61 research outputs found

    Comparative profiling of the sense and antisense transcriptome of maize lines

    Get PDF
    BACKGROUND: There are thousands of maize lines with distinctive normal as well as mutant phenotypes. To determine the validity of comparisons among mutants in different lines, we first address the question of how similar the transcriptomes are in three standard lines at four developmental stages. RESULTS: Four tissues (leaves, 1 mm anthers, 1.5 mm anthers, pollen) from one hybrid and one inbred maize line were hybridized with the W23 inbred on Agilent oligonucleotide microarrays with 21,000 elements. Tissue-specific gene expression patterns were documented, with leaves having the most tissue-specific transcripts. Haploid pollen expresses about half as many genes as the other samples. High overlap of gene expression was found between leaves and anthers. Anther and pollen transcript expression showed high conservation among the three lines while leaves had more divergence. Antisense transcripts represented about 6 to 14 percent of total transcriptome by tissue type but were similar across lines. Gene Ontology (GO) annotations were assigned and tabulated. Enrichment in GO terms related to cell-cycle functions was found for the identified antisense transcripts. Microarray results were validated via quantitative real-time PCR and by hybridization to a second oligonucleotide microarray platform. CONCLUSION: Despite high polymorphisms and structural differences among maize inbred lines, the transcriptomes of the three lines displayed remarkable similarities, especially in both reproductive samples (anther and pollen). We also identified potential stage markers for maize anther development. A large number of antisense transcripts were detected and implicated in important biological functions given the enrichment of particular GO classes

    Rapid Maize Leaf and Immature Ear Responses to UV-B Radiation

    Get PDF
    Because of their sessile lifestyle, plants have evolved adaptations to environmental factors, including UV-B present in solar radiation. To gain a better understanding of the initial events in UV-B acclimation, we have analyzed a 10 min to 1 h time course of transcriptome responses in irradiated and shielded leaves, and immature maize ears to unravel the systemic physiological and developmental responses in exposed and shielded organs. After 10 min of UV-B exposure, 262 transcripts are changed by at least two-fold in irradiated leaves, and this number doubles after 1 h. Indicative of the rapid modulation of transcription, 130 transcripts are only changed after 10 min. This is true not only in irradiated leaves, but also in shielded tissues. After 10 min of exposure, the overlap in transcriptome changes in irradiated and shielded organs is significant; however, after 30 min of UV-B, there are only two transcripts showing similar UV-B regulation between the three organs; 35 are similarly regulated in both IL and SL. Therefore, at longer irradiation times, there is more specificity of responses, and these are organ-specific. We suggest that early signaling in different tissues may be elicited by common signaling pathways, while at longer exposure times responses become more specific. To identify metabolites as possible signaling molecules, we looked for compounds that increased within 5–90 min in both irradiated and shielded leaves, to explain the kinetics of profound transcript changes within 1 h. We found that myoinositol is one such candidate metabolite; and we also demonstrate that if 0.1 mM myoinositol is applied to leaves of greenhouse maize, some metabolites that are changed by UV-B are also changed similarly by the chemical treatment. Therefore, this metabolite can partially mimic UV irradiation

    Imaging SAR phenomenology of concealed vibrating targets

    Get PDF
    This paper describes the novel imaging of SAR phenomena produced from vibrating targets with multipath effects. It has been established, through numerical SAR experiments, that different physical mechanisms interact to produce new artefacts. The computations demonstrated that the edges of a dielectric medium can act as a source for multipath effects to emanate from, leading to the hypothesis that SAR artefacts can arise from through-wall SAR imagery. This deduction and mechanism of origin were validated through several experimental measurements, undertaken at Cranfield University’s Antennas and Ground-based SAR laboratory, yielding results that closely match those predicted

    Genome-wide mutagenesis of Zea mays L. using RescueMu transposons

    Get PDF
    Derived from the maize Mu1 transposon, RescueMu provides strategies for maize gene discovery and mutant phenotypic analysis. 9.92 Mb of gene-enriched sequences next to RescueMu insertion sites were co-assembled with expressed sequence tags and analyzed. Multiple plasmid recoveries identified probable germinal insertions and screening of RescueMu plasmid libraries identified plants containing probable germinal insertions. Although frequently recovered parental insertions and insertion hotspots reduce the efficiency of gene discovery per plasmid, RescueMu targets a large variety of genes and produces knockout mutants

    Association among plasma levels of monocyte chemoattractant protein-1, traditional cardiovascular risk factors, and subclinical atherosclerosis

