that vulnerable genes were enriched with processes associated with ion transport and

eNOS trafficking (Extended Data Figure 6e), which were rescued by the activation

of regulators of biosynthesis process and CD4 T-cell differentiation (Extended Data

Figure 6f). On the other hand, in the UU network vulnerable genes were associated

with cell cycle (S-phase) and beta-catenin binding (Extended Data Figure 6h); the

rescuers were associated with process associated with differentiation cell proliferation

(Extended Data Figure 6i).

Pancancer SL network and combined clinical impact of SL

and SR

We identified SL interactions in an analogous manner to SR with slight modifi-

cations. Since SL is a symmetric interaction, we performed the false positive control

of step 3 for both genes, and eliminated step 2 in the INCISOR pipeline. The

procedure led to 304 SL pairs with logrank p-value<1.23E-8.

The functional activity of SL and SR networks determines tumor aggressive-

ness and patient survival. We found that the clinical impact of the combined SR and

SL networks is more significant than any of their individual impacts (Figure 4.5f,

compare Figure 4.5a-d, Extended Data Figure 5e). We assigned a SL/SR score to

each patient, which adds the number of functionally active SL/SRs. We confirmed

that the patients (87 samples)with both higher SL score (>90 percentile) and low

SR score (<10 percentile) have significantly better survival than the patients (158

samples) with both lower SL score (<10 percentile) and high SR score (>90 per-
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centile) (logrank p-value<6.59E-6) . This combined impact is stronger than any

single interactions.

Breast cancer SR network

SR networks

We applied INCISOR to TCGA 1098 breast cancer (BC) patient data to iden-

tify the four different types of SR networks specific to breast cancer. We have

chosen breast cancer as it has the largest numbers of samples in the TCGA col-

lection, and also has a large independent cohort METABRIC on which we could

test the emerging predictions in an independent manner. Extended Data Figure 7a

shows the resulting BC-DU-SR cancer network, on which we focus most of the sec-

tion, as it is probably the most intuitive one and, more importantly, it displays the

strongest predictive signal, successfully predicting patients survival in METABRIC

BC cohort [198].

We next used TCGA BC data to identify DD (Extended Data Figure 7d), UD

(Extended Data Figure 7c) and UU (Extended Data Figure 7b) type SR networks

that are specific to breast cancer (interactive networks are provided as Supplemen-

tary Data 5-8). DD network contains 244 vulnerable genes and 110 rescuer genes,

encompassing 781 interactions. UD network contains 635 vulnerable genes and 176

rescuer genes, encompassing 1189 interactions. Finally UU network contains 1056

vulnerable genes and 311 rescuer genes, encompassing 3096 interactions.
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Interestingly, BC-DU-SR pairs are enriched with several immune processes:

vulnerable genes are enriched for tolerance against natural killer cells (the inacti-

vation of which will make cancer cells more susceptible to the immune system),

while rescuer genes are enriched for negative regulation of cytokines (which could

subsequently prevent cytokine-driven immune cell recruitment).

UU rescuers are enriched with macromolecular metabolism, and the vulnerable

genes are enriched with protein carboxylation (p-value <1E-4). DD vulnerable genes

are enriched with zinc-ion response and negative regulation of growth (p-value<1E-

5), and DD rescuers are enriched with nitrobenzene metabolism and detoxification

(p-value<1E-7). DU vulnerable genes are enriched with chemokine receptor binding

and DNA binding (p-value<1E-5), and DU rescuers are enriched with mitochondrial

organization and metabolic process (p-value<1E-4). The UD network is associated

with immune response: UD vulnerable genes are enriched with antigen processing

(p-value<1E-5), and UD rescuers are enriched with T-cell receptor signaling path-

way (p-value<1E-3). UU vulnerable genes are enriched with phosphatidylserine

metabolism and antigen process (p-value<1E-3), and UU rescuers are enriched with

post-translational protein folding and cell-cell adhesion (p-value<1E-3). Interest-

ingly, BC SR-DU shows a strong involvement of immune-related processes : while

vulnerable SR-DU genes are enriched with tolerance against natural killer cells (the

inactivation of which will increase the cancer cells susceptibility to the immune sys-

tem), the rescuer genes are enriched with negative regulation of cytokines (which

may prevent immune cells from being recruited by cytokines).
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Patient survival prediction using SR networks

To generate these SR-dependent survival predictions we quantified the number

of functionally active SRs in each tumor sample - that is, the number of DU-SR pairs

where a vulnerable gene is inactive and its rescuer partner is over-activated in the

given sample. As expected, we find that breast cancer samples with a large number

of functionally active pairs have significantly worse survival than samples with fewer

active pairs, as the former are rescued (Extended Data Figure 8a-d). This finding is

true for each of the other three SR types, albeit to a lesser extent than the DU-SR

type. Combining SR with SL interactions slightly improves the survival predictive

power further (logrank p-value <1E-300, ∆AUC=0.42).

