9 research outputs found

    Energy optimization of quadratic thermal convection on two-phase boundary layer flow across a moving vertical flat plate

    No full text
    The need for a consistent and reliable energy supply to improve productivity is steadily increasing both in industrial and residential settings. The fulfillment of this requirement can be effectively achieved by implementing quadratic thermal radiation, such as utilizing an appropriate thermoelectric generator to supply power and optimizing the optical heat process. This research investigates the three different thermal radiation models, namely linear, quadratic, and nonlinear thermal radiation on the two-phase boundary layer flow of a dusty nanofluid across a vertically moving flat plate. The nanofluid is composed of aluminum oxide (Al203) and nanoparticles suspended in water (H20) based fluid. Furthermore, quadratic Boussinesq approximation and Prandtl's boundary layer approximation are utilized. The Chebyshev collocation spectral method is employed to address the non-linear problem. The effect of different parameters, such as thermal Grashof number, momentum dust, magnetic field parameter on the fluid flow, and temperature profiles are considered to visualize the findings. The findings show that linear thermal radiation exhibits the lowest thermal transport, followed by quadratic thermal radiation, with nonlinear thermal radiation demonstrating the highest thermal transport. The velocity of the dusty nanoliquid is decreased when a transverse magnetic field is present. Additionally, it is observed that the existence of aluminum oxide nanoparticles of 3% volume concentration in particulate H20 effectively increases the thermal transfer of the fluid system

    Progressive dopaminergic alterations and mitochondrial abnormalities in LRRK2 G2019S knock in mice

    No full text
    Mutations in the LRRK2 gene represent the most common genetic cause of late onset Parkinson’s disease. The physiological and pathological roles of LRRK2 are yet to be fully determined but evidence points towards LRRK2 mutations causing a gain in kinase function, impacting on neuronal maintenance, vesicular dynamics and neurotransmitter release. To explore the role of physiological levels of mutant LRRK2, we created knock in mice harboring the most common LRRK2 mutation G2019S in their own genome. We have performed comprehensive dopaminergic, behavioral and neuropathological analyses in this model up to 24 months of age. We find elevated kinase activity in the brain of both heterozygous and homozygous mice. Although normal at 6 months, by 12 months of age, basal and pharmacologically induced extracellular release of dopamine is impaired in both heterozygous and homozygous mice, corroborating previous findings in transgenic models over-expressing mutant LRRK2. Via in vivo microdialysis measurement of basal and drug- evoked extracellular release of dopamine and its metabolites, our findings indicate that exocytotic release from the vesicular pool is impaired. Furthermore, profound mitochondrial abnormalities are evident in the striatum of older homozygous G2019S mice, which are consistent with mitochondrial fission arrest. We anticipate the G2019S will be a useful pre-clinical model for further evaluation of early mechanistic events in LRRK2 pathogenesis and for second-hit approaches to model disease progression

    Therapeutic Potential of Multifunctional Tacrine Analogues

    No full text

    A Pharmacological Appraisal of Neuroprotective and Neurorestorative Flavonoids Against Neurodegenerative Diseases

    No full text

    Dietary Polyphenols and Mitochondrial Function: Role in Health and Disease

    No full text

    Review of the Toxicology of Chlorpyrifos With an Emphasis on Human Exposure and Neurodevelopment

    No full text
    corecore