    Get PDF
    ObjectivesWe sought to evaluate the association between plasma levels of monocyte chemoattractant protein (MCP)-1 and the risk for subclinical atherosclerosis.BackgroundMonocyte chemoattractant protein is a chemokine that recruits monocytes into the developing atheroma and may contribute to atherosclerotic disease development and progression. Plasma levels of MCP-1 are independently associated with prognosis in patients with acute coronary syndromes, but few population-based data are available from subjects in earlier stages of atherosclerosis.MethodsIn the Dallas Heart Study, a population-based probability sample of adults in Dallas County ≤65 years old, plasma levels of MCP-1 were measured in 3,499 subjects and correlated with traditional cardiovascular risk factors, high-sensitivityC-reactive protein (hs-CRP), and coronary artery calcium (CAC) measured by electron beam computed tomography.ResultsHigher MCP-1 levels were associated with older age, white race, family history of premature coronary disease, smoking, hypertension, diabetes, hypercholesterolemia, and higher levels of hs-CRP (p < 0.01 for each). Similar associations were observed between MCP-1 and risk factors in the subgroup of participants without detectable CAC. Compared with the subjects in the lowest quartile of MCP-1, the odds of prevalent CAC (CAC score ≥10) for subjects in the second, third, and fourth quartiles were 1.30 (95% confidence interval [CI] 0.99 to 1.73), 1.60 (95% CI 1.22 to 2.11), and 2.02 (95% CI 1.54 to 2.63), respectively. The association between MCP-1 and CAC remained significant when adjusted for traditional cardiovascular risk factors, but not when further adjusted for age.ConclusionsIn a large population-based sample, plasma levels of MCP-1 were associated with traditional risk factors for atherosclerosis, supporting the hypothesis that MCP-1 may mediate some of the atherogenic effects of these risk factors. These findings support the potential role of MCP-1 as a biomarker target for drug development

    Production of cellulose nanocrystals via a scalable mechanical method

    Get PDF
    The production of rigid rod-like cellulose nanocrystals (CNC) via more scalable methods is necessitated by an increasing demand for CNC in various industrial sectors over the last few years. Contemporary protocols involve the consumption of large amounts of strong acids, enzymatic treatments, ultra-sonication and combinations thereof. In an attempt to address this scalability challenge, we aimed to isolate CNC via a scalable mechanical method i.e. high energy bead milling (HEBM). An aqueous dispersion of commercially available microcrystalline cellulose (MCC) was micronized through a HEBM process. This process was optimised by varying the concentration (0.5-2 wt%) and time (15-60 min) parameters, in order to obtain a high yield of well-separated CNCs as characterised by transmission electron microscopy (TEM). Micronisation of cellulose via the HEBM method under mild conditions resulted in cellulose nanocrystals with an average aspect ratio in the range of 20 to 26. The nanocrystals also retained both their crystallinity index (I-Cr) (85 to 95%) and thermal stability described in terms of onset degradation temperature (T-onset) (230-263 degrees C). The production yield of CNC from MCC via this process ranged between 57 and 76%. In addition, we found that micronisation of the MCC in the presence of dilute phosphoric acid also resulted in CNC with an average aspect ratio ranging from 21 to 33, high crystallinity (88-90%) and good thermal stability (T-onset 250 degrees C). In this study, we demonstrate the micronisation of commercially available MCC into CNC and describe their dimensions and properties after acid treatment and HEBM. Furthermore, we are able to recommend the use of this scalable milling process to produce rod-like cellulose nanocrystals having a thermal stability suitable to withstand the melt processing temperatures of most common thermoplastics

    Transcriptomic, proteomic and metabolomic analysis of UV-B signaling in maize

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Under normal solar fluence, UV-B damages macromolecules, but it also elicits physiological acclimation and developmental changes in plants. Excess UV-B decreases crop yield. Using a treatment twice solar fluence, we focus on discovering signals produced in UV-B-irradiated maize leaves that translate to systemic changes in shielded leaves and immature ears.</p> <p>Results</p> <p>Using transcriptome and proteomic profiling, we tracked the kinetics of transcript and protein alterations in exposed and shielded organs over 6 h. In parallel, metabolic profiling identified candidate signaling molecules based on rapid increase in irradiated leaves and increased levels in shielded organs; pathways associated with the synthesis, sequestration, or degradation of some of these potential signal molecules were UV-B-responsive. Exposure of just the top leaf substantially alters the transcriptomes of both irradiated and shielded organs, with greater changes as additional leaves are irradiated. Some phenylpropanoid pathway genes are expressed only in irradiated leaves, reflected in accumulation of pathway sunscreen molecules. Most protein changes detected occur quickly: approximately 92% of the proteins in leaves and 73% in immature ears changed after 4 h UV-B were altered by a 1 h UV-B treatment.</p> <p>Conclusions</p> <p>There were significant transcriptome, proteomic, and metabolomic changes under all conditions studied in both shielded and irradiated organs. A dramatic decrease in transcript diversity in irradiated and shielded leaves occurs between 0 h and 1 h, demonstrating the susceptibility of plants to short term UV-B spikes as during ozone depletion. Immature maize ears are highly responsive to canopy leaf exposure to UV-B.</p

    Natriuretic peptides, body mass index and heart failure risk: Pooled analyses of SAVOR-TIMI 53, DECLARE-TIMI 58 and CAMELLIA-TIMI 61.

