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In this paper, new 3-D plastic potentials for a porous solid with a von Mises matrix are 
obtained. First, a strain rate based potential is derived, the noteworthy result being its 
centro-symmetry. Moreover, it is revealed that the couplings between invariants are very 
specific, the most important influence of the third invariant being for axisymmetric states. 
It is demonstrated that the exact stress-based potential of the porous material should 
have the same key properties. Furthermore, it is deduced a new analytic 3-D stress-based 
potential that satisfies these properties. Compared to the existing criteria for porous solids 
with a von Mises matrix, this model is the only one that captures the specific couplings 
between all stress invariants and is exact for axisymmetric states.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The most widely used criterion for porous solids containing randomly distributed spherical voids was developed by 
Gurson [1]. It is expressed as:

Φ =
(

Σe

σT

)2

+ 2 f cosh

(
3Σm

2σT

)
− 1 − f 2 = 0 (1)

where f is the porosity, Σe is the von Mises effective stress, Σm is the mean stress, and σT is the tensile yield stress of the 
matrix. This model was deduced by performing limit-analysis of a hollow sphere made of a rigid-plastic material obeying 
von Mises criterion.

Modifications of criterion (1) were proposed based on finite-element (FE) studies (e.g., [2]) or using more complex trial 
velocity fields (e.g., [3]).

It is worth pointing out that Gurson’s criterion (Eq. (1)) and all its modifications are expressed by functions that are 
invariant with respect to both transformations (Σm, Σ ′) → (Σm, −Σ ′) and (Σm, Σ ′) → (−Σm, Σ ′), where Σ ′ denotes the 
stress deviator. Furthermore, the effects of the mean stress and that of the stress deviator are decoupled. However, FE cell 
calculations (e.g., [4,5]) have shown that the stress triaxiality, T = Σm/Σe, by itself is insufficient to characterize yielding 
of a porous von Mises material. Moreover, the numerical results showed that the dilatational response displays a slight 
dependence on the third invariant of the stress deviator JΣ

3 = tr(Σ ′ 3)/3.
Recently, results of axisymmetric FE cell calculations [6] as well as full-field calculations of the yield surface of voided 

polycrystals deforming by slip at single crystal level [7] have revealed a very specific dependence of yielding with the signs 
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of the mean stress and that of JΣ
3 . Specifically, for axisymmetric tensile loadings, the response corresponding to JΣ

3 ≥ 0 is 
softer than that corresponding to JΣ

3 ≤ 0, while for axisymmetric compressive loadings, the reverse occurs. Very recently, 
Cazacu et al. [8] explained these unusual features of the dilatational response under axisymmetric loadings and furthermore 
developed an analytical stress-based criterion that accounts for the coupled effects of the mean stress and third invariant 
of the stress deviator. Comparison between the predictions of this criterion and FE cell calculations also demonstrated that 
the model accounts for the role of the sign of the third invariant on void growth and collapse (see [5]). Another important 
outcome of the study of Cazacu et al. [8] was to show that the insensitivity of Gurson’s [1] criterion to JΣ

3 is due to an 
approximation that Gurson made when calculating the overall plastic dissipation.

In this paper, new three-dimensional (3-D) potentials for a porous solid with a von Mises matrix are derived. The 
structure of the paper is as follows. We begin with a brief presentation of the kinematic homogenization approach of 
Hill–Mandel [9,10] that will be used for the derivation of the respective plastic potentials. An estimate of the strain rate 
based plastic potential of the porous material is provided. The limit-analysis is conducted for general 3-D conditions for 
both tensile and compressive states. To fully assess the couplings between all invariants, the shapes of its cross-sections 
with the octahedral plane are analyzed. Very specific couplings between all invariants are revealed. The noteworthy result 
obtained is that the shape of the cross-section of this potential with deviatoric planes (i.e. planes having the normal along 
the hydrostatic axis) changes little with the mean strain rate. Furthermore, the most pronounced influence of the third 
invariant occurs for axisymmetric states. An analytic strain rate based potential that satisfies all these key properties is 
proposed (Section 2). Furthermore, it is established that the stress-based potential of the porous material ought to satisfy 
the same properties of centro-symmetry with respect to the origin (Section 3). On this basis, we propose a new 3-D yield 
criterion for a porous Mises material. We also examine the corrections brought by this new yield criterion with respect to 
Gurson’s (Eq. (1)). Further discussion and a summary of the main findings of this study are given in Section 4.

Regarding notations, vector and tensors are denoted by boldface characters. If A and B are second-order tensors, the 
contracted tensor product between such tensors are defined as: A : B = Aij Bi j i, j = 1 . . . 3; “tr” denotes the trace of the 
tensor.

2. Statement of the problem

Consider a representative volume element Ω , composed of a homogeneous rigid-plastic matrix and a traction-free void. 
For spherical void geometry an appropriate representative volume element (RVE) is a hollow sphere. Let a denote its inner 
radius and b its outer radius. The void volume fraction f is defined as f = a3/b3. The matrix material is described by a 
convex yield function ϕ(σ) in the stress space and an associated flow rule:

d = λ̇
∂ϕ

∂σ
(2)

where σ is the Cauchy stress tensor, d = 1
2 (∇v + ∇vT) denotes the strain rate tensor with v being the velocity field, and 

λ̇ ≥ 0 stands for the plastic multiplier rate. The yield surface is defined as ϕ(σ) = σT, where σT is the uniaxial yield in 
tension. Let’s denote by C the convex domain delimited by the yield surface such that

C = {
σ

∣∣ ϕ(σ) ≤ 0
}

The plastic dissipation potential of the matrix is defined as

π(d) = sup
σ∈C

(σ : d) (3)

For uniform strain rate boundary conditions on ∂Ω i.e.

v = Dx, for any x ∈ ∂Ω (4)

with D, the macroscopic strain rate tensor, being constant, Hill–Mandel [9,10] lemma applies; hence,

〈σ : d〉Ω = Σ : D (5)

where 〈〉 denotes the average value over the representative volume Ω , and Σ = 〈σ〉Ω . Furthermore, there exists a strain rate 
potential (SRP) for the porous material,

Π(D) = inf
d∈K (D)

〈
π(d)

〉
Ω

(6a)

So using Eq. (5), the macroscopic stress tensor is expressed as:

Σ = ∂Π(D, f)

∂D
(6b)

In Eq. (5), K (D) is the set of incompressible velocity fields satisfying condition (3) (for more details, see [11]).
This result will be further used for the derivation of the strain rate potential for a porous Mises material containing 

randomly distributed spherical voids.
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2.1. New analytic strain rate potential for a porous solid with a von Mises matrix

If the matrix of the porous material is governed by the von Mises criterion, i.e. in Eq. (2) ϕ(σ) = √
(3/2)σ′ : σ′ , σ′ being 

the stress deviator, then the local plastic dissipation is:

π(d) = σT

√
(2/3)d : d (7)

The analysis will be conducted for general 3-D loadings for both tensile and compressive states, i.e.

