29 research outputs found

    Population-based detection of systolic and diastolic dysfunction with amino-terminal pro-B-type natriuretic peptide

    Get PDF
    Background: There is limited information regarding the clinical utility of amino-terminal pro-B-type natriuretic peptide (NT-proBNP) for the detection of left ventricular (LV) dysfunction in the community. We evaluated predictors of circulating NT-proBN

    Newer cardiac troponin I assays have similar performance to troponin T in patients with end-stage renal disease

    Get PDF
    Background: Troponin T is present in the blood of a majority of patients with end-stage renal disease (ESRD) undergoing regular dialysis and presence of troponin T is a predictor of adverse outcome in these patients. With several new formulations of troponin I assays available, this study was performed to see whether these newer assays were able to detect troponin I in these patients more effectively than the older assays. Methods: One hundred and forty-three patients undergoing regular haemodialysis or peritoneal dialysis had plasma collected and troponin T and troponin I measured by a variety of assays. Results: The newer troponin I assays (Abbott Architect, Bayer Centaur and Beckman Accu-TnI) were able to detect troponin I (>75% of samples) as effectively as the Roche assay was able to detect troponin T, while other troponin I assays had a much lower rate of detection of troponin - DPC Immulite 2000 16% and Abbott AxSYM 35%. However, the troponin T assay had more samples detected at concentrations corresponding to an assay CV of 10% (59% of samples) than did the newer troponin I assays (highest on the Bayer Centaur at 37%). Conclusions: Newer assays demonstrate that troponin I is present in a similar number of samples as is troponin T, in the blood of patients with dialysis-dependent renal failure, and these newer troponin I assays identify patients at risk of experiencing a cardiac event

    Electron-Spin Filters Based on the Rashba Effect

    Get PDF
    Semiconductor electron-spin filters of a proposed type would be based on the Rashba effect, which is described briefly below. Electron-spin filters more precisely, sources of spin-polarized electron currents have been sought for research on, and development of, the emerging technological discipline of spintronics (spin-based electronics). There have been a number of successful demonstrations of injection of spin-polarized electrons from diluted magnetic semiconductors and from ferromagnetic metals into nonmagnetic semiconductors. In contrast, a device according to the proposal would be made from nonmagnetic semiconductor materials and would function without an applied magnetic field. The Rashba effect, named after one of its discoverers, is an energy splitting, of what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. The present proposal evolved from recent theoretical studies that suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling. Accordingly, a device according to the proposal would be denoted an asymmetric resonant interband tunneling diode [a-RITD]. An a-RITD could be implemented in a variety of forms, the form favored in the proposal being a double-barrier heterostructure containing an asymmetric quantum well. It is envisioned that a-RITDs would be designed and fabricated in the InAs/GaSb/AlSb material system for several reasons: Heterostructures in this material system are strong candidates for pronounced Rashba spin splitting because InAs and GaSb exhibit large spin-orbit interactions and because both InAs and GaSb would be available for the construction of highly asymmetric quantum wells. This mate-rial system affords a variety of energy-band alignments that can be exploited to obtain resonant tunneling and other desired effects. The no-common-atom InAs/GaSb and InAs/AlSb interfaces would present opportunities for engineering interface potentials for optimizing Rashba spin splitting

    What motivates senior clinicians to teach medical students?

    Get PDF
    BACKGROUND: This study was designed to assess the motivations of senior medical clinicians to teach medical students. This understanding could improve the recruitment and retention of important clinical teachers. METHODS: The study group was 101 senior medical clinicians registered on a teaching list for a medical school teaching hospital (The Canberra Hospital, ACT, Australia). Their motivations to teach medical students were assessed applying Q methodology. RESULTS: Of the 75 participants, 18 (24%) were female and 57 (76%) were male. The age distribution was as follows: 30–40 years = 16 participants (21.3%), 41–55 years = 46 participants (61.3%) and >55 years = 13 participants (17.3%). Most participants (n = 48, 64%) were staff specialists and 27 (36%) were visiting medical officers. Half of the participants were internists (n = 39, 52%), 12 (16%) were surgeons, and 24 (32%) were other sub-specialists. Of the 26 senior clinicians that did not participate, two were women; 15 were visiting medical officers and 11 were staff specialists; 16 were internists, 9 were surgeons and there was one other sub-specialist. The majority of these non-participating clinicians fell in the 41–55 year age group. The participating clinicians were moderately homogenous in their responses. Factor analysis produced 4 factors: one summarising positive motivations for teaching and three capturing impediments for teaching. The main factors influencing motivation to teach medical students were intrinsic issues such as altruism, intellectual satisfaction, personal skills and truth seeking. The reasons for not teaching included no strong involvement in course design, a heavy clinical load or feeling it was a waste of time. CONCLUSION: This study provides some insights into factors that may be utilised in the design of teaching programs that meet teacher motivations and ultimately enhance the effectiveness of the medical teaching workforce

    The impact of signal-to-noise ratio, diffusion-weighted directions and image resolution in cardiac diffusion tensor imaging - insights from the ex-vivo rat heart

