110 research outputs found

    Thin, binary liquid droplets, containing polymer: an investigation of the parameters controlling film shape

    Get PDF
    For the fabrication of P-OLED displays, using inkjet printing, it is important to control the final shape resulting from evaporation of droplets containing polymer. Due to peripheral pinning and consequent outward capillary flow, a ring-like final shape is typically observed. This is often undesirable, with a spatially uniform film usually required. Several experimental studies have shown that binary liquid inks can prevent ring formation. There is no consensus of opinion on the mechanism behind this improvement. We have developed a model for the drying of thin, binary liquid droplets, based on thin-film lubrication theory and solve the governing equations to predict the final shape. White light interferometry experiments are conducted to verify the findings. In addition, we present the results of a linear stability analysis that identifies the onset of a surface tension differential driven instability. If the more volatile liquid is more abundant, an instability becomes increasingly likely.This research has been funded by the Engineering & Physical Sciences Research Council, UK and CASE studentship funding from Cambridge Display Technology Ltd., UK. We thank Dr Mark Dowling of Cambridge Display Technology Ltd., for help with the experimental setup.This is the author accepted manuscript. The final version is available from Cambridge University Press via http://dx.doi.org/10.1017/jfm.2016.16

    Fluorescent analysis of photosynthetic microbes and Polycyclic Aromatic Hydrocarbons linked to optical remote sensing

    Get PDF
    Fluorescence analysis, being a non-invasive technique, has become one of the most powerful and widely used techniques for microbiologists and chemists to study various types of sample from photosynthetic microbes to hydrocarbons. The work reported here focuses on experimental results of fluorescent features of photosynthetic microbial species (cyanobacteria) and also five different crude oil samples. The cyanobacteria samples were collected from the Baltic Sea at the end of July 2011 and were associated with cyanobacterial bloom events, and the crude oil samples were from various oil spill events. The aim of the study was to find fluorescent biosignatures of cyanobacteria (initially a species specific to the Baltic Sea) and the fingerprints of crude oil; oil spills can be difficult to differentiate from biogenic films when using Synthetic Aperture Radar (SAR) or sunglint contaminated optical imagery. All samples were measured using a Perkin Elmer LS55 Luminescence spectrometer over a broad range of excitation and emission wavelength from ultraviolet (UV) to near infrared (NIR). The results are presented in Excitation Emission Matrices (EEMs) that exhibit the fluorescent features of each sample. In the EEM of the seawater sample containing cyanobacteria, there is an intense emission peak from tryptophan with fluorescent excitation and emission peaks at 285 and 345 nm respectively. In addition, fluorescent signatures of phycocyanin and chlorophyll-a are present with excitation and emission centre wavelengths at 555 nm, 645 nm and 390 nm, 685 nm, respectively. Additionally, the fluorescence signatures of Polycyclic Aromatic Hydrocarbons (PAHs) are present in the EEMs of crude oil samples with excitation and emission peaks at 285 nm and 425 nm. This study underpins further research on how to distinguish cyanobacteria species by their fluorescence signatures and the potential role that PAHs play in detection of cyanobacteria fluorescence features

    Fluorescence characterization of clinically-important bacteria

    Get PDF
    Healthcare-associated infections (HCAI/HAI) represent a substantial threat to patient health during hospitalization and incur billions of dollars additional cost for subsequent treatment. One promising method for the detection of bacterial contamination in a clinical setting before an HAI outbreak occurs is to exploit native fluorescence of cellular molecules for a hand-held, rapid-sweep surveillance instrument. Previous studies have shown fluorescence-based detection to be sensitive and effective for food-borne and environmental microorganisms, and even to be able to distinguish between cell types, but this powerful technique has not yet been deployed on the macroscale for the primary surveillance of contamination in healthcare facilities to prevent HAI. Here we report experimental data for the specification and design of such a fluorescence-based detection instrument. We have characterized the complete fluorescence response of eleven clinically-relevant bacteria by generating excitation-emission matrices (EEMs) over broad wavelength ranges. Furthermore, a number of surfaces and items of equipment commonly present on a ward, and potentially responsible for pathogen transfer, have been analyzed for potential issues of background fluorescence masking the signal from contaminant bacteria. These include bedside handrails, nurse call button, blood pressure cuff and ward computer keyboard, as well as disinfectant cleaning products and microfiber cloth. All examined bacterial strains exhibited a distinctive double-peak fluorescence feature associated with tryptophan with no other cellular fluorophore detected. Thus, this fluorescence survey found that an emission peak of 340nm, from an excitation source at 280nm, was the cellular fluorescence signal to target for detection of bacterial contamination. The majority of materials analysed offer a spectral window through which bacterial contamination could indeed be detected. A few instances were found of potential problems of background fluorescence masking that of bacteria, but in the case of the microfiber cleaning cloth, imaging techniques could morphologically distinguish between stray strands and bacterial contamination

