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Abtract  : 
 
Liquefaction is an example of a diffuse mode of failure. It occurs in loose sands when the effective mean 
pressure decreases to zero. This phenomenon has been studied extensively both experimentally and 
theoretically. Three constitutive laws, based on different assumptions, capable of predicting liquefaction 
are presented in the paper. These are Pastor-Zienkiewicz generalized plasticity model and Darve’s 
incrementally non-linear and octo-linear models. Results of numerical simulations of element tests are 
presented in the paper. 
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1 Introduction 
 

Liquefaction of soils can be defined as a state of vanishing intergranular stresses. This 
phenomenon may be caused by cyclic or static (monotonically increasing) loading (Kramer and 
Seed 1988). Most often liquefaction occurs during earthquakes or other quasi-seismic events. 
The static liquefaction is the liquefaction resulting from the application of noncyclic shear 
stresses. Due to liquefaction failure can occur spreading over large mass of soil deposits, 
commonly referred to as flow slides. It is an example of a diffuse mode of failure. 

Liquefaction occurs in loose sands and is caused by decreasing effective stresses due to 
direct application of external forces (human activity, earthquakes) or indirectly through changes 
of pore pressures (rainfalls). It can occur in situations when the hydraulic gradient of an upward 
current in saturated soil or an upward gas current equalizes the gravity forces (“boiling sands”), 
due to vibrations (earthquakes) of saturated loose or even medium dense sands or when rapid 
deviatoric loading is applied to a saturated very loose sand (“quicksand”). 

In the past decades liquefaction of soils has been extensively studied both experimentally 
and theoretically. This short study presents three models capable of describing static 
liquefaction. 

 
2 Constitutive models describing liquefaction 
 
2.1 Introduction 
 

In general, constitutive laws are formulated by means of mathematical equations involving 
coefficients which represent parameters of a given material (a soil). Usually these coefficients 
are not constant but depend on the stress level and a state of soil. 
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Deformations of soils are irreversible with effect of very low loading applied. Thus the 
relationship between stresses and strains must be non-linear. Moreover, a small load increment 
applied in a time increment induces a small unique response. This feature is known as the 
principle of determinism in the small and implies the incremental formulation of constitutive 
laws. This means that there must exist a tensorial function H relating strain, stress and time 
increments as well as scalar and/or tensorial internal variables (also called memory parameters): 
 ( ) 0,, =dtdd ��H

�
 (1) 

For materials insensitive to the rate of loading the constitutive function Hχ is independent 
of the time increment dt. The constitutive ralationship can be expressed in the equivalent form 
(Darve and Roguiez 2000): 
 ( )�G� dd χ=  or ( )�G� dd 1−= χ  (2) 

For inviscid materials the function Gχ and Gχ
-1 are homogeneous of degree 1, non-linear 

and anisotropic with respect to dσσσσ . For homogeneous functions Euler’s theorem holds which 
gives: 
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where •  denotes a norm in the stress or strain space. 

Tensors Mχχχχ and Pχχχχ depend only on internal variables χχχχ and the direction of dσσσσ or dεεεε. This 
directional dependence of the constitutive tensors implies the existance of so called tensorial 
zones (Darve and Labanieh 1982). A tensorial zone is a domain in the loading space 
characterized by a unique tensor Mχχχχ (Pχχχχ). Within the same tensorial zone the relationship 
between dσσσσ and dεεεε  is incrementally linear. The whole space of possible loading directions can 
be divided into a number of tensorial zones. All constitutive laws can be classified in terms of 
this number. 

Elasto-plastic constitutive laws with only one unique criterion distinguishing between 
loading and unloading are the examples of laws with two tensorial zones. In particular, models 
proposed by Pastor and Zienkiewicz (Pastor et. al. 1990) formulated within the framework of 
generalized plasticity theory represent this group. 

Models proposed by Darve are formulated in a different way. The incrementally octo-
linear model (Darve and Labanieh 1982) is an example of the law with eight tensorial zones 
whereas the incrementally non-linear model (Darve 1984) represents the group with infinite 
tensorial zones. 

All the models mentioned can predict the liquefaction of sands. 
 