The three inherent states of SR interaction i.e. viable, non-rescued (lethal)

and rescued states display different effects on cancer progression and consequently

on patients clinical prognosis (Figure 4.5e). For example, insofar as the SR-DU

interaction between a vulnerable gene FGF10 and a rescuer EEA1: patients with

either FGF10 WT (viable state) or EEA1 over-activation (rescued state) have lower

survival than patients with non-rescued EEA1 knockdown (Extended Data Figure

8e). However, patients with the SR pair in rescued state have even lower survival

than those patients in viable state. Similarly, patients whose tumor has many SR

pairs in non-rescued state have better survival compared to those patients whose

tumor has many SR pairs in viable state. As shown in the main text, patients

harboring tumors with extensive SR reprogramming have collectively worse survival

than the other two groups of patients (Figure 4.5e), suggesting the three states of
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SR have distinct clinical prognoses and are significantly different from each other.

Impact of inactivation of a vulnerable gene can be estimated by comparing

the survival of patients in whose tumors the gene is inactivated (non-rescued state)

to patients in whose tumors the gene is active (rescued state) (using logrank test).

In case a vulnerable gene has more than one rescuer, we collectively compared the

patient survival of rescued vs. non-rescued samples. Our analysis shows that the

vulnerable genes whose inactivation leads to much better patient survival are more

highly rescued in breast cancer. In particular, they have a larger number of rescuer

partners (Spearman = 0.11, p-value<0.02).

SR levels increase as cancer progresses

To study the dynamics of SR functional activity as cancer progresses, we strat-

ified the BC patients in the METABRIC dataset into six different cancer progression

bins by their survival times. As expected, cancer progression is accompanied by an

increase in the number of functionally active SRs in the tumors (Extended Data

Figure 8g) and by an increase in the number of inactive vulnerable genes that are

rescued (Extended Data Figure 8h).

Reprogrammed and buffered SRs

We distinguished between reprogrammed SRs (rSR), where the rescuer gene

over-activation occurs after the inactivation of its paired vulnerable gene, to buffered

SR (bSR), where the rescuer gene over-activation precedes the inactivation of the
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vulnerable gene.

In order to infer if an SR pair is reprogrammed or buffered, we analyzed the

fraction of samples with over-active rescuers (fr), inactive vulnerable genes (fv),

and functional activation of SR (fSR) at each of 6 cancer progression bins used in

Supplementary Information Section 3.3. We classified an SR pairs as an rSR if fr

and fSR are highly correlated (Spearman correlation>0.3, p-value<0.05) while fv

and fSR are not (Spearman correlation<0 or Spearman correlation p-value>0.05),

and fSR is increasing as cancer progresses as shown in Extended Data Figure 9a.

Similarly, an SR pair was classified as bSR if fv and fSR are highly correlated while

fr and fSR are not (analogous to the conditions for rSR above), and fSR is increasing

as cancer progresses (Extended Data Figure 9b).

While in general SRs carry clinical significance irrespective of their order of

occurrence (Figure 4.5), rSRs have a significantly stronger survival predictive signal

than bSRs (Extended Data Figure 9c-j). We first considered the clinical impact

of rSR activation the decrease in survival due to rescuer over-activation given its

vulnerable partner is inactivated (which we define as rescue effect in the main text).

We confirmed that rSRs have highly significant rescue effect (Extended Data Figure

9c), and this effect arises from the pairwise interaction rather than a consequence

of single gene (rescuer) over-activation (Extended Data Figure 9g), demonstrated

by much lower p-value and higher ∆AUC (∆(∆AUC)=0.22-0.12). The rescue effect

of bSR, conversely, is not much more significant compared to the rescuer control

(Extended Data Figure 9d,h).

We then considered the clinical impact of bSR activation the decrease in
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survival due to vulnerable gene inactivation given its rescuer partner is already over-

active. The inactivation of the bSR vulnerable gene is expected to be inconsequential

because its rescuer partner is already over-active. We confirmed that the clinical

impact of bSR is indeed minimal (Extended Data Figure 9f,j). However, we still

observed a very strong impact of rSR even in this case (Extended Data Figure

9e,i). This means the compensating rescuer activation in response to the loss of the

vulnerable gene drives the patient into an even worse state than before the loss.