    Conjugacy of one-dimensional one-sided cellular automata is undecidable

    Full text link
    Two cellular automata are strongly conjugate if there exists a shift-commuting conjugacy between them. We prove that the following two sets of pairs (F,G)(F,G) of one-dimensional one-sided cellular automata over a full shift are recursively inseparable: (i) pairs where FF has strictly larger topological entropy than GG, and (ii) pairs that are strongly conjugate and have zero topological entropy. Because there is no factor map from a lower entropy system to a higher entropy one, and there is no embedding of a higher entropy system into a lower entropy system, we also get as corollaries that the following decision problems are undecidable: Given two one-dimensional one-sided cellular automata FF and GG over a full shift: Are FF and GG conjugate? Is FF a factor of GG? Is FF a subsystem of GG? All of these are undecidable in both strong and weak variants (whether the homomorphism is required to commute with the shift or not, respectively). It also immediately follows that these results hold for one-dimensional two-sided cellular automata.Comment: 12 pages, 2 figures, accepted for SOFSEM 201

    The changing characteristics of patients with chronic hepatitis C prescribed direct acting antiviral medicines in general practice since listing of the medicines on the Australian Pharmaceutical Benefits Scheme

    Full text link
    Background and Aim: The primary objective of this study was to determine whether the characteristics of patients prescribed direct acting antiviral (DAA) medicines have changed since initial listing of the medicines on the Australian Pharmaceutical Benefits Scheme (PBS). Methods: A cross-sectional study was conducted using data from MedicineInsight, an Australian database of general practice electronic health records, from March 2016 to August 2018. We compared sociodemographic, comorbidity, and clinical characteristics of patients aged at least 18 years who were prescribed at least one DAA in the first 4 months of PBS listing in 2016 with those prescribed at least one DAA in 2018. Results: There were 2251 eligible adult patients prescribed a DAA during the study period, 62% were men and 59% were aged 50 years and older. Patients prescribed DAA medicines initially were older (aged ≥50 years: 67.9% vs 49.3%; P 1 (20.4% vs 8.9%; P < 0.001) than those prescribed DAA medicines in 2018. A greater proportion of patients in regional/remote (46.5% vs 35.6%; P < 0.001) and socioeconomically disadvantaged areas (44.4% vs 34.5%; P = 0.003) accessed treatment in 2018 compared with 2016. Conclusions: Despite evidence of decreasing uptake of DAA medicines across Australia, this study indicates broadened uptake among younger age groups and those residing in regional/remote and socioeconomically disadvantaged areas since 2016. While uptake of DAA medicines in some population subgroups appears to have improved, continuous efforts to improve uptake across the Australian population are essential

    Limit laws of entrance times for low complexity Cantor minimal systems

    Full text link
    This paper is devoted to the study of limit laws of entrance times to cylinder sets for Cantor minimal systems of zero entropy using their representation by means of ordered Bratteli diagrams. We study in detail substitution subshifts and we prove these limit laws are piecewise linear functions. The same kind of results is obtained for classical low complexity systems given by non stationary ordered Bratteli diagrams

    Research Trends and Future Perspectives in Marine Biomimicking Robotics

    Get PDF
    Mechatronic and soft robotics are taking inspiration from the animal kingdom to create new high-performance robots. Here, we focused on marine biomimetic research and used innovative bibliographic statistics tools, to highlight established and emerging knowledge domains. A total of 6980 scientific publications retrieved from the Scopus database (1950–2020), evidencing a sharp research increase in 2003–2004. Clustering analysis of countries collaborations showed two major Asian-North America and European clusters. Three significant areas appeared: (i) energy provision, whose advancement mainly relies on microbial fuel cells, (ii) biomaterials for not yet fully operational soft-robotic solutions; and finally (iii), design and control, chiefly oriented to locomotor designs. In this scenario, marine biomimicking robotics still lacks solutions for the long-lasting energy provision, which presently hinders operation autonomy. In the research environment, identifying natural processes by which living organisms obtain energy is thus urgent to sustain energy-demanding tasks while, at the same time, the natural designs must increasingly inform to optimize energy consumption
    • …
    corecore