2.2 Generalized plasticity 

 
Generalized plasticity concept introduced by Zienkiewicz and Mróz (1984) and developed 

by Zienkiewicz et al. (1985), Pastor et al. (1985) and Pastor et al. (1990) defines in the stress 
space a unit vector n which determines loading and unloading directions for any stress state. 
Strain increments are given as follows:  
 0>= n��C�

TL dfordd  (loading) (4) 

 0<= n��C�
TU dfordd  (unloading) (5) 

The case of neutral loading, when no irreversible strain occurs, is defined by: 
 0=n�Td  (6) 
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The continuity condition between loading and unloading implies the general form of the 
constitutive tensors: 

 T
UgL

UL

eUL

H
nnCC /

/

/ 1+=  (7) 

where ngL/U are arbitrary tensors of unit norm and HL/U are tangent plastic moduli (scalar 
functions of loading and unloading parameters). 

When neutral loading takes place a strain increment is uniquely determined since: 
 �C��C�C0n�� dddddd eULT =�==∀ ,:  (8) 

The tensor Ce characterizes the elastic behaviour of a soil, since during neutral loading no 
irreversible strain is produced. 

It is assumed that the strain increment can be divided into two components: elastic and 
plastic: 
 pe ddd ��� +=  (9) 
where 

 �C� dd ee = ,     �nn� d
H

d T
UgL

UL

p
/

/

1=  (10) 

In the generalized plasticity theory particular ingredients (ngL/U, n, HL/U) can be postulated 
without introducing the notions of yield surface nor plastic potential. 

As observed in experiments, loose sands loaded in undrained conditions exhibit loss of the 
effective intergranular stress (the mean stress in Fig. 1a) and a peak in deviatoric stress (Fig. 1b) 
after which the strength reduces to zero and the pore pressure increases continuously (Fig. 1c). 
The important thing is that the pore pressure increases during the whole loading which is 
characteristic for loose sands. The loose sands when sheared in drained conditions deform with 
hardening (densify).  
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FIG. 1 – Predictions of undrained sand behaviour according to Pastor-Zienkiewicz model 

 
In order to simulate decrease in strength in hardening regime, non-associated flow rule 

must be assumed. In the model proposed by Pastor and Zienkiewicz for sands this effect has 
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been achieved by assuming two different sets of constants defining unit tensors ngL and n during 
loading (Mf/g, αf/g). The assumed formulae in triaxial stress space are as follows: 
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where p’ is the mean stress, q – deviatoric stress, θ - Lode’s angle 
 

2.3 Models based on interpolation rules 
 

Polynomial series expansion for the function Mijkl (eq. 3a) gives: 
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Equations (3a) and (16) give: 
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Eq. (17) is the general form of a family of rate-independent constitutive relations. The first 
term represents all the elastic (hypoelastic) laws. After rejecting terms of order higher than two 
we obtain the incrementally non-linear constitutive relations of second order (Darve 1984): 

 pqklijklpqklijklij ddM
d

dMd σσσε 10 1
�

+=  (18) 

Three assumptions have been made to complete the formulation of the model: 
− the incremental relationship (18) is orthotropic, which means that the symmetries with 

respect to given planes are postulated; 
− the shear behaviour is incrementally linear, i.e. 01 =ijklpqM  for k, l, p, q ≥ 4; 

− non-linearity is restricted to the diagonal terms of 1
ijklpqM , i.e. 01 =ijklpqM  for (k,l) ≠ (p,q). 

The equation (18) takes the following form: 

 
[ ] [ ]

31
2

3123
1

2312
3

12

2
33

2
22

2
11

33

22

11

33

22

11

2
1

,
2

1
,

2
1

2
1

2
1

σεσεσε

σ
σ
σ

σ
σ
σ

ε
ε
ε

d
G

dd
G

dd
G

d

d

d

d

d
d

d

d

d

d

d

===

�
�
�

�

�

�
�
�

�

�

⋅−+
�
�
�

�

�

�
�
�

�

�

⋅+=
�
�
�

�

�

�
�
�

�

�
−+−+ NN

�
NN

 (19) 

where : 
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with Ei and νi
j – Young modulus and Poisson’s ratio respectively. Index “+” refers to 

compression (dσii > 0) and “-” to extension (dσii < 0) with respect to the direction “i” of 
“generalized” triaxial paths (the other two stresses are constant: dσjj = dσkk = 0).  

The “generalized” tangent Young’s moduli and Poisson’s ratios are defined along these 
paths by (no summation): 
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Equations (19) are homogeneous of degree one with respect to dσσσσ. It means that they 
describe rate independent behaviour. They are also non-linear with respect to the stress 
increment (regarding square terms), which means that they can describe plastic (irreversible) 
strains after a stress cycle (dσ, -dσ). This means that it is impossible to decompose a total strain 
increment into an elastic and plastic part. Elasticity and plasticity are intrinsically mixed within 
the constitutive relation. 

