89 research outputs found

    Assembly of Protein Building Blocks Using a Short Synthetic Peptide

    Get PDF
    Combining proteins or their defined domains offers new enhanced functions. Conventionally, two proteins are either fused into a single polypeptide chain by recombinant means or chemically cross-linked. However, these strategies can have drawbacks such as poor expression (recombinant fusions) or aggregation and inactivation (chemical cross-linking), especially in the case of large multifunctional proteins. We developed a new linking method which allows site-oriented, noncovalent, yet irreversible stapling of modified proteins at neutral pH and ambient temperature. This method is based on two distinct polypeptide linkers which self-assemble in the presence of a specific peptide staple allowing on-demand and irreversible combination of protein domains. Here we show that linkers can either be expressed or be chemically conjugated to proteins of interest, depending on the source of the proteins. We also show that the peptide staple can be shortened to 24 amino acids still permitting an irreversible combination of functional proteins. The versatility of this modular technique is demonstrated by stapling a variety of proteins either in solution or to surfaces

    Multiple sclerosis drug FTY-720 toxicity is mediated by the heterotypic fusion of organelles in neuroendocrine cells

    Get PDF
    FTY-720 (Fingolimod) was one of the first compounds authorized for the treatment of multiple sclerosis. Among its other activities, this sphingosine analogue enhances exocytosis in neuroendocrine chromaffin cells, altering the quantal release of catecholamines. Surprisingly, the size of chromaffin granules is reduced within few minutes of treatment, a process that is paralleled by the homotypic fusion of granules and their heterotypic fusion with mitochondria, as witnessed by dynamic confocal and TIRF microscopy. Electron microscopy studies support these observations, revealing the fusion of several vesicles with individual mitochondria to form large, round mixed organelles. This cross-fusion is SNARE-dependent, being partially prevented by the expression of an inactive form of SNAP-25. Fused mitochondria exhibit an altered redox potential, which dramatically enhances cell death. Therefore, the cross-fusion of intracellular organelles appears to be a new mechanism to be borne in mind when considering the effect of FTY-720 on the survival of neuroendocrine cells

    Lipid Metabolites Enhance Secretion Acting on SNARE Microdomains and Altering the Extent and Kinetics of Single Release Events in Bovine Adrenal Chromaffin Cells

    Get PDF
    Lipid molecules such as arachidonic acid (AA) and sphingolipid metabolites have been implicated in modulation of neuronal and endocrine secretion. Here we compare the effects of these lipids on secretion from cultured bovine chromaffin cells. First, we demonstrate that exogenous sphingosine and AA interact with the secretory apparatus as confirmed by FRET experiments. Examination of plasma membrane SNARE microdomains and chromaffin granule dynamics using total internal reflection fluorescent microscopy (TIRFM) suggests that sphingosine production promotes granule tethering while arachidonic acid promotes full docking. Our analysis of single granule release kinetics by amperometry demonstrated that both sphingomyelinase and AA treatments enhanced drastically the amount of catecholamines released per individual event by either altering the onset phase of or by prolonging the off phase of single granule catecholamine release kinetics. Together these results demonstrate that the kinetics and extent of the exocytotic fusion pore formation can be modulated by specific signalling lipids through related functional mechanisms

    Health plan administrative records versus birth certificate records: quality of race and ethnicity information in children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To understand racial and ethnic disparities in health care utilization and their potential underlying causes, valid information on race and ethnicity is necessary. However, the validity of pediatric race and ethnicity information in administrative records from large integrated health care systems using electronic medical records is largely unknown.</p> <p>Methods</p> <p>Information on race and ethnicity of 325,810 children born between 1998-2008 was extracted from health plan administrative records and compared to birth certificate records. Positive predictive values (PPV) were calculated for correct classification of race and ethnicity in administrative records compared to birth certificate records.</p> <p>Results</p> <p>Misclassification of ethnicity and race in administrative records occurred in 23.1% and 33.6% children, respectively; the majority due to missing ethnicity (48.3%) and race (40.9%) information. Misclassification was most common in children of minority groups. PPV for White, Black, Asian/Pacific Islander, American Indian/Alaskan Native, multiple and other was 89.3%, 86.6%, 73.8%, 18.2%, 51.8% and 1.2%, respectively. PPV for Hispanic ethnicity was 95.6%. Racial and ethnic information improved with increasing number of medical visits. Subgroup analyses comparing racial classification between non-Hispanics and Hispanics showed White, Black and Asian race was more accurate among non-Hispanics than Hispanics.</p> <p>Conclusions</p> <p>In children, race and ethnicity information from administrative records has significant limitations in accurately identifying small minority groups. These results suggest that the quality of racial information obtained from administrative records may benefit from additional supplementation by birth certificate data.</p

    Sphingomimetic multiple sclerosis drug FTY720 activates vesicular synaptobrevin and augments neuroendocrine secretion

    Get PDF
    Neurotransmission and secretion of hormones involve a sequence of protein/lipid interactions with lipid turnover impacting on vesicle trafficking and ultimately fusion of secretory vesicles with the plasma membrane. We previously demonstrated that sphingosine, a sphingolipid metabolite, promotes formation of the SNARE complex required for membrane fusion and also increases the rate of exocytosis in isolated nerve terminals, neuromuscular junctions, neuroendocrine cells and in hippocampal neurons. Recently a fungi-derived sphingosine homologue, FTY720, has been approved for treatment of multiple sclerosis. In its non-phosphorylated form FTY720 accumulates in the central nervous system, reaching high levels which could affect neuronal function. Considering close structural similarity of sphingosine and FTY720 we investigated whether FTY720 has an effect on regulated exocytosis. Our data demonstrate that FTY720 can activate vesicular synaptobrevin for SNARE complex formation and enhance exocytosis in neuroendocrine cells and neurons