This is consistent with our observation in Figure 2e and Extended Data Figure 8e,

and points to the active role of SR in the emergence of drug resistance.

SR networks predict drug response of cancer cell lines and

breast cancer patients (TCGA)

We next investigated the ability of the DU-SR network to predict the response

of cancer cell lines to treatment with commonly used anticancer drugs. The pre-

dictions are obtained in a straightforward unsupervised manner (no training data

is involved) by analyzing the cell-lines transcriptomics data to determine cell-line

specific gene activity and quantify how many of the SR rescuer partners of the in-

hibited target(s) of a specific drug tested are over-activated in a given cell line. We

analyzed the response of 24 common anti-cancer drugs in 488 cancer cell lines in

the CCLE database [65]. The SR network accurately classifies the cell lines into

responder and non-responders for 9 drugs (Extended Data Figure 8i).

Next, we used breast cancer DU SR network to predict the clinical response of
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3873 (pan cancer) patients in the TCGA dataset, focusing on 37 common anticancer

drugs. Using the network and transcriptomics data of cancer patients we classified

each patient to be a non-responder (or a responder) to a given drug if one or more

of the rescuer partners of that drug target are over-active (and as a responder

otherwise). We then compared the survival rates of predicted responders to those

of non-responders, to examine how well our predictions separated true responders

and non-responders. As demonstrated, we quite accurately classify patients into

responder and non-responders for 15 of the drugs (Extended Data Figure 8j).

The SR network can be used to identify key genes, whose targeting will mit-

igate emergence of resistance in cancer therapies. To this end we provide a list of

major rescuers and their expected clinical utility following treatment targeting their

associated vulnerable genes (Extended Data Figure 8k), as estimated from their

effects on patients survival in the TCGA. Further, by quantifying the number of

samples with functionally active rescuers among the patients that receive a specific

drug we provide estimates of the likelihood that resistance will emerge following

treatment if these rescuers are not targeted, too (Extended Data Figure 8l).

SR buffers the lethal impact of essential genes

We identified the essential genes in breast cancer using the essentiality screen-

ing data of their knockdown in cancer cell lines [241]. Specifically, we selected those

genes that mark top 5% essentiality score in each cell line for more than 20 out of

30 breast cancer cell lines (N=304). We then checked if their inactivation leads to
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better patient survival using mRNA, SCNA and survival data of TCGA BC and

METABRIC. We selected 118 nominal essential genes, which are essential in cell line

screening but do not significantly improve patient survival when inactivated (logrank

p-value>0.5). As control, we selected 124 actual essential genes, which show signif-

icance in patient samples (logrank p-value<0.05). A pathway enrichment analysis

shows nominal essential genes are enriched with translation initiation and actual

essential genes with cell-cycle regulation (hypergeometric p-value<1.3E-4).

We identified the SR-DU rescuers of the nominal and actual essential genes to

compare the number of their rescuer partners and clinical significance. We observed

nominal essential genes have a higher number of rescuers (t-test p-value<0.03) and

higher collective clinical significance (nominal essential genes: logrank p-value<3.5E-

10, control logrank p-value<1.2E-5).

We further tested if an advanced tumor shows higher prevalence of the SR

pairs specific to the nominal essential genes than the control SR pairs. We selected

aggressive breast cancer samples (N=103) from the most advanced progression step

in the tumor evolution analysis (Supplementary Information Section 3.3). The SR

pairs of nominal essential genes indeed show higher level of activation in advanced

tumors than in the control (ranksum p-value<1.1E-9) in a more significant man-

ner than three other groups of tumor samples: early stage breast cancer samples

from the earliest progression step, all breast cancer samples in METABRIC, and all

other cancer samples in TCGA (ranksum p-value>0.2). In particular, the difference

between the clinical impact and essentiality in cell lines measured by the ratio of

essentiality to clinical significance, positively correlates with the functional activity
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of SR in aggressive tumors (Spearman =0.24, p-value<9.2E-4).

SR partners of cancer associated genes

We analyzed the DU-type rescuer partners of cancer driver genes. Cancer

driver genes include the genes strongly associated with cancer that are reported in

(http://www.cancerquest.org/) and Tumor Portal42, and strongly clinically relevant

genes whenover-active or under-active, based on Kaplan-Meier analysis a total of 45

genes. Using INCISOR pipeline, we identified rescuers of 13 cancer genes in breast

cancer (Table B5).