    Get PDF
    AimN-terminal pro-B-type natriuretic peptide (NT-proBNP) concentrations are lower in patients with obesity. The interaction between body mass index (BMI) and NT-proBNP with respect to heart failure risk remains incompletely defined.Methods and resultsData were pooled across three randomized clinical trials enrolling predominantly patients who were overweight or obese with established cardiometabolic disease: SAVOR-TIMI 53, DECLARE-TIMI 58 and CAMELLIA-TIMI 61. Hospitalization for heart failure (HHF) was examined across strata of baseline BMI and NT-proBNP. The effect of dapagliflozin versus placebo was assessed for a treatment interaction across BMI categories in patients with or without an elevated baseline NT-proBNP (≥125 pg/ml). Among 24 455 patients, the median NT-proBNP was 96 (interquartile range [IQR]: 43-225) pg/ml and the median BMI was 33 (IQR 29-37) kg/m2 , with 68% of patients having a BMI ≥30 kg/m2 . There was a significant inverse association between NT-proBNP and BMI which persisted after adjustment for all clinical variables (p 2 for NT-proBNP ranges of adj ] 7.47, 95% confidence interval [CI] 3.16-17.66, HRadj 3.22 [95% CI 2.13-4.86], and HRadj 1.87 [95% CI 1.35-2.60], respectively). In DECLARE-TIMI 58, dapagliflozin versus placebo consistently reduced HHF across BMI categories in those with an elevated NT-proBNP (p-trend for HR across BMI = 0.60), with a pattern of greater absolute risk reduction (ARR) at higher BMI (ARR for BMI 2 : 2.2% to 4.7%; p-trend = 0.059).ConclusionsThe risk of HHF varies across BMI categories for any given range of circulating NT-proBNP. These findings showcase the importance of considering BMI when applying NT-proBNP for heart failure risk stratification, particularly for patients with low-level elevations in NT-proBNP (125-<450 pg/ml) where there appears to be a clinically meaningful absolute and relative risk gradient

    In silico prediction of cancer immunogens:current state of the art

    Get PDF
    Cancer kills 8 million annually worldwide. Although survival rates in prevalent cancers continue to increase, many cancers have no effective treatment, prompting the search for new and improved protocols. Immunotherapy is a new and exciting addition to the anti-cancer arsenal. The successful and accurate identification of aberrant host proteins acting as antigens for vaccination and immunotherapy is a key aspiration for both experimental and computational research. Here we describe key elements of in silico prediction, including databases of cancer antigens and bleeding-edge methodology for their prediction. We also highlight the role dendritic cell vaccines can play and how they can act as delivery mechanisms for epitope ensemble vaccines. Immunoinformatics can help streamline the discovery and utility of Cancer Immunogens

    Sequencing, Mapping, and Analysis of 27,455 Maize Full-Length cDNAs

    Get PDF
    Full-length cDNA (FLcDNA) sequencing establishes the precise primary structure of individual gene transcripts. From two libraries representing 27 B73 tissues and abiotic stress treatments, 27,455 high-quality FLcDNAs were sequenced. The average transcript length was 1.44 kb including 218 bases and 321 bases of 5′ and 3′ UTR, respectively, with 8.6% of the FLcDNAs encoding predicted proteins of fewer than 100 amino acids. Approximately 94% of the FLcDNAs were stringently mapped to the maize genome. Although nearly two-thirds of this genome is composed of transposable elements (TEs), only 5.6% of the FLcDNAs contained TE sequences in coding or UTR regions. Approximately 7.2% of the FLcDNAs are putative transcription factors, suggesting that rare transcripts are well-enriched in our FLcDNA set. Protein similarity searching identified 1,737 maize transcripts not present in rice, sorghum, Arabidopsis, or poplar annotated genes. A strict FLcDNA assembly generated 24,467 non-redundant sequences, of which 88% have non-maize protein matches. The FLcDNAs were also assembled with 41,759 FLcDNAs in GenBank from other projects, where semi-strict parameters were used to identify 13,368 potentially unique non-redundant sequences from this project. The libraries, ESTs, and FLcDNA sequences produced from this project are publicly available. The annotated EST and FLcDNA assemblies are available through the maize FLcDNA web resource (www.maizecdna.org)
    corecore