D = D1e1 ⊗ e1 + D2e2 ⊗ e2 + D3e3 ⊗ e3 (8)

with D1, D2, D3 being the eigenvalues (unordered) of D and (e1, e2, e3) its eigenvectors.
As in Gurson [12,1], we use the trial velocity field v, deduced by Rice and Tracey [13], namely

v = vv + vS, (9)

where vv describes the expansion of the cavity while vS is associated to shearing-related changes. Imposing the boundary 
conditions and matrix incompressibility, i.e.:

v(x = ber) = Dx and div(v) = 0,

where x is the Cartesian position vector that denotes the current position in the RVE and er is the radial unit vector, it 
follows that:

vv = (
b3/r2)Dmer and vS = D′x (10)

where r =
√

x2
1 + x2

2 + x2
3 is the radial coordinate, Dm = (D1 + D2 + D3)/3 is the mean strain rate while D′ is the deviator 

of D.
It is worth noting that if the plastic flow in the matrix is governed by the von Mises criterion, the exact solution of the 

problem of a hollow sphere subjected to hydrostatic states (i.e. D′ = 0) is the term vv = (b3/r2)Dmer given by Eq. (10) (e.g., 
see [14]). Thus, for purely hydrostatic states (i.e. D1 = D2 = D3), the above trial velocity is the only velocity field compatible 
with uniform strain rate boundary conditions.

In the Cartesian basis (e1, e2, e3) associated with the eigenvectors of D (see Eq. (8)), the local strain rate tensor d =
(∇v + ∇vT)/2 corresponding to the velocity field given by Eq. (10) is:

d11 = D ′
1 + b3 Dm

1 − 3x2
1/(x2

1 + x2
2 + x2

3)

(x2
1 + x2

2 + x2
3)

3/2

d22 = D ′
2 + b3 Dm

1 − 3x2
2/(x2

1 + x2
2 + x2

3)

(x2
1 + x2

2 + x2
3)

3/2

d33 = D ′
3 + b3 Dm

1 − 3x2
3/(x2

1 + x2
2 + x2

3)

(x2
1 + x2

2 + x2
3)

3/2

d12 = − 3b3 Dmx1x2

(x2
1 + x2

2 + x2
3)

3/2
; d13 = − 3b3 Dmx1x3

(x2
1 + x2

2 + x2
3)

3/2
; d23 = − 3b3 Dmx2x3

(x2
1 + x2

2 + x2
3)

3/2
(11)

where D ′
i = Di − Dm, i = 1 . . . 3 are the eigenvalues of D′ .

Substitution of d given by Eq. (11) into Eq. (7), leads to the expression of the overall plastic dissipation associated to this 
velocity field, i.e.:

Π+(D, f ) = σT

V

∫
Ω

√
(2/3)

(
D ′ 2

1 + D ′ 2
2 + D ′ 2

3

) + 4D2
m(b/r)6 − 4Dm(b/r)3

(
D ′

1x2
1 + D ′

2x2
2 + D ′

3x2
3

)
dV , (12)

with V = 4πb3/3, Ω being the domain occupied by the matrix and the void.
Since the velocity v given by Eq. (10) is incompressible and compatible with homogeneous strain rate boundary 

conditions, Hill–Mandel lemma applies (see Eq. (4)–(5)) so Π+(D, f ) is an upper-bound estimate of the exact SRP of 
the porous solid given by Eq. (6). Note also that Π+(D, f) depends on all principal values of the strain rate deviator 
D′ and the mean strain rate, Dm. Equivalently, it can be expressed in terms of Dm and the invariants of D′ , namely 
J2D =

√
(D ′ 2

1 + D ′ 2
2 + D ′ 2

3 )/2, and J3D = D ′
1 D ′

2 D ′
3.

For general 3-D states, the integral expressing Π+(D, f) (see Eq. (12)) cannot be estimated in closed form. However, 
for axisymmetric states, Cazacu et al. [8] have very recently shown that Π+(D, f) can be calculated explicitly, without 
making any of the approximations generally considered in the literature. Note also that according to Eq. (12), Π+(D, f ) is 
an even function of D (i.e. it is invariant with respect to the transformation (Dm, J2D, J3D) → (−Dm, J2D, − J3D)), so only 
its expressions for the axisymmetric states corresponding to: (Dm ≥ 0 and D ′ = D ′ ≥ 0) and (Dm ≥ 0 and D ′ = D ′ ≤ 0) 
1 2 1 2
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Fig. 1. (Color online.) (a) Definition of the polar-type coordinates (R, γ ), representing any state P (D1, D2, D3) belonging to the intersection of a strain 
rate potential (SRP) isosurface with any deviatoric plane (plane of normal the hydrostatic axis). (b) General symmetry properties of the cross-section of the 
strain rate potential of an isotropic material.

need to be calculated and will be given in the following. For all the other axisymmetric states, the respective expressions 
are obtained by symmetry (see also Fig. 1(b)).

Let us denote

u = Dm

max
i=1..3

(|D ′
i|)

(13)

(i) For Dm ≥ 0 and D ′
1 = D ′

2 ≥ 0:

Π+(D, f ) = 2σT Dm
[

F (
√

u/ f ) − F (
√

u)
]
, (14a)

where

F (z) = −2/
(
3z2) + 1

3
√

3

[
tan−1(2z + √

3) − tan−1(2z − √
3)

]

+ ln
√

z4 − z2 + 1 + 3z4 + 3z2 − 1

6
√

3z3
ln

(
z2 + z

√
3 + 1

z2 − z
√

3 + 1

)
.