The set of equations (19) is a non-linear (quadratic) interpolation between the material 
responses to generalized triaxial loading. Making use of the same matrices N± (eq. 20) linear 
interpolation between orthogonal directions can be made giving the “octo-linear” model (Darve 
and Labanieh 1982): 
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For both models the behaviour of a soil has to be checked in triaxial tests (preferabely true 
triaxial) and described by analytical functions that involve state variables and memory 
parameters. Thus, these quantities are implicitly contained in matrices N±. 
 
3 Liquefaction criterion 

 
It is commonly stated that the water saturation is one of the necessary conditions to initiate 

liquefaction. The results obtained by Lanier and Block (Darve 1996) prove the possibility of 
liquefaction of dry sand. So the deciding factor is the lack of volume variation or at least its 
limitation. 

In general, in triaxial conditions the proportional strain loading is given by: 
 1321 ., εεεε Rdddconstd −===  (23) 
R is a constant representing the degree of limitation of volumetric variation. R=0.5 indicates 
isochoric loading (no variation of volume). 

Fig. 2 presents the results of simulations of triaxial loading at different values of R 
performed on loose sand described by the incrementally non-linear law. In these simulations 
liquefaction occurs for R>0,41. 

 



18ème Congrès Français de Mécanique Grenoble, 27-31 août 2007 

 

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300 350

mean stress p', kPa

de
vi

at
or

ic
 s

tr
es

s 
q,

 k
P

a

R=0,50

R=0,45

R=0,42

R=0,41

R=0,40

 

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10

axial strain εεεε1, %

de
vi

at
or

ic
 s

tr
es

s 
q,

 k
P

a

R=0,50

R=0,45
R=0,42

R=0,41

R=0,40

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 2 4 6 8 10

axial strain εεεε1, %

vo
lu

m
et

ri
c 

st
ra

in
 εε εε

v,
 %

R=0,50

R=0,40

R=0,41

R=0,42

R=0,45

 
FIG. 2 – Simulation of proportional strain paths at different isochoric conditions 

 
4 Conclusions 
 

Static liquefaction occurs in loose sands loaded in approximately isochoric conditions. It 
may lead to dangerous phenomena such as landslides. Liquefaction can be predicted by different 
classes of constitutive laws. Capability of liquefaction prediction depends mainly on the ability 
to reproduce the non-linear inelastic and non-associative behaviour of a soil. 

 
References 
 
Kramer, S.L., Seed, H.B. 1988 Initiation of Soil Liquefaction Under Static Loading Conditions. 

J. Geotech. Eng., Vol. 114, No. 4, pp. 412-430. 
Darve, F. 1984 An incrementally non-linear constitutive law of second order and its application 

to strain localization. Mechanics of Engineering Materials, eds. C.S. Desai & R.H. Gallagher. 
John Wiley, London, pp. 179-196. 

Darve, F. 1996 Liquefaction phenomenon of granular materials and constitutive stability. Int. J. 
Engineering Computations, 13 (7), pp. 5-28. 

Darve, F., Labanieh, S. 1982 Incremental constitutive law for sands and clays: simulation of 
monotonic and cyclic tests, Int. J. Numer. Anal. Meth. Geomech., 6, pp. 243-275. 

Darve, F., Roguiez, X. 2000 Incrementally non-linear modelling. Revue française de genie civil. 
Vol. 4 – no 5/2000, pp. 59-83. 

Pastor, M., Zienkiewicz, O.C., Chan, A.H.C. 1990 Generalized plasticity and the modelling of 
soil behaviour. Int. J. Num. Anal. Meth. Geomech., 14, pp. 151-190. 

Pastor, M., Zienkiewicz, O.C., Leung, K.H. 1985 A simple model for transient soil loading in 
earthquake analysis. II: Non-associative model for sands. Int. J. Numer. Anal. Methods in 
Geomech., 9, pp. 477-498. 

Zienkiewicz, O.C., Mróz, Z. 1984 Generalized plasticity formulation and application to 
geomechanics. In: Mechanics of Engineering Materials, Eds C.S. Desai, R.H. Gallaher, John 
Wiley and Sons. 

Zienkiewicz, O.C., Leung, K.H., Pastor, M. 1985 A simple model for transient soil loading in 
earthquake analysis. I: Basic model and its application, Int. J. Numer. Anal. Methods in 
Geomech., 9, pp. 953-976. 