SR partners of cancer associated genes

We analyzed the DU-type rescuer partners of cancer driver genes. Cancer

driver genes include the genes strongly associated with cancer that are reported in

(http://www.cancerquest.org/) and Tumor Portal42, and strongly clinically relevant

genes whenover-active or under-active, based on Kaplan-Meier analysis a total of 45

genes. Using INCISOR pipeline, we identified rescuers of 13 cancer genes in breast

cancer (Table B5).

Breast cancer subtypes SR network

We applied our INCISOR pipeline to identify specific SR specific networks for

four classical subtypes of breast cancer including Her2, triple-negative, luminal-A,

and luminal-B (Supplementary Data 9-24), based on analyzing the TCGA BC data.
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In Her2 subtype, DU vulnerable genes are enriched with cell migration and

toll-like receptor pathway, and the rescuers are enriched with non-coding RNA

metabolism, DNA recombination, and p53 binding. In basal subtype, DU vulnerable

genes are enriched with gamma-aminobutyric acid signaling, and the rescuers are en-

riched with phosphatidylglycerol metabolism. In luminal-A subtype, DU vulnerable

genes are enriched with chemokine, cytokine, G-protein coupled receptor pathway,

and the rescuers are enriched with lipoprotein receptor pathway and telomere main-

tenance. In luminal-B subtype, DU vulnerable genes are enriched with dicarboxylic

acid catabolism, and rescuers are enriched with cell growth.

The sub-type specific networks derived show significant predictive signal in

predicting patients survival (Extended Data Figure 10), even though it is less than

the predictive signal of all BC samples together (Extended Data Figure 10, due to

the much smaller sample size). Comparing different type of SRs, DU has the highest

predictive power in all cancer subtypes.

Identifying treatment-specific SR interactions

To capture DU-type rescuers of the drug targets of each drug treatment

dataset, we modified INCISOR as follows: (i) Vulnerable gene screening was elimi-

nated (because gene targets are, by definition, known to inhibit cancer progression)

(ii) An FDR correction was applied only at the last step, and (iii) The SR signif-

icance P-value threshold was relaxed to accommodate weaker SR interactions. In

case the survival data is available in the given drug treatment dataset, we then
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quantified the clinical significance of each of the candidate SR (e.g. in case of drug

response, survival difference between responders and non-responders or in case of

resistance, survival difference of resistant vs sensitive samples). In case survival data

was not available, we used relaxed criteria as in the drug-DU-SR network without

the cross-validation against METABRIC data. The intersection of clinically signifi-

cant SR and the SR pairs from each of four steps of our pipeline constitute the final

set of SR. If there were no overlaps, thresholds of each step were adjusted such that

there was at least one SR in the intersection.

Functional enrichment

For the network level functional enrichment analysis, we used ClueGO [222]

(a Cytocscape plugin) with default settings except: (a) GO, KEGG and reactome

ontologies were included, (b) network specificity was set to medium, (c) Bonferroni

correction for multiple hypothesis correction, (d) Pathways with p-values< 0.05 were

included. To perform pairwise GO analysis for an SR network, we first identified GO

terms that are enriched in rescuer genes (using standard parameters in GOFunction

package [242]). To determine GO processes rescued by a set of rescuers in an enriched

GO term, we created a gene set composed of vulnerable partners of the rescuers.

Finally, we identified GO terms significantly enriched in the vulnerable gene set

(FDR < 0.05).
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In-vitro validation in HNSC

To test our ability to predict and experimentally validate a key rescuer gene,

we studied the role of mTOR as a predicted rescuer gene in head and neck squa-

mous cell carcinoma (HNSC), where is it thought to play an important role [206].

Rapamycin is a highly specific mTOR inhibitor [207] and hence enables to target a

predicted rescuer gene by a highly specific drug, combined with the ability to knock

down predicted vulnerable genes in a clinically-relevant lab setting. To this end we

studied SR-DD predictions in a HNSC cell-line HN12, which, like most HNSC cells,

is highly sensitive to rapamycin [243]. For this we applied INCISOR to identify top

10 vulnerable partners and 9 rescuer partners of mTOR in a pancancer scale. We

also identified HNSC-specific DD-type vulnerable partners of mTOR. In addition to

the pancancer SRs, we tested the 19 HNSC specific vulnerable DD-SR partners of

mTOR.

Extended Data Figure 5f summarizes the experimental procedure. Each of the

mTORs vulnerable/rescuer partners together with the controls were knocked down

in HN12 cell lines, after which mTOR was inactivated via Rapamycin treatment.

