5 research outputs found

    Toward a regulatory qualification of real-world mobility performance biomarkers in Parkinson’s patients using Digital Mobility Outcomes

    Get PDF
    Wearable inertial sensors can be used to monitor mobility in real-world settings over extended periods. Although these technologies are widely used in human movement research, they have not yet been qualified by drug regulatory agencies for their use in regulatory drug trials. This is because the first generation of these sensors was unreliable when used on slow-walking subjects. However, intense research in this area is now offering a new generation of algorithms to quantify Digital Mobility Outcomes so accurate they may be considered as biomarkers in regulatory drug trials. This perspective paper summarises the work in the Mobilise-D consortium around the regulatory qualification of the use of wearable sensors to quantify real-world mobility performance in patients affected by Parkinson’s Disease. The paper describes the qualification strategy and both the technical and clinical validation plans, which have recently received highly supportive qualification advice from the European Medicines Agency. The scope is to provide detailed guidance for the preparation of similar qualification submissions to broaden the use of real-world mobility assessment in regulatory drug trials

    Mobilise-D insights to estimate real-world walking speed in multiple conditions with a wearable device

    Get PDF
    This study aimed to validate a wearable device’s walking speed estimation pipeline, considering complexity, speed, and walking bout duration. The goal was to provide recommendations on the use of wearable devices for real-world mobility analysis. Participants with Parkinson’s Disease, Multiple Sclerosis, Proximal Femoral Fracture, Chronic Obstructive Pulmonary Disease, Congestive Heart Failure, and healthy older adults (n = 97) were monitored in the laboratory and the real-world (2.5 h), using a lower back wearable device. Two walking speed estimation pipelines were validated across 4408/1298 (2.5 h/laboratory) detected walking bouts, compared to 4620/1365 bouts detected by a multi-sensor reference system. In the laboratory, the mean absolute error (MAE) and mean relative error (MRE) for walking speed estimation ranged from 0.06 to 0.12 m/s and − 2.1 to 14.4%, with ICCs (Intraclass correlation coefficients) between good (0.79) and excellent (0.91). Real-world MAE ranged from 0.09 to 0.13, MARE from 1.3 to 22.7%, with ICCs indicating moderate (0.57) to good (0.88) agreement. Lower errors were observed for cohorts without major gait impairments, less complex tasks, and longer walking bouts. The analytical pipelines demonstrated moderate to good accuracy in estimating walking speed. Accuracy depended on confounding factors, emphasizing the need for robust technical validation before clinical application. Trial registration: ISRCTN – 12246987

    Fluid Phase Equilibria of Ethane + 2-Methylnaphthalene

    No full text
    corecore