    Replacement of Retinyl Esters by Polyunsaturated Triacylglycerol Species in Lipid Droplets of Hepatic Stellate Cells during Activation

    Get PDF
    Activation of hepatic stellate cells has been recognized as one of the first steps in liver injury and repair. During activation, hepatic stellate cells transform into myofibroblasts with concomitant loss of their lipid droplets (LDs) and production of excessive extracellular matrix. Here we aimed to obtain more insight in the dynamics and mechanism of LD loss. We have investigated the LD degradation processes in rat hepatic stellate cells in vitro with a combined approach of confocal Raman microspectroscopy and mass spectrometric analysis of lipids (lipidomics). Upon activation of the hepatic stellate cells, LDs reduce in size, but increase in number during the first 7 days, but the total volume of neutral lipids did not decrease. The LDs also migrate to cellular extensions in the first 7 days, before they disappear. In individual hepatic stellate cells. all LDs have a similar Raman spectrum, suggesting a similar lipid profile. However, Raman studies also showed that the retinyl esters are degraded more rapidly than the triacylglycerols upon activation. Lipidomic analyses confirmed that after 7 days in culture hepatic stellate cells have lost most of their retinyl esters, but not their triacylglycerols and cholesterol esters. Furthermore, we specifically observed a large increase in triacylglycerol-species containing polyunsaturated fatty acids, partly caused by an enhanced incorporation of exogenous arachidonic acid. These results reveal that lipid droplet degradation in activated hepatic stellate cells is a highly dynamic and regulated process. The rapid replacement of retinyl esters by polyunsaturated fatty acids in LDs suggests a role for both lipids or their derivatives like eicosanoids during hepatic stellate cell activation

    Mitochondrial Alterations in PINK1 Deficient Cells Are Influenced by Calcineurin-Dependent Dephosphorylation of Dynamin-Related Protein 1

    Get PDF
    PTEN-induced novel kinase 1 (PINK1) mutations are associated with autosomal recessive parkinsonism. Previous studies have shown that PINK1 influences both mitochondrial function and morphology although it is not clearly established which of these are primary events and which are secondary. Here, we describe a novel mechanism linking mitochondrial dysfunction and alterations in mitochondrial morphology related to PINK1. Cell lines were generated by stably transducing human dopaminergic M17 cells with lentiviral constructs that increased or knocked down PINK1. As in previous studies, PINK1 deficient cells have lower mitochondrial membrane potential and are more sensitive to the toxic effects of mitochondrial complex I inhibitors. We also show that wild-type PINK1, but not recessive mutant or kinase dead versions, protects against rotenone-induced mitochondrial fragmentation whereas PINK1 deficient cells show lower mitochondrial connectivity. Expression of dynamin-related protein 1 (Drp1) exaggerates PINK1 deficiency phenotypes and Drp1 RNAi rescues them. We also show that Drp1 is dephosphorylated in PINK1 deficient cells due to activation of the calcium-dependent phosphatase calcineurin. Accordingly, the calcineurin inhibitor FK506 blocks both Drp1 dephosphorylation and loss of mitochondrial integrity in PINK1 deficient cells but does not fully rescue mitochondrial membrane potential. We propose that alterations in mitochondrial connectivity in this system are secondary to functional effects on mitochondrial membrane potential

    Profiling Trait Anxiety: Transcriptome Analysis Reveals Cathepsin B (Ctsb) as a Novel Candidate Gene for Emotionality in Mice

    Get PDF
    Behavioral endophenotypes are determined by a multitude of counteracting but precisely balanced molecular and physiological mechanisms. In this study, we aim to identify potential novel molecular targets that contribute to the multigenic trait “anxiety”. We used microarrays to investigate the gene expression profiles of different brain regions within the limbic system of mice which were selectively bred for either high (HAB) or low (LAB) anxiety-related behavior, and also show signs of comorbid depression-like behavior

    PINK1 Is Necessary for Long Term Survival and Mitochondrial Function in Human Dopaminergic Neurons

    Get PDF
    Parkinson's disease (PD) is a common age-related neurodegenerative disease and it is critical to develop models which recapitulate the pathogenic process including the effect of the ageing process. Although the pathogenesis of sporadic PD is unknown, the identification of the mendelian genetic factor PINK1 has provided new mechanistic insights. In order to investigate the role of PINK1 in Parkinson's disease, we studied PINK1 loss of function in human and primary mouse neurons. Using RNAi, we created stable PINK1 knockdown in human dopaminergic neurons differentiated from foetal ventral mesencephalon stem cells, as well as in an immortalised human neuroblastoma cell line. We sought to validate our findings in primary neurons derived from a transgenic PINK1 knockout mouse. For the first time we demonstrate an age dependent neurodegenerative phenotype in human and mouse neurons. PINK1 deficiency leads to reduced long-term viability in human neurons, which die via the mitochondrial apoptosis pathway. Human neurons lacking PINK1 demonstrate features of marked oxidative stress with widespread mitochondrial dysfunction and abnormal mitochondrial morphology. We report that PINK1 plays a neuroprotective role in the mitochondria of mammalian neurons, especially against stress such as staurosporine. In addition we provide evidence that cellular compensatory mechanisms such as mitochondrial biogenesis and upregulation of lysosomal degradation pathways occur in PINK1 deficiency. The phenotypic effects of PINK1 loss-of-function described here in mammalian neurons provides mechanistic insight into the age-related degeneration of nigral dopaminergic neurons seen in PD
    corecore