HN12 cells were infected with a library of retroviral barcoded shRNAs at a repre-

sentation of 1,000 and a multiplicity of infection (MOI) of 1, including at least 2

independent shRNAs for each gene of interest and controls. At day 3 post infection

cells were selected with puromycin for 3 days (1g/ml) to remove the minority of

uninfected cells. After that, cells where expanded in culture for 3 days and then
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an initial population-doubling 0 (PD0) sample was taken. For in vitro testing, the

cells were divided into 6 populations, 3 were kept as a control and 3 where treated

with rapamycin (100nM). Cells where propagated in the presence or not of drug for

an additional 12 doublings before the final, PD13 sample was taken. For in vivo

testing, cells were transplanted into the flanks of athymic nude mice (female, four

to six weeks old, obtained from NCI/Frederick, MD), and when the tumor volume

reached approximately 1cm3 (approximately 18 days after injection) tumors where

isolated for genomic DNA extraction. Mice studies were carried out according to

National Institutes of Health (NIH) approved protocols (ASP 10569 and 13695) in

compliance with the NIH Guide for the Care and Use of Laboratory Mice. shRNA

barcode was PCR-recovered from genomic samples and samples sequenced to calcu-

late abundance of the different shRNA probes. From these shRNA experiments, we

obtained cell counts for each gene knock-down at the following three time points:

(a) post shRNA infection (PD0, referred as initial count), (b) shRNA treatment fol-

lowed by either Rapamycin treatment (PD13, referred as treated count, 3 replicates)

or control (PD13, referred as untreated count, 3 replicates) (c) shRNA infected cell

injected to mice (tumor, referred as in-vivo count, 2 replicates). To obtain normal-

ized counts at each time point, cell counts of each shRNA at each time point were

divided by corresponding total number of cell count.

Since our in vitro experimental analyses were carried out in HNSC cell lines,

we also performed experimentally testing for HNSC specific SRs. Specifically, we

studied rSR of the HNSC specific DD type as they can be readily validated by in

vitro knockdown (KD) experiments. We obtained reversal of rapamycin treatment
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when vulnerable partner of mTOR is knocked out (Extended Data Figure 5g; paired

Wilcoxon P <1.1E-06 for 19 pairings). This implies rapamycin treatment that

is generally not beneficial for tumor progression becomes beneficial when mTORs

vulnerable partners are knocked out.
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MOONLIGHTING GENE RESCUER GENES

RPL2
3

1. Constructs part of 60S 
subunit, ribosomal protein

2. Binds to and inhibits a 
ubiquitin ligase HDM2, 
which stabilizes of tumor 
suppressor p5339.

3. Binds nucleophosmin and 
sequesters it in the 
nucleolus to block its 
binding to Miz1 (a 
transcriptional activator 
and repressor), playing a  
role in inhibiting cell-
cycle arrest40.

ARNTL2 circadian and hypoxia factors

BCAT1
enzyme catalyzes the reversible transamination of branched-chain 
alpha-keto acids to branched-chain L-amino acids essential for cell 
growth

BHLHE41
control of circadian rhythm and cell differentiation. can interact with 
ARNTL

CASC1 Cancer Susceptibility Candidate 1

FGFR1OP
2

Signaling by FGFR

LMRP major histocompatibility complex (MHC) class I molecules

MRPS35 Mitochondrial Ribosomal Protein

PPFIBP1
axon guidance and mammary gland development. found to interact 
with S100A4, a calcium-binding protein related to tumor 
invasiveness and metastasis

REP15
Regulates transferrin receptor recycling from the endocytic 
recycling compartment

STK38L
regulation of structural processes in differentiating and mature 
neuronal cells.

Table B.2: Synthetic rescue interaction of moonlight gene RPL23. The table lists
the 10 rescuer partners of moonlighting gene RPL23, marking the similarity in their
cellular processes.
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Cancer type Rescuer Hub 
size

Vulnerable partner genes

pancancer ODC1 16 ATP6V0D1,BBS2,CCDC79,CETP,CMTM4,DDX19A,DHX38,GABARAPL2,
GLG1,GNAO1,MT1E,PSMB10,RANBP10,TRADD,TSNAXIP1,VPS4A

CESC BCL11A 14 CDH16,CES2,COTL1,DHX38,FTSJD1,FUK,KLHDC4,NOL3,PHKB,RNF16
6,SPATA2L,TK2,TMED6,TMEM208

CHOL C1orf122 7 ANAPC16,ANK3,ARFGAP2,DNAJB12,GPRIN2,MYBPC3,OR13A1
COAD APITD1 1 CLRN3
DLBC C2orf16 13 ARL2BP,CDH5,CES2,CMTM2,DPEP2,FUK,GFOD2,HERPUD1,IL34,LCAT