(ii) For Dm ≥ 0 and D ′
1 = D ′

2 ≤ 0:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Π+(D, f ) = 2σT Dm
[
G(

√
u/ f ) − G(

√
u)

]
, ∀u < f

Π+(D, f ) = 2σT Dm

[
G(

√
u) + G(

√
u/ f ) + 2 ln(3) − 2

9

π√
3

]
, ∀ f < u < 1

Π+(D, f ) = 2σT Dm
[
G(

√
u) − G(

√
u/ f )

]
, ∀u > 1

(14b)

with:

G(z) = −2/
(
3z2) − 3z4 − 3z2 − 1

3
√

3z3
tan−1

(
z
√

3

1 − z2

)
+ 1

3
√

3

(
tan−1

(
2z + 1√

3

)

− tan−1
(

2z − 1√
3

))
− ln

√
z4 + z2 + 1

For all other loadings, Π+(D, f ) cannot be calculated analytically and numerical integration methods need to be used. 
Isotropy dictates that Π+(D, f ) has three-fold symmetry with respect to the origin. Thus, it is sufficient to evaluate the 
integral expressing this SRP (Eq. (12)) only for states corresponding to: D2 ≥ D3 ≥ D1 (see also Fig. 1(b)). If D2 ≥ D3 ≥ D1, 
it follows that:

D ′
1 = − R√ (

√
3 cosγ + sinγ )
6
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Fig. 2. (Color online.) The 3-D surface of a porous solid with a von Mises matrix according to Eq. (18) for both tensile mean strain rate (Dm = tr(D) > 0)

and compressive (Dm < 0) states. Note that this convex surface contains all the points (Dm, R , γ ) that produce the same plastic dissipation Π+(D, f ) =
9.21 · 10−3 for the porous solid. Porosity: f = 0.01.

D ′
2 = R√

6
(
√

3 cosγ − sinγ )

D ′
3 = 2R√

6
sinγ (15)

with

R =
√

D ′ 2
1 + D ′ 2

2 + D ′ 2
3 = √

2 J2D (16a)

and γ is the angle satisfying: −π/6 ≤ γ ≤ π/6 and whose sine is given by:

sin 3γ = −27

2
· J3D

( J2D)3/2
(16b)

In particular, the sub-sector −π/6 ≤ γ ≤ 0 corresponds to states on the SRP for which (D ′
2 ≥ 0, D ′

3 ≤ 0, D ′
1 ≤ 0) so 

the third invariant J3D ≥ 0, while the sub-sector 0 ≤ γ ≤ π/6 corresponds to states for which (D ′
2 ≥ 0, D ′

3 ≥ 0, D ′
1 ≤ 0), 

so J3D ≤ 0 (see also Fig. 1(b)). In this sub-sector, axisymmetric states correspond to either γ = −π/6 (D ′
1 = D ′

3 < D ′
2) or 

γ = π/6 (D ′
2 = D ′

3 > D ′
1). Note also that the angle γ , which is a measure of the combined effects of the second and third 

invariants, is related to the dimensionless parameter ν introduced by Drucker [15],

ν = D ′
int

D ′
min − D ′

max
, (17)

where D ′
min = min(D ′

1, D
′
2, D

′
3), D ′

max = max(D ′
1, D

′
2, D

′
3) while D ′

int is the intermediate principal value. Using Eqs. (15)–(16), 
the integral expression of the SRP can be put in the form:

Π+(D, f ) = σT

V

∫
Ω

2σT

√(
R2/6

) + D2
m(b/r)6 − 4R Dm(b/r)3 F

(
γ , x2

i

)
/
(
r2/

√
6
)
dV (18)

with F (γ , x2
1, x

2
2, x

2
3) =

√
3(x2

2 − x2
1) cosγ + (2x2

3 − x2
1 − x2

2) sinγ .
Gaussian quadrature integration is used to evaluate the plastic dissipation Π+(D, f ) (Eq. (18)) for any 3-D loading. The 

hollow sphere domain is discretized with 125,000 hexahedral elementary volumes, with one integration point at the center. 
For axisymmetric loadings, the numerical estimate of Π+(D, f ) was compared to the exact result (i.e. Eq. (14)), differences 
being negligible (less than 10−7).

As an example, in Fig. 2 is shown a 3-D isosurface of the von Mises porous solid (calculated using Eq. (18)) corresponding 
to a porosity f = 1% for both tensile (Dm = tr(D) > 0) and compressive (Dm < 0) states. Specifically, this convex surface 
contains all the points (Dm, R , γ ) that produce the same plastic dissipation Π+(D, f ) = 9.21 · 10−3 for the porous solid. 
First, let us note that the presence of voids induces a strong influence of the mean strain rate Dm on the plastic dissipation, 
the SRP being closed on the hydrostatic axis. Indeed, for purely hydrostatic states (i.e. D = DH

mI) according to Eq. (14), 
Π+(D, f ) = 2σT|DH

m| ln f . For f = 1% and plastic dissipation of 9.21 · 10−3, this corresponds to: DH
m = ±1 · 10−3 s−1. Thus, 

the intersection of the isosurface with the planes Dm = 1 · 10−3 s−1 and Dm = −1 · 10−3 s−1, respectively, are two points 
on the hydrostatic axis that are symmetric with respect to the origin (see also Fig. 2).