    Get PDF
    Background: Cardiac diffusion tensor imaging (DTI) is limited by scan time and signal-to-noise (SNR) restrictions. This invariably leads to a trade-off between the number of averages, diffusion-weighted directions (ND), and image resolution. Systematic evaluation of these parameters is therefore important for adoption of cardiac DTI in clinical routine where time is a key constraint. Methods: High quality reference DTI data were acquired in five ex-vivo rat hearts. We then retrospectively set 2 ≤ SNR ≤ 97, 7 ≤ ND ≤ 61, varied the voxel volume by up to 192-fold and investigated the impact on the accuracy and precision of commonly derived parameters. Results: For maximal scan efficiency, the accuracy and precision of the mean diffusivity is optimised when SNR is maximised at the expense of ND. With typical parameter settings used clinically, we estimate that fractional anisotropy may be overestimated by up to 13% with an uncertainty of ±30%, while the precision of the sheetlet angles may be as poor as ±31°. Although the helix angle has better precision of ±14°, the transmural range of helix angles may be under-estimated by up to 30° in apical and basal slices, due to partial volume and tapering myocardial geometry. Conclusions: These findings inform a baseline of understanding upon which further issues inherent to in-vivo cardiac DTI, such as motion, strain and perfusion, can be considered. Furthermore, the reported bias and reproducibility provides a context in which to assess cardiac DTI biomarkers

    Validation of diffusion tensor MRI measurements of cardiac microstructure with structure tensor synchrotron radiation imaging.

    Get PDF
    Background Diffusion tensor imaging (DTI) is widely used to assess tissue microstructure non-invasively. Cardiac DTI enables inference of cell and sheetlet orientations, which are altered under pathological conditions. However, DTI is affected by many factors, therefore robust validation is critical. Existing histological validation is intrinsically flawed, since it requires further tissue processing leading to sample distortion, is routinely limited in field-of-view and requires reconstruction of three-dimensional volumes from two-dimensional images. In contrast, synchrotron radiation imaging (SRI) data enables imaging of the heart in 3D without further preparation following DTI. The objective of the study was to validate DTI measurements based on structure tensor analysis of SRI data. Methods One isolated, fixed rat heart was imaged ex vivo with DTI and X-ray phase contrast SRI, and reconstructed at 100 μm and 3.6 μm isotropic resolution respectively. Structure tensors were determined from the SRI data and registered to the DTI data. Results Excellent agreement in helix angles (HA) and transverse angles (TA) was observed between the DTI and structure tensor synchrotron radiation imaging (STSRI) data, where HADTI-STSRI = −1.4° ± 23.2° and TADTI-STSRI = −1.4° ± 35.0° (mean ± 1.96 standard deviation across all voxels in the left ventricle). STSRI confirmed that the primary eigenvector of the diffusion tensor corresponds with the cardiomyocyte long-axis across the whole myocardium. Conclusions We have used STSRI as a novel and high-resolution gold standard for the validation of DTI, allowing like-with-like comparison of three-dimensional tissue structures in the same intact heart free of distortion. This represents a critical step forward in independently verifying the structural basis and informing the interpretation of cardiac DTI data, thereby supporting the further development and adoption of DTI in structure-based electro-mechanical modelling and routine clinical applications

    Mapping cardiac microstructure of rabbit heart in different mechanical states by high resolution diffusion tensor imaging: A proof-of-principle study

    Get PDF
    Myocardial microstructure and its macroscopic materialisation are fundamental to the function of the heart. Despite this importance, characterisation of cellular features at the organ level remains challenging, and a unifying description of the structure of the heart is still outstanding. Here, we optimised diffusion tensor imaging data to acquire high quality data in ex vivo rabbit hearts in slack and contractured states, approximating diastolic and systolic conditions. The data were analysed with a suite of methods that focused on different aspects of the myocardium. In the slack heart, we observed a similar transmural gradient in helix angle of the primary eigenvector of up to 23.6°/mm in the left ventricle and 24.2°/mm in the right ventricle. In the contractured heart, the same transmural gradient remained largely linear, but was offset by up to +49.9° in the left ventricle. In the right ventricle, there was an increase in the transmural gradient to 31.2°/mm and an offset of up to +39.0°. The application of tractography based on each eigenvector enabled visualisation of streamlines that depict cardiomyocyte and sheetlet organisation over large distances. We observed multiple V- and N-shaped sheetlet arrangements throughout the myocardium, and insertion of sheetlets at the intersection of the left and right ventricle. This study integrates several complementary techniques to visualise and quantify the heart’s microstructure, projecting parameter representations across different length scales. This represents a step towards a more comprehensive characterisation of myocardial microstructure at the whole organ level

    Acute mountain sickness.

    Get PDF
    Acute mountain sickness (AMS) is a clinical syndrome occurring in otherwise healthy normal individuals who ascend rapidly to high altitude. Symptoms develop over a period ofa few hours or days. The usual symptoms include headache, anorexia, nausea, vomiting, lethargy, unsteadiness of gait, undue dyspnoea on moderate exertion and interrupted sleep. AMS is unrelated to physical fitness, sex or age except that young children over two years of age are unduly susceptible. One of the striking features ofAMS is the wide variation in individual susceptibility which is to some extent consistent. Some subjects never experience symptoms at any altitude while others have repeated attacks on ascending to quite modest altitudes. Rapid ascent to altitudes of 2500 to 3000m will produce symptoms in some subjects while after ascent over 23 days to 5000m most subjects will be affected, some to a marked degree. In general, the more rapid the ascent, the higher the altitude reached and the greater the physical exertion involved, the more severe AMS will be. Ifthe subjects stay at the altitude reached there is a tendency for acclimatization to occur and symptoms to remit over 1-7 days
    corecore