,NRN1L,TRADD,VPS4A
GBM LRRC69 3 CCDC151,EPOR,RGL3

HNSC PMFBP1 4 ADAMTSL3,AP3B2,MRPL46,SNURF
KICH BCL11A 11 CDH16,CES2,DHX38,FTSJD1,KLHDC4,NOL3,PHKB,RNF166,SPATA2L,T

K2,TMEM208
KIRC C1orf122 8 ANAPC16,ANK3,DNAJB12,ERCC6,GPRIN2,HKDC1,HNRNPH3,OR13A1

KIRP ODC1 16 ATP6V0D1,BBS2,CCDC79,CETP,CMTM4,DDX19A,DHX38,GABARAPL2,
GLG1,GNAO1,MT1E,PSMB10,RANBP10,TRADD,TSNAXIP1,VPS4A

LAML ODC1 16 ATP6V0D1,BBS2,CCDC79,CETP,CMTM4,DDX19A,DHX38,GABARAPL2,
GLG1,GNAO1,MT1E,PSMB10,RANBP10,TRADD,TSNAXIP1,VPS4A

LGG LY6K 6 HDHD2,PIAS2,SLC14A1,SLC14A2,SMAD7,ST8SIA5
LIHC CCDC30 7 DCTN6,MTMR9,MTUS1,PCM1,PHYHIP,SLC18A1,SLC25A37
LUAD RLF 14 ADAMTSL1,ATP8B4,DENND4A,FAM96A,IGDCC4,INTS10,LIPC,MTMR9

,RAB11A,RAB8B,SECISBP2L,SNX1,TLN2,TRIP4
LUSC GREB1 2 HP,KLHL36

OV RLF 11 DENND4A,FAM96A,IGDCC4,INTS10,LIPC,MTMR9,RAB11A,RAB8B,SN
X1,TLN2,TRIP4

PAAD C1orf122 7 ANAPC16,DNAJB12,ERCC6,GPRIN2,HKDC1,HNRNPH3,OR13A1
PRAD ODC1 16 ATP6V0D1,BBS2,CCDC79,CETP,CMTM4,DDX19A,DHX38,GABARAPL2,

GLG1,GNAO1,MT1E,PSMB10,RANBP10,TRADD,TSNAXIP1,VPS4A
SARC PEX14 5 C10orf131,HPSE2,PDCD4,PIK3AP1,SFXN2
SKCM RLF 11 ATP8B4,DENND4A,FAM96A,IGDCC4,LIPC,RAB11A,RAB8B,SECISBP2L

,SNX1,TLN2,TRIP4
STAD RDH16 5 ACTR3B,KCNH2,PTN,TBXAS1,UBN2
TGCT CTNNBIP1 4 C10orf131,FBXL15,LGI1,NDUFB8
UCEC SAMHD1 3 COG4,NRN1L,SLC12A4
UCS ARHGEF10L 5 ANXA7,PRKG1,RUFY2,SEC24C,SLC25A16

UVM FAM136A 3 COG8,NFATC3,VPS4A
BRCA-all NFYC 3 JAK2,NARG2,RAB27A

BRCA-
LuminalB

ACN9 2 CDH5,DPEP2

BRCA-Basal BCL11A 3 FTSJD1,FUK,TMED6

BRCA-Her2 POU3F1 6 C10orf111,DNAJC24,FAM180B,JRKL,PTER,TRAF6

Table B.3: Cancer type-specific rescuer hubs. For pancancer, each cancer type, and
breast cancer subtype, we identified the rescuer gene that has largest number of
vulnerable partners. The number (hub size) and identities of vulnerable partners
are listed.

243



Cancer 
genes

Vulnerable partners
Cancer 
genes

Rescuer partners

ACVR1
B

EWSR1 ACVR1B CCIN, HRCT1

AKT2 INSR APOL2 CSPP1, PVT1

ARID1B
COL23A1, FAM153A, FLT4, GJD3, 
KRT222, KRT27, NBR1, PTRF, WNK4

BCL2
C8orf33, DYNLT1, FBXO30, PLAGL1, RNASET2, T, 
TFB1M, ZNF250, ZNF706

ARID2 PRODH BMPR1A C1orf94, FAM159A
ASXL1 C22orf34, FA2H CSF1R C5orf28, HTR1E

CBFB KLF13, SCG5 CYLD
ATP6V0A2, BHLHE41, BRAP, CPSF7, CTDSP2, DDB1, 
EPYC, ERP27, FAM60A, LRRTM4, NUP107, OAS3, 
PAPOLG, RASSF9, RFC5, VPS37C