To fully assess the effects of all invariants of the strain rate, D, on the plastic response of the porous solid, the cross-
sections of the same 3-D isosurface with several deviatoric planes Dm = constant are considered (see Fig. 3). For this 
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Fig. 3. (Color online.) Cross-sections of the 3-D isosurface of a porous von Mises material with several deviatoric planes Dm = constant: outer cross-section 
represents the intersection with the plane Dm = 0, while the inner cross-section corresponds to Dm = 9 · 10−4 s−1. Porosity: f = 0.01.

purpose, it is convenient to introduce a coordinate system of unit vectors (ex , ey , ez), which are related to the principal 
directions (e1, e2, e3) by the following relations:

ex = 1√
3
(e1 + e2 + e3), ey = − 1√

2
(e1 − e2), ez = 1√

6
(2e3 − e1 − e2). (19)

Since the Ox-axis coincides with the hydrostatic axis, a plane that contains, say a point P (D1, D2, D3) on the isosurface 
and is parallel to the Oyz-plane also contains all the states belonging to the SRP with the same Dm (see Fig. 1). Thus, the 
intersection of the SRP with the deviatoric plane Dm = constant is obtained by expressing the SRP in the (xyz) coordinates 
and then imposing Dx = constant. Let fi be the projections of the eigenvectors ei , i = 1 . . . 3 on a deviatoric plane. Note 
that the intersection of any surface Π+(D, f ) = constant with the plane Dm = 0, is a circle (see for example, Fig. 2). This 
is to be expected since states for which Dm = 0 correspond to purely deviatoric loadings for which the plastic dissipation 
of the porous solid coincides with that of the matrix (von Mises behavior). The cross-sections of the SRP with all the other 
deviatoric planes Dm = c (c �= 0) have three-fold symmetry with respect to the origin, and deviate slightly from a circle. 
This indicates that the third invariant J3D = D ′

1 D ′
2 D ′

3 affects the plastic response of the porous Mises material. It is also 
clearly seen that as Dm increases the response of the material becomes softer (the inner cross-section depicted in Fig. 3
corresponds to Dm = 9 · 10−4 s−1).

To assess the combined effects of J3D and J2D on the SRP of the porous von Mises material, the shapes of its cross-
sections with deviatoric planes Dm = c (c �= 0) need to be determined. Due to isotropy, it is sufficient to study how 
the distance between the origin and any point on the cross-section evolves with γ in the sector −π/6 ≤ γ ≤ π/6. 
As already mentioned, in this sector, axisymmetric conditions correspond to γ = −π/6 (D1 = D3 < D2) or γ = π/6
(D2 = D3 < D1). As an example, in Fig. 4 is plotted R(γ ) (normalized by R(γ = −π/6)) for the cross-section corresponding 
to Dm = 6 ·10−4 s−1 and Dm = 0 (matrix behavior), respectively. Since the cross-section Dm = 0 is a circle, R(γ ) = constant. 
As concerns the cross-section Dm = 6 · 10−4 s−1, note the influence of the third invariant J3D (or γ ) as evidenced by the 
deviation of R(γ )/R(γ = −π/6) from a straight line. The noteworthy result is that the most pronounced difference is be-
tween the axisymmetric states, i.e. between R(γ = −π/6) and R(γ = π/6). This holds true irrespective of the level of 
Dm (see also Fig. 3). It follows that the most influence of the parameter γ (or J3D) on the response of the porous solid 
(consequently its influence on void growth or void collapse) occurs for axisymmetric states. It is very worth noting that for 
the case of large positive and negative triaxialities, the same conclusions concerning the influence of the third invariant on 
void evolution were obtained in their seminal study by Rice and Tracey [13].

As pointed out in Cazacu et al. [8], a remarkable property of the exact plastic potentials (stress-based and strain rate 
based) of a porous solid with a von Mises matrix is their centro-symmetry. This property is preserved by Π+ (D, f ). This 
means that for any porosity f : Π+ (Dm, R, γ , f ) = Π+(−Dm, R, −γ , f ), i.e. the surface is symmetric with respect to the 
origin (see also Eq. (18) and Fig. 2). More specifically, in Fig. 3 it is clearly seen that for a given Dm, in order to reach the 
same plastic dissipation in the porous solid, there should be a very specific dependence between the invariants of D’, i.e. 
between R and γ . Indeed, the analysis of the cross-sections shows that for Dm > 0, R(γ ) is a monotonically decreasing 
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Fig. 4. (Color online.) Evolution of R(γ ) (normalized by R = R(−π/6)) for the cross-section of the surface of the porous Mises material with the deviatoric 
planes Dm = 6 · 10−4 s−1 and Dm = 0 (von Mises behavior), respectively. Initial porosity: f = 0.01. Note that the response depends on the third invariant 
as revealed by the very specific coupling between R(= √

2 J2D) and γ (measure of J2D and J3D). Porosity f = 0.01.

function of γ (see Fig. 4). Due to the centro-symmetry of Π+(D, f ) for Dm < 0, R(γ ) must be a monotonically increasing 
function of γ . A function that has these properties and coincides with the exact values of R(γ ) for axisymmetric states is 
considered:

R(γ ) = R− + R+
2

+ R− − R+
2

(
sinh(γ ) − γ cosh(π/6)

− sinh(π/6) + π
6 cosh(π/6)

)
, (20)

where R− and R+ are the exact values of the SRP corresponding to axisymmetric loadings at γ = −π/6 and γ = π/6, 
respectively, which are calculated using Eq. (14). Since any state D belonging to the isosurface Π+(D, f ) = k, with constant 
k fully defined by (Dm, R(γ ), γ ), for any given (Dm, γ ), first we need to solve:

Π+
(

Dm, R−,−π

6
, f

)
= k

Π+
(

Dm, R+,
π

6
, f

)
= k (21)

to find R− and R+ associated with the given Dm and then use Eq. (20) to determine R(γ ).
In the above equation, Π+(Dm, R−, −π

6 , f ) is calculated using the analytic expression of the plastic dissipation for the 
axisymmetric case Dm > 0 and J3D > 0 (Eq. (14b)), while Π+(Dm, R+, π6 , f ) corresponds to the axisymmetric case Dm > 0
and J3D < 0 (Eq. (14a)).

Comparison between the evolution of R(γ ) (normalized by R(−π/6)) according to Eq. (20) and the numerical values 
obtained by estimating numerically the integral of Eq. (18) (symbols) is shown in Fig. 5 for the cross-sections of the iso-
surface Π+(D, f ) = 9.21 · 10−3 corresponding to a porosity f = 0.01 with the deviatoric planes Dm = 4 · 10−4 s−1 and 
Dm = 6 · 10−4 s−1, respectively. The shapes in the sector −π/6 ≤ γ ≤ π/6 of the cross-sections of the proposed analytical 
SRP (Eq. (20)) with several deviatoric planes Dm = constant and the numerical points (symbols) are shown in Fig. 6. Note 
that the proposed function is a very good approximation for all values of Dm > 0 considered.

