145 research outputs found
Material stability analysis based on the local and global elasto-plastic tangent operators
International audienceThe present paper investigates bifurcation in geomaterials with the help of the second-order work criterion. The approach applies mainly to non associated materials such as soils. The analysis usually performed at the material point level is extended to quasi-static boundary value problems, by considering the finite element stiffness matrix. The first part of the paper reminds some results obtained at the material point level. The bifurcation domain is presented in the 3D principal stress space as well as 3D cones of unstable loading directions for an incrementally nonlinear constitutive model. In the second part, the analysis is extended to boundary value problems in quasi-static conditions. Non-linear finite element computations are performed and the global tangent stiffness matrix is analyzed. For several examples the eigenvector associated with the first vanishing eigenvalue of the symmetrical part of the stiffness matrix gives an accurate estimation of the failure mode even for non homogeneous boundary value problems
Divergence and flutter instabilities of some constrained two-degree-of-freedom systems
International audienceIt is now well ascertained that a variety of instability modes can appear before the conventional plastic limit condition is met. In this paper, both flutter and divergence instability modes are investigated. First, the mechanical meaning of these instability modes is reviewed, and the criterion for detecting their occurrence is established. Based on an illustration example, the competition between the occurrences of each of these instability modes is analyzed, showing that the prevalence of a given mode is strongly related to both the loading conditions and the stiffness properties of the material system in hand
Stability of non-conservative elastic structures under additional kinematics constraints
International audienceIn this paper, the specific effect of additional constraints on the stability of undamped non-conservative elastic systems is studied. The stability of constrained elastic system is compared to the stability of the unconstrained system, through the incorporation of Lagrange multipliers. It is theoretically shown that the second-order work criterion, dealing with the symmetric part of the stiffness matrix corresponds to an optimization criterion with respect to the kinematics constraints. More specifically, the vanishing of the second-order work criterion corresponds to the critical kinematics constraint, which can be interpreted as an instability direction when the material stability analysis is considered (typically in the field of soil mechanics). The approach is illustrated for a two-degrees-of-freedom generalised Ziegler's column subjected to different constraints. We show that a particular kinematics constraint can stabilize or destabilize a non-conservative system. However, for all kinematics constraints, there necessarily exists a constraint which destabilizes the non-conservative system. The constraint associated to the lowest critical load is associated with the second-order criterion. Excluding flutter instabilities, the second-order work criterion is not only a lower bound of the stability boundary of the free system, but also the boundary of the stability domain, for all mixed perturbations based on proportional kinematics conditions
On the stability of nonconservative elastic systems under mixed perturbations
International audienceThis paper shows that the loading mode strongly influences the stability of discrete non-conservative elastic systems. The stability of the constrained system is compared to the stability of the unconstrained system, through the incorporation of Lagrange multipliers. Initially, the approach is illustrated for a two-degrees-of-freedom generalized Ziegler's column. Then, it is applied to a two-degrees-of-freedom model representing a soil constrained with isochoric loading. The isochoric instability load is not necessarily greater than the instability load of the free problem. Excluding flutter instabilities, it is shown that the second-order work criterion is not only a lower bound of the stability boundary of the free system, but also the boundary of the stability domain, in presence of mixed perturbations based on proportional kinematic conditions.Cet article étudie l'influence du mode de chargement sur la stabilité de systÚmes élastiques discrets non conservatifs. La stabilité du systÚme contraint est comparée à celle du systÚme libre, par l'introduction de multiplicateurs de Lagrange. L'approche est illustrée avec le pendule généralisé de Ziegler. Elle est ensuite appliquée à un modÚle à deux degrés de liberté représentant un sol contraint par un chargement isochore. On montre que le chargement isochore affecte sensiblement la frontiÚre de stabilité pour le problÚme conservatif et pour le problÚme non conservatif. En dehors des instabilités par flottement, le critÚre de travail du second-ordre constitue une borne inférieure de la frontiÚre de stabilité du systÚme libre ainsi que la frontiÚre du domaine de stabilité du systÚme sous chargements mixtes proportionnels en déplacement
Approche multi-Ă©chelle de la rupture
Dans de nombreuses applications du gĂ©nie civil, la dĂ©tection prĂ©coce d'un Ă©tat de rupture constitue un enjeu fondamental. Dans le contexte de la gĂ©omĂ©canique, une classe fondamentale de rupture pour un systĂšme, contrĂŽlĂ© par des paramĂštres bien dĂ©finis, correspond Ă la crĂ©ation d'Ă©nergie cinĂ©tique sans Ă©volution des paramĂštres de contrĂŽle. Il est alors montrĂ© que de telles bifurcations peuvent ĂȘtre dĂ©tectĂ©es par l'annulation du travail du second ordre, Ă l'Ă©chelle macroscopique, dĂ©fini Ă partir du champ de variables contraintes-dĂ©formations tensorielles. En outre, tenant compte de la nature souvent discrĂšte des gĂ©omatĂ©riaux, on Ă©tablit que le travail du second ordre macroscopique, Ă©valuĂ© Ă l'Ă©chelle d'un assemblage granulaire, correspond Ă la somme de tous les travaux du second-ordre microscopiques, Ă©valuĂ©s au droit de chaque contact de l'assemblage Ă partir des grandeurs discrĂštes. Cette Ă©quivalence micro-macro fondamentale donne lieu Ă une interprĂ©tation micro-structurelle de l'annulation du travail du second ordre au sein d'un assemblage granulaire
Constitutive models for predicting liquefaction of soils
Liquefaction is an example of a diffuse mode of failure. It occurs in loose sands when the effective mean pressure decreases to zero. This phenomenon has been studied extensively both experimentally and theoretically. Three constitutive laws, based on different assumptions, capable of predicting liquefaction are presented in the paper. These are Pastor-Zienkiewicz generalized plasticity model and Darveâs incrementally non-linear and octo-linear models. Results of numerical simulations of element tests are presented in the paper
A simple non-linear model for internal friction in modified concrete
International audienceIn this paper we consider a two-degrees-of-freedom, non-linear model aiming to describe internal friction phenomena which have been observed in some modified concrete specimens undergoing slow dynamic compression loads and having various amplitudes but never inducing large strains. The motivation for the theoretical effort presented here arose because of the experimental evidence in which dissipation loops for concrete-type materials are shown to have peculiar characteristics. Indeed, as (linear or nonlinear) viscoelastic models do not seem suitable to describe neither qualitatively nor quantitatively the measured dissipation loops, we propose to introduce a micro-mechanism of Coulombian internal dissipation associated to the relative motion of the lips of the micro-cracks present in the material. We finally present numerical simulations showing that the proposed model is suitable to describe some of the available experimental evidences. These numerical simulations motivate further developments of the considered model and supply a tool for the design of subsequent experimental campaigns
Modélisation des glissements de terrain avec une loi de comportement à transition solide/fluide
ModĂ©liser les glissements de terrain implique la prise en compte de la complexitĂ© de ces phĂ©nomĂšnes. En effet au cours de ceux-ci on peut distinguer une phase de rupture (solide) et une phase d'Ă©coulement visqueux (fluide). Les mĂ©thodes numĂ©riques classiques Ă©tant difficilement capables de dĂ©crire Ă grande Ă©chelle ces deux types de comportement, nous avons choisi de travailler avec une mĂ©thode rĂ©cente la MĂ©thode des ĂlĂ©ments Finis avec des Points d'IntĂ©gration Lagrangiens (MEFPIL). Nous prĂ©senterons les premiers rĂ©sultats obtenus avec la MEFPIL en comportement visco-Ă©lasto-plastique
- âŠ