CCND1 MT1L EP300 CPSF1, FOXH1, KCNV1, LRRC14, SARNP, TAC3
CDH1 CYP4X1, MRPS15, OSCP1, TRAPPC3 EWSR1 ACVR1B, RNF139
CDK4 CDH13 FBXW7 FUCA2, HBS1L, KLHL32

CDKN2
C

ARAP1, CACNB2, CXCL12, 
FAM188A, IPMK, PTER, RHOD, 
SPAG6, SUV420H1, ZNF485

FUS STEAP1

CTCF INSC, TRIM68 GATA3 HSPA13, NTNG1, OPRD1
CYLD ACSBG1, CTSH, TSPAN3 JAK3 SLC16A6

EXT1
CNDP2, GPR124, KIAA1328, KLB, 
RPL9, SLC14A1, SPATA18, TMX3, 
ZNF236, ZNF407

KEAP1 C17orf64

EXT2
BBS4, CALML4, CCPG1, DMXL2, 
IQCH, MAP2K5, MEGF11, RNF111, 
SLC24A1, TMOD2, TSPAN3

KIT SALL4, SLPI

FANCF ARRDC4 KLF4 DPY19L4
KRAS BTNL9, ELF2, IQGAP2, SAP30L LYL1 HOXB8, KIAA0391
MDM2 ZNF253 MAP3K1 IRX4
MSH6 UMOD MLLT1 NT5C, RNF168

MUTYH GLB1L, IHH, OBSL1 NPM1 COL12A1, ZDHHC5
MYB ARL4D, LRRC41, PLEKHM1, TBX21 PDGFB CS, RPS26, TAC3

MYC
CBLN2, CCDC102B, CHST9, FAM69C, 
SALL3, SLC39A6, SMAD4, ZNF407

PDGFRA CASC1

MYCN
ACSF3, CBFA2T3, GGT5, KLHL36, 
NOL3, TRADD

PRDM1 RSPO2

PMS1
CCL22, CDK10, CX3CL1, DEF8, 
GLG1, GNAO1, GPR56, TEPP, ZFP90

PTEN FIZ1, NLRP11, ZNF580

POLE ZNF676, ZNF91 SETBP1 EIF3H, EZR, FAM91A1, POU5F1B, RAET1E
PRDM1 ARFIP1, NR3C2, RPS3A, TIGD4 SMAD2 C6orf70, TFB1M

RARA
CDH15, EPM2A, GCDH, JDP2, JUNB, 
OR7C1, RNF166, SNAI3, TCF21, 
TCF25, ZNF430

SMAD4 ANXA13, MYC, RAD21, UTP23

RET HMHA1
SMARCB

1
PKHD1L1

RPL5 RASSF4 SMO CNGB1
SRC THUMPD1 TET2 GTF2H5, MTRF1L, PCMT1
TAL1 SVIL TIAM1 OSMR

TNFAIP
3

COL25A1, GUCY1A3, MGST2, 
MMAA, SH3RF1

TSC1 SLC25A32

WT1 ABHD2, PEX11A XPC CYP2B7P1, LYRM2
ZHX2 CARD10, HDAC10, TTC38

Table B.4: SR interactions of cancer associated genes. The table lists the vulnerable
and rescuer partners of cancer associated genes.
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Cancer Genes Rescuers
CBFB TNFRSF21

CCNE2 CYP20A1, DUSP18, PAX3, ZNF454

CDKN1B MDH1, NCOA7, ODC1, PTPRK, STX7, TRMT11, UGP2

CTCF TNFRSF21

ESRP1 CCDC89, PAX3, ZNF454

FGF3 BNIP2, MYO5A, NRP1, USP6NL

FGF4 C6orf123, USP6NL

GATA3 PIK3R4, TNFAIP1

KRAS AIM1, AMD1, AMIGO1, CLIC4, FAM101B, IRAK2, 
KCNA2, PARD3B, PAX6, RSC1A1, SLC22A25, SOS1, 
TAF13, TCEB3, TCP11L1

NRAS ABCE1, ACSL1, CASP3, KIAA0922, PAQR3, SLC10A6

PIK3CA ACSL1, ARHGAP10, MGST1, MID1, MRPL13, NDRG1, 
TMEM40

BRCA1 ANKRD40, ORMDL3, SPAG9

HER2 C6orf195, RABGAP1, RC3H2, UBXN2A, PRPSAP1

Table B.5: DU-type rescuer partners of cancer genes in breast cancer. The table
lists the rescuer partners of 13 cancer genes in breast cancer DU-SR network.
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[7] T Töpel, R Hofestädt, D Scheible, and F Trefz. RAMEDIS: the rare metabolic
diseases database. Appl Bioinformatics, 5:115–118, 2006.