2.2. Comparison between the proposed SRP and Gurson’s SRP

As already mentioned, the most widely used plastic potential for isotropic porous solids containing randomly distributed 
spherical voids was proposed by Gurson [1]. This yield criterion was derived by conducting limit analysis of a hollow sphere 
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Fig. 5. (Color online.) Comparison between the evolution of R(γ ) (normalized by R = R(−π/6)) according to Eq. (20) and the numerical values (symbols) 
for the cross-section of the surface of the porous Mises material with the deviatoric planes: Dm = 6 ·10−4 s−1, Dm = 4 ·10−4 s−1, and Dm = 0, respectively. 
Porosity: f = 0.01.

Fig. 6. (Color online.) Cross-sections of the new 3-D strain rate potential corresponding to a fixed value of the plastic dissipation 9.21 · 10−3 with several 
deviatoric planes Dm = constant: outer cross-section represents the intersection with the plane Dm = 0 while the inner cross-section corresponds to 
Dm = 9 · 10−4 s−1. Numerical points are represented by symbols. Porosity: f = 0.01.

made of a rigid-plastic material obeying the von Mises yield criterion using the trial velocity field deduced by Rice and 
Tracey [13] (see Eq. (10)). In his analysis, Gurson [12,1] assumed that the coupled effects between the mean strain rate Dm
and D’ (i.e. the cross-term Dm(b/r)3(D ′

1x2
1 + D ′

2x2
2 + D ′

3x2
3) in the expression of Π+(D, f ) given by Eq. (12)) can be neglected 

and obtained the following expression for the strain rate potential:

ΠGurson(D, f ) = 2|Dm|
[√

1 + 6D2
m/R2 −

√
f 2 + 6D2

m/R2

(D /R)
√

6
+ ln

(
1

f
× (Dm/R)

√
6 +

√
f 2 + 6D2

m/R2

√ √
2 2

)]
(22)
m (Dm/R) 6 + 1 + 6Dm/R
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Fig. 7. (Color online.) Comparison between the cross-sections of the new 3-D strain rate potential (interrupted line; Eq. (20)–(21)) and that of the strain rate 
potential dual to Gurson’s [1] (solid line) corresponding to the same level of plastic energy 9.21 · 10−3. The cross-section correspond to Dm = 6 · 10−4 s−1. 
Note that Gurson’s SRP is more dissipative than the new model. Porosity: f = 0.01.

Note that ΠGurson(D, f ) is the work-conjugate of the classic stress-based potential of Gurson [1] given by Eq. (1). Gurson’s 
SRP given by Eq. (22) does not involve any dependence on the third invariant J3D (or γ ). Therefore, irrespective of Dm
or of the porosity level, the cross-section of ΠGurson(D, f ) with any deviatoric plane Dm = c (c = constant) is always a 
circle, i.e. R = constant (see also Fig. 7). Gurson’s SRP involves only dependence of Dm and J2D (or R) and displays stronger 
symmetry properties, being also invariant to the transformation (Dm, R) → (−Dm, −R). In other words, the dilatational 
response according to Gurson’s SRP is insensitive to the sign of the mean strain rate Dm.

On the other hand, the proposed analytical SRP (Eqs. (20)–(21)) depends on all three invariants. It has the following 
properties:

• it coincides with the exact SRP for axisymmetric states,
• since R(γ ) given by Eq. (20) is an odd function and relies on the exact analytical values for axisymmetric states, 

it satisfies automatically the centro-symmetry requirement, i.e. it is invariant to the transformation (Dm, R, γ ) →
(−Dm, R, −γ ),

• the derivative of R(γ ) with respect to γ is null for axisymmetric loadings (see Eq. (20)),
• the SRP displays three-fold symmetry with respect to the origin.

Thus, the proposed analytic SRP (Eqs. (20)–(21)) preserves all the key features of the exact SRP. To further illustrate the 
specific differences between the proposed SRP and Gurson’s in Fig. 7 are shown the cross-sections with the deviatoric plane 
Dm = 6 · 10−4 s−1 of the respective isosurfaces corresponding to the same value of the plastic dissipation (9.21 · 10−3) and 
the same void volume fraction ( f = 1%). Since Gurson’s SRP was obtained by truncating the overall plastic dissipation (see 
Eq. (21)), it is necessarily interior to the proposed SRP. This means that Gurson’s SRP is more dissipative, i.e. in order to 
reach the same value of the plastic dissipation, the norm of the loading, R(γ ), for Gurson’s SRP is lower than that for the 
proposed SRP (Eq. (20)). Only for purely hydrostatic loading (D′ = 0), and purely deviatoric states (Dm = 0), the new SRP 
coincides with the proposed SRP.

3. New analytic stress-based potential for a porous solid with a von Mises matrix

Since the cavities are spherical and randomly distributed in an isotropic matrix, the porous von Mises material is 
isotropic. It follows that the principal directions of the overall stress at yielding, Σ , and that of the macroscopic strain 
rate tensor D coincide. Thus, at yielding (see Eq. (6))

Σi = ∂Π+(D, f )

∂ Di
, i = 1...3 (23)

where Σi are the principal values of the macroscopic stress tensor and Π+(D, f ) is given by Eq. (18). For axisymmetric 
states, the expressions of Π+(D, f ) are given by Eq. (14). By further substituting Eq. (14) into Eq. (23), the parametric 
representation of the yield surface is obtained (for more details the reader is referred to Cazacu et al. [8]). Its expressions 
are:



86 O. Cazacu, B. Revil-Baudard / C. R. Mecanique 343 (2015) 77–94
(a) for JΣ
3 ≤ 0, Σm ≥ 0, and any value of u (see definition of u given by Eq. (13)):
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(b) for JΣ
3 ≤ 0 and Σm ≤ 0:
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Fig. 8. (Color online.) Yield surface of the porous solid according to Cazacu et al. [8] criterion for axisymmetric stress states for loadings such that JΣ
3 ≤ 0

and JΣ
3 ≥ 0, respectively, in comparison with Gurson’s [1] for the same porosity ( f = 0.05).

The yield surface being centro-symmetric, the parametric representation of the yield locus corresponding to JΣ
3 ≥ 0 can 

be easily obtained from Eq. (24):
(c) For JΣ

3 ≥ 0 and Σm ≥ 0:
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where the right-hand expressions are given by Eqs. (24a)–(24d).
(d) For JΣ

3 ≥ 0 and Σm ≤ 0:
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where the right-hand expressions are given by Eq. (24a).

It can be easily seen that for purely hydrostatic loading (u → ∞ in Eq. (24a)), we obtain: |Σm| = 2
3 σT ln f and Σe = 0; and 

for purely deviatoric loading (u → 0), Σm = 0, and Σe = σT(1 − f ), irrespective of the sign of JΣ
3 .

In Fig. 8 are presented the yield curves according to the criterion given by Eqs. (24)–(25) corresponding to JΣ
3 ≥ 0

and JΣ
3 ≤ 0, respectively, and the Gurson yield surface (see Eq. (1)) for a porosity f = 0.05. Note that for axisymmetric 

loading, Σ = Σ11(e1 ⊗ e1 + e2 ⊗ e2) + Σ33(e3 ⊗ e3), the von Mises equivalent stress is Σe = |Σ11 − Σ33|, the mean stress 
is Σm = (2Σ11 + Σ33)/3, and the third invariant of the stress deviator is JΣ

3 = − 2
27 (Σ11 − Σ33)

3, so JΣ
3 ≤ 0 corresponds to 

stress states for which Σ11 ≥ Σ33, while JΣ
3 ≥ 0 corresponds to stress states for which Σ11 ≤ Σ33. Note that for Σm ≥ 0, 

the response is softer for JΣ
3 ≥ 0 than for JΣ

3 ≤ 0 (see also the different zooms of the yield curves shown in Fig. 8). For 
purely deviatoric loading, the response is the same, and the effect of JΣ

3 becomes noticeable with increasing triaxiality. For 
triaxialities approaching infinity, the effect of JΣ

3 starts to decrease, and both yield curves coincide at the purely hydrostatic 
point. It is clearly seen that Gurson’s criterion (Eq. (1)) is an upper bound of the criterion given by Eq. (24).
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For all other loadings, Π+(D, f ) (see Eq. (12)) cannot be calculated analytically. Furthermore substitution of Eq. (12) into 
Eq. (23) and further evaluation of these integrals numerically leads to:

Σi = 2σT

3V
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One of the objectives of this study is to develop an approximate 3-D stress-based potential that preserves the key properties 
of the exact one and reduces to the exact yield criterion for axisymmetric states. The stress potential that it is proposed 
relies on the analysis of the couplings between all invariants of the strain rate of deformation, D, on the plastic dissipation 
Π+(D, f ) that were revealed by the 3-D numerical calculations presented in the previous section.

First, note that the exact stress-based plastic potential of the porous material is the work conjugate (exact dual) of 
the overall plastic potential Π+(D, f ) (see Eq. (18)). Therefore, the stress-based plastic potential of the porous von Mises 
material should have the following remarkable properties:

(i) it should depend on all stress invariants,
(ii) it ought to be centro-symmetric, i.e. invariant to the transformation: (Σm, Σe, JΣ

3 ) → (−Σm, Σe, − JΣ
3 ),

(iii) it should be an even function in stresses,
(iv) the most influence of the third invariant of the stress deviator should be for axisymmetric states.

The stress-potential being isotropic, it is sufficient to provide its expression in the sector Σ2 ≥ Σ3 ≥ Σ1 (see also Fig. 1(b)). 
If Σ2 ≥ Σ3 ≥ Σ1, it follows that:
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with
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and θ is the angle satisfying: −π/6 ≤ θ ≤ π/6 and whose sine is given by:

sin 3θ = −27
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In particular, the sub-sector −π/6 ≤ θ ≤ 0 corresponds to states on the surface for which (Σ ′
2 ≥ 0, Σ ′

3 ≤ 0, Σ ′
1 ≤ 0), so 

the third invariant JΣ
3 ≥ 0, while the sub-sector 0 ≤ θ ≤ π/6 corresponds to states for which (Σ ′

2 ≥ 0, Σ ′
3 ≥ 0, Σ ′

1 ≤ 0), so 
JΣ

3 ≤ 0. In this sector, axisymmetric states correspond to either θ = −π/6 (Σ ′
1 = Σ ′

3 < Σ ′
2) or θ = π/6 (Σ ′

2 = Σ ′
3 > Σ ′

1).
To describe the variation of R̃ = √

(2/3)Σe with the angle θ (measure of the combined influence of Σe and JΣ
3 ), the 

following approximation is considered:

R̃(θ) = (R̃+ + R̃−)/2 + (R̃− − R̃+)

2
+

(
sinh(θ) − θ cosh(π/6)

− sinh(π/6) + π
6 cosh(π/6)

)
(29)

where R̃− and R̃+ are the exact values corresponding to axisymmetric loadings at γ = −π/6 and γ = π/6, respectively 
(calculated using Eq. (25)).

As an example, in Fig. 9 is shown the 3-D yield surface given by Eq. (28) corresponding to a porosity f = 1% for 
both tensile (Σm > 0) and compressive (Σm < 0) states. Specifically, this convex surface contains all the stress points 
corresponding to the same plastic dissipation for the porous solid. First, let us note that the presence of voids induces a 
strong influence of the mean stress Σm on yielding. The yield surface is closed on the hydrostatic axis. Indeed, for purely 
hydrostatic states (i.e. Σ = ΣH

mI) according to Eq. (23), yielding occurs for: |ΣH
m| = 2

3 σT ln f . For purely deviatoric loadings 
(i.e. loadings at Σm = 0): Σe = σT(1 − f ). Fig. 10 shows the cross-sections of the new 3-D yield criterion given by Eq. (29)
with several deviatoric planes Σm = constant. Note that irrespective of the value of Σm, the cross-sections slightly deviate 
from circles, the most influence of the third invariant of the stress deviator occurs for axisymmetric conditions. Also, with 
increasing Σm, the influence of the third invariant (or γ ) is increasing.