[8] Melvin B Heyman. Lactose intolerance in infants, children, and adolescents.
Pediatrics, 118(3):1279–1286, 2006.

[9] F Crick. Central dogma of molecular biology. Nature, 227(5258):561–563,
1970.

[10] Gene-Wei Li and X Sunney Xie. Central dogma at the single-molecule level
in living cells. Nature, 475(7356):308–315, 2011.

[11] Melissa S Jurica and Melissa J Moore. Pre-mrna splicing: awash in a sea of
proteins. Molecular cell, 12(1):5–14, 2003.

[12] Stefan Stamm, Shani Ben-Ari, Ilona Rafalska, Yesheng Tang, Zhaiyi Zhang,
Debra Toiber, TA Thanaraj, and Hermona Soreq. Function of alternative
splicing. Gene, 344:1–20, 2005.

247



[13] Jonathan MW Slack. Metaplasia and transdifferentiation: from pure biology
to the clinic. Nature Reviews Molecular Cell Biology, 8(5):369–378, 2007.

[14] James M Ntambi and Kim Young-Cheul. Adipocyte differentiation and gene
expression. The Journal of Nutrition, 130(12):3122S–3126S, 2000.

[15] Marilena V Iorio, Manuela Ferracin, Chang-Gong Liu, Angelo Veronese, Ric-
cardo Spizzo, Silvia Sabbioni, Eros Magri, Massimo Pedriali, Muller Fabbri,
Manuela Campiglio, et al. Microrna gene expression deregulation in human
breast cancer. Cancer research, 65(16):7065–7070, 2005.

[16] Stephen T Smale and James T Kadonaga. The rna polymerase ii core pro-
moter. Annual review of biochemistry, 72(1):449–479, 2003.

[17] Robert E Thurman, Eric Rynes, Richard Humbert, Jeff Vierstra, Matthew T
Maurano, Eric Haugen, Nathan C Sheffield, Andrew B Stergachis, Hao Wang,
Benjamin Vernot, Kavita Garg, Sam John, Richard Sandstrom, Daniel Bates,
Lisa Boatman, Theresa K Canfield, Morgan Diegel, Douglas Dunn, Abigail K
Ebersol, Tristan Frum, Erika Giste, Audra K Johnson, Ericka M Johnson,
Tanya Kutyavin, Bryan Lajoie, Bum-Kyu Lee, Kristen Lee, Darin London,
Dimitra Lotakis, Shane Neph, Fidencio Neri, Eric D Nguyen, Hongzhu Qu,
Alex P Reynolds, Vaughn Roach, Alexias Safi, Minerva E Sanchez, Amartya
Sanyal, Anthony Shafer, Jeremy M Simon, Lingyun Song, Shinny Vong,
Molly Weaver, Yongqi Yan, Zhancheng Zhang, Zhuzhu Zhang, Boris Lenhard,
Muneesh Tewari, Michael O Dorschner, R Scott Hansen, Patrick a Navas,
George Stamatoyannopoulos, Vishwanath R Iyer, Jason D Lieb, Shamil R
Sunyaev, Joshua M Akey, Peter J Sabo, Rajinder Kaul, Terrence S Furey, Job
Dekker, Gregory E Crawford, and John a Stamatoyannopoulos. The acces-
sible chromatin landscape of the human genome. Nature, 489(7414):75–82,
September 2012.

[18] Bradley E. Bernstein, Alexander Meissner, and Eric S. Lander. The Mam-
malian Epigenome. Cell, 128(4):669–681, 2007.

[19] Anna Portela and Manel Esteller. Epigenetic modifications and human disease.
Nature biotechnology, 28(10):1057–1068, 2010.

[20] Randy L Jirtle and Michael K Skinner. Environmental epigenomics and
\ndisease susceptibility. Nature reviews. Genetics, 8(4):253–62, 2007.

[21] a. Bird. DNA methylation patterns and epigenetic memory. Genes and De-
velopment, 16(1):6–21, 2002.

[22] Jue D Wang and Petra A Levin. Metabolism, cell growth and the bacterial
cell cycle. Nature Reviews Microbiology, 7(11):822–827, 2009.
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