Since the proposed dependence of R̃ with θ relies on the exact values for axisymmetric loadings and it is an odd function, 
the key properties of the exact stress-based plastic potential are preserved. Most importantly, the yield surface according to 
the proposed criterion is centro-symmetric. To illustrate this noteworthy property in Fig. 11 are shown the cross-sections 
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Fig. 9. (Color online.) The 3-D stress surface for a porous solid with a von Mises matrix according to the new model (Eq. (29)) for both tensile and 
compressive states. Porosity: f = 0.01.

Fig. 10. (Color online.) Cross-sections of the new 3-D yield surface (Eq. (29)) of a porous von Mises material with several deviatoric planes Σm = constant: 
outer cross-section represents the intersection with the plane Σm/σT = 0 while the inner cross-section corresponds to Σm/σT = 2.5. Porosity: f = 0.01.

of the yield surface according to Eq. (29) corresponding to a porosity f = 0.01 with a deviatoric plane corresponding to a 
positive mean stress (Σm/σT = 2, interrupted line) and a compressive mean stress (Σm/σT = −2, solid line), respectively. 
The symmetry of the respective cross-sections with respect to the origin is clearly seen. For example, for loadings corre-
sponding to JΣ

3 ≥ 0 (i.e. −π/6 ≤ θ ≤ 0) to produce the same plastic dissipation, R̃(θ) (or 
√

(2/3)Σe) at yielding must be 
lower for compressive states (Σm < 0 – interrupted line) than for tensile states (Σm > 0 – solid line). The reverse holds true 
for loadings corresponding to JΣ

3 ≤ 0 (0 ≤ θ ≤ π/6).
Note also the clear departure from Gurson’s stress criterion (Eq. (1)). As an example, in Fig. 12(a)–(b) are shown the 

cross-sections of the new yield criterion (Eq. (29)) and that of Gurson’s (Eq. (1)) with the deviatoric planes Σm/σT = 1.5
and Σm/σT = 2, respectively for a void volume fraction f = 1%. Gurson’s criterion (interrupted line) is an upper bound to the 
new criterion, the correction brought to Gurson’s criterion becoming more significant with increasing Σm. This important 
point is further illustrated in Fig. 13, which shows the differences between the two criteria as a function of γ for several 
cross-section Σm/σT = constant. It is also worth noting that the most important difference between Gurson’s [1] criterion 
and the new criterion is always for axisymmetric conditions.

To further illustrate the specific couplings between all stress invariants, in Fig. 14 are shown the intersection of the 
new yield surface with planes θ = constant (i.e. θ = −π/6, θ = 0, θ = π/12 and θ = π/6, respectively) for tensile states 
(Σm ≥ 0). Note that according to the new criterion, the influence of θ , which is a measure of the couplings between JΣ

3 and 
Σe (or JΣ

2 ) is very small for low stress triaxialities, but there is an increasing influence of θ with increasing stress triaxiality 
(see also Figs. 14(a)–14(b)); for stress states corresponding to stress triaxialities T = (Σm/Σe) approaching infinity (i.e. 
purely hydrostatic states), the effect of θ starts to decrease, and the yield curves for the different θ coincide at the purely 
hydrostatic point (Σe = 0) (see Fig. 14(c)). Irrespective of the level of the stress triaxiality T , the softest response is for 
axisymmetric loadings corresponding to θ = −π/6 ( J3Σ > 0) while the hardest response is for θ = π/6 ( J3Σ < 0). Note 
that due to the centro-symmetry of the yield surface, for compressive mean stress the softest response is for axisymmetric 
loadings corresponding to θ = −π/6 ( J3Σ > 0), while the hardest response is for θ = π/6 ( J3Σ < 0) (see Fig. 15).
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Fig. 11. (Color online.) Cross-sections of the 3-D surface for the porous von Mises material according to the new model (Eq. (29)) with the deviatoric planes 
Σm/σT = +2 (interrupted lines) and Σm/σT = −2 (solid lines), respectively. Note the centro-symmetry of the cross-sections due to the invariance of the 
plastic response to the transformation (Σm, Σ ′) → (−Σm, −Σ ′). Porosity: f = 0.01.

Fig. 12. (Color online.) Comparison between the cross-sections of the new 3-D yield surface (solid line; Eq. (29)) and that of Gurson’s [1] yield surface 
(interrupted line; Eq. (1)) with several deviatoric planes: (a) Σm/σT = 1.5; (b) Σm/σT = 2. Note that Gurson’s surface is external to the new surface. Initial 
porosity f = 0.01.

Although the combined effects of Σe and JΣ
3 on yielding of the porous solid are not very strong, even small differences 

in curvature influence the rate of void growth. Indeed, according to the criterion the direction of the normal to the yield 
surface depends on θ , hence the plastic flow direction and the porosity evolution are also sensitive to θ .

4. Summary and conclusions

In this paper the dilatational response of a porous material with a von Mises matrix containing randomly distributed 
voids was investigated using rigorous homogenization methods based on the Hill–Mandel lemma. For the first time, the 
analysis was conducted for general three-dimensional loadings. The strain rate based potential of the porous material was 
estimated. It was revealed that:
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Fig. 13. Corrections brought by the new 3-D model to Gurson’s [1] criterion for several levels of constant mean stress Σm > 0. Irrespective of the level 
of Σm, the maximum deviation is for axisymmetric states corresponding to θ = −π/6. The highest the mean stress, the greatest is the correction to 
Gurson’s [1] model. Porosity: f = 0.01.

1. the strain rate potential (SRP) of the porous Mises material should involve all three invariants of the strain rate tensor D;
2. the SRP is smooth, its cross-sections with the deviatoric planes have three-fold symmetry with respect to the origin, 

and deviate slightly from a circle;
3. the coupling between the invariants of D′ , i.e. between R (= √

2 J2D) and γ (measure of 
√

J2D and J3D) is very specific:
a. for Dm > 0, R(γ ) is a monotonically decreasing function of γ ,
b. for Dm < 0, R(γ ) is a monotonically increasing function of γ ;

4. the strongest effect of the third invariant is for axisymmetric states i.e. between R(γ = π/6) and R(γ = −π/6).

An approximate analytic strain rate potential was developed. This new potential has the following properties:

• it coincides with the exact SRP for axisymmetric states,
• since it is represented by an odd function and relies on the exact analytical values for axisymmetric states, it satisfies 

automatically the centro-symmetry requirement, i.e. it is invariant to the transformation (Dm, R, γ ) → (−Dm, R, −γ ),
• it displays three-fold symmetry with respect to the origin,
• the derivative of R(γ ) according to the new SRP with respect to γ is null for axisymmetric loadings (see Eq. (20)).

The new analytic SRP (Eq. (21)) was compared to the exact conjugate in the strain rate space of the classic Gurson [1]
stress-based potential. Gurson’s SRP involves only dependence of Dm and J2D. Furthermore, shear and mean strain rate 
effects are decoupled. As a consequence, Gurson’s SRP (Eq. (22)) is insensitive to the sign of the mean strain rate. Most 
importantly, irrespective of the level of the mean strain rate, Dm, Gurson’s SRP is more dissipative than the new SRP 
developed in this study (Eq. (20)).

Furthermore, a new 3-D stress-based plastic potential for a porous von Mises material, that preserves all the key proper-
ties of the exact one was proposed (see Eq. (29)). The new yield criterion has the following key features:

(i) it depends on all stress invariants,
(ii) it is centro-symmetric, i.e. invariant to the transformation: (Σm, Σe, JΣ

3 ) → (−Σm, Σe, − JΣ
3 ),

(iii) the most influence of the third invariant of the stress deviator, JΣ
3 , on yielding occurs for axisymmetric states.

The corrections brought by this new criterion with respect to Gurson’s criterion were discussed. It was shown that Gur-
son’s [1] criterion is an upper-bound for the new criterion. Irrespective of the level of Σm, the most significant difference 
between Gurson’s [1] criterion and the new criterion is for axisymmetric conditions. Furthermore, the correction brought by 
the new criterion to Gurson’s [1] becomes more important with increasing mean stress Σm.

The importance of the couplings between the third invariant JΣ
3 and the second invariant Σe (or JΣ

2 ) was also discussed. 
It was revealed that the influence of this coupling, or angle θ , is very small for low stress triaxialities, but there is an 
increasing influence of θ with increasing stress triaxiality. Irrespective of the level of the stress triaxiality T , the softest 
response is for axisymmetric loadings corresponding to θ = −π/6 ( JΣ > 0) while the hardest response is for θ = π/6
3
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Fig. 14. (Color online.) Zoom on the tensile quadrant of the cross-sections of the 3-D surface for the porous von Mises material according to the new 
model (Eq. (29)) with the several planes θ = constant in the range (−π/6, π/6); axisymmetric loadings correspond to θ = −π/6 ( JΣ

3 > 0) and θ = π/6
( JΣ

3 < 0) for the following ranges: (a) low-stress triaxialities (1 < Σm/σT, <2; 0.9 < Σe/σT < 0.98); (b) intermediate triaxialities (2.5 < Σm/σT < 2.8, 
0.6 < Σe/σT < 0.74): (c) high-stress triaxialities (2.8 < Σm/σT, <3.07; 0 < Σe/σT < 0.6). The softest response is for axisymmetric loadings corresponding 
to θ = −π/6 ( JΣ

3 > 0), while the hardest response is for θ = π/6 ( JΣ
3 < 0).
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Fig. 15. (Color online.) Zoom on the compressive quadrant of the cross-sections of the 3-D surface for the porous von Mises material according to the 
new model (Eq. (29)) with several planes θ = constant in the range (−π/6, π/6); axisymmetric loadings correspond to θ = −π/6 ( JΣ

3 > 0) and θ = π/6
( JΣ

3 < 0) for the following ranges: within following ranges: (a) low-stress triaxialities (−2 < Σm/σT < −1; 0.9 < Σe/σT < 0.98); (b) intermediate triaxialities 
(−2.8 < Σm/σT < −2.5, 0.6 < Σe/σT < 0.74): (c) high-stress triaxialities (−3.07 < Σm/σT < −2.8; 0 < Σe/σT < 0.6). The hardest response for axisymmetric 
loadings corresponds to θ = π/6 ( JΣ

3 < 0) while the softest response is for θ = π/6 ( JΣ
3 > 0).
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( J3Σ < 0). Note that due to the centro-symmetry of the yield surface, for compressive mean stress the softest response is 
for axisymmetric loadings corresponding to θ = −π/6 ( J3Σ > 0), while the hardest response is for θ = π/6 ( JΣ

3 < 0) (see 
Figs. 14–15).

Although the effects of the third invariant of stress on yielding seem small, its couplings with the mean stress strongly 
affects void evolution. It is very worth noting that the same conclusions concerning the influence of the third invariant 
on void evolution were drawn by Rice and Tracey [13] for the case of large triaxialities. The results presented in this 
paper provide fundamental understanding of the influence of all invariants on the response of isotropic porous solids. 
With few exceptions, the effect of the plastic anisotropy of the matrix on the dilatational response of porous solids has 
remained largely unexplored. In the case when the matrix is described by Hill’s [16] criterion, analytic plastic potentials 
were deduced by Benzerga and Besson [17] for spherical void geometry; Monchiet et al. [18] for spheroidal void shape. An 
analytical plastic potential that accounts for the anisotropy and tension–compression asymmetry of the plastic flow of the 
matrix on the response of porous solids was derived by Stewart and Cazacu [19]. It is worth noting that in the derivation of 
the above mentioned criteria, the same restrictive hypothesis considered by Gurson (i.e. neglect the mixed terms Dm D ′ in 
the expression of the plastic dissipation) was adopted. The implications of this hypothesis on modeling anisotropic porous 
materials deserves further investigations.
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