171 research outputs found

    The Presumption of Irreparable Harm in Patent Infringement Litigation: A Critique of Robert Bosch LLC v. Pylon Manufacturing Corp.

    Get PDF
    The Presumption of Irreparable Harm in Patent Infringement Litigation: A Critique of Robert Bosch LLC v. Pylon Manufacturing Corp

    Library Cultures of Data Curation: Adventures in Astronomy

    Get PDF
    University libraries are partnering with disciplinary data producers to provide long-term digital curation of research datasets. Managing dataset producer expectations and guiding future development of library services requires understanding the decisions libraries make about curatorial activities, why they make these decisions, and the effects on future data reuse. We present a study, comprising interviews (n=43) and ethnographic observation, of two university libraries who partnered with the Sloan Digital Sky Survey (SDSS) collaboration to curate a significant astronomy dataset. The two libraries made different choices of the materials to curate and associated services, which resulted in different reuse possibilities. Each of the libraries offered partial solutions to the SDSS leaders’ objectives. The libraries’ approaches to curation diverged due to contextual factors, notably the extant infrastructure at their disposal (including technical infrastructure, staff expertise, values and internal culture, and organizational structure). The Data Transfer Process case offers lessons in understanding how libraries choose curation paths and how these choices influence possibilities for data reuse. Outcomes may not match data producers’ initial expectations but may create opportunities for reusing data in unexpected and beneficial ways

    The distribution of soil micro-nutrients and the effects on herbage micro-nutrient uptake and yield in three different pasture systems

    Get PDF
    Pasture micro-nutrient concentrations are often deficient for herbage productivity and the health of livestock. The aim of this study was to investigate soil and herbage micro-nutrient content and the effects on yield on the three pasture systems of the North Wyke Farm Platform (NWFP): high-sugar grass + legume mix minus nitrogen (N) fertilizer (blue/HSG + L); permanent pasture plus N fertilizer (green/P + N); high-sugar grass plus N fertilizer (red/HSG + N). The locations with high soil total micro-nutrient concentrations had a greater slope and higher soil organic matter (SOM) content. Herbage micro-nutrient concentrations were often greater at the locations with high soil total micro-nutrient concentrations. The concentration and uptake of nearly all mi-cro-nutrients was greatest in the herbage of the green/P + N system, which had the highest SOM content, whereas they were often lowest in the red/HSG + N system, which had the lowest SOM and the highest yield, indicating biomass dilution of micro-nutrients in the herbage. At the loca-tions with high soil micro-nutrient concentrations, yield was higher than at locations with low micro-nutrient concentrations, and was equal across the three pasture systems, regardless of fertilizer N treatment. Variation in micro-nutrient uptake/yield in the blue grass–legume system was predominantly explained by the soil molybdenum (Mo) concentration, possibly relating to the requirement for Mo in biological nitrogen fixation. There was, therefore, a trade-off in ploughing and re-seeding for higher yield, with the maintenance of SOM being important for herbage micro-nutrient content

    Resilience theory incorporated into urban wastewater systems management. State of the art

    Get PDF
    This is the final version of the article. Available from Elsevier via the DOI in this record.Government bodies, utilities, practitioners, and researchers have growing interest in the incorporation of resilience into wastewater management. Since resilience is a multidisciplinary term, it is important to review what has been achieved in the wastewater sector, and describe the future research directions for the forthcoming years. This work presents a critical review of studies that deal with resilience in the wastewater treatment sector, with a special focus on understanding how they addressed the key elements for assessing resilience, such as stressors, system properties, metrics and interventions to increase resilience. The results showed that only 17 peer-reviewed papers and 6 relevant reports, a small subset of the work in wastewater research, directly addressed resilience. The lack of consensus in the definition of resilience, and the elements of a resilience assessment, is hindering the implementation of resilience in wastewater management. To date, no framework for resilience assessment is complete, comprehensive or directly applicable to practitioners; current examples are lacking key elements (e.g. a comprehensive study of stressors, properties and metrics, examples of cases study, ability to benchmark interventions or connectivity with broader frameworks). Furthermore, resilience is seen as an additional cost or extra effort, instead of a means to overcome project uncertainty that could unlock new opportunities for investment.The authors thank the consultancy team in Water Research, Strategic Advisory Services Research in Atkins UK, and Corinne Trommsdorff from IWA, for their constructive comments and support. Their contribution is highly appreciated. This work has been supported by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 642904 - TreatRec ITN-EID project, and by the Ministry of Economy and competitiveness for the Ramon and Cajal grant from Lluís Corominas (RYC-2013-14595) and for the REaCH project (CTM2015-66892-R, MINECO/FEDER, EU). LEQUIA and ICRA were recognized as consolidated research groups by the Catalan Government with codes 2014-SGR-1168 and 2014-SGR-291, respectively. The second and fifth authors acknowledge support from the UK Engineering & Physical Sciences Research Council grant EP/K006924/1

    Flourish 2: Final Report

    Get PDF

    Hydrological controls on DOC: nitrate resource stoichiometry in a lowland, agricultural catchment, southern UK

    Get PDF
    The role that hydrology plays in governing the interactions between dissolved organic carbon (DOC) and nitrogen in rivers draining lowland, agricultural landscapes is currently poorly understood. In light of the potential changes to the production and delivery of DOC and nitrate to rivers arising from climate change and land use management, there is a pressing need to improve our understanding of hydrological controls on DOC and nitrate dynamics in such catchments. We measured DOC and nitrate concentrations in river water of six reaches of the lowland river Hampshire Avon (Wiltshire, southern UK) in order to quantify the relationship between BFI (BFI) and DOC : nitrate molar ratios across contrasting geologies (Chalk, Greensand, and clay). We found a significant positive relationship between nitrate and BFI (<i>p</i> &lt; 0. 0001), and a significant negative relationship between DOC and BFI (<i>p</i> &lt; 0. 0001), resulting in a non-linear negative correlation between DOC : nitrate molar ratio and BFI. In the Hampshire Avon, headwater reaches which are underlain by clay and characterized by a more flashy hydrological regime are associated with DOC : nitrate ratios  &gt;  5 throughout the year, whilst groundwater-dominated reaches underlain by Chalk, with a high BFI have DOC : nitrate ratios in surface waters that are an order of magnitude lower (&lt;  0.5). Our analysis also reveals significant seasonal variations in DOC : nitrate transport and highlights critical periods of nitrate export (e.g. winter in sub-catchments underlain by Chalk and Greensand, and autumn in drained, clay sub-catchments) when DOC : nitrate molar ratios are low, suggesting low potential for in-stream uptake of inorganic forms of nitrogen. Consequently, our study emphasizes the tight relationship between DOC and nitrate availability in agricultural catchments, and further reveals that this relationship is controlled to a great extent by the hydrological setting

    The Mineral Composition of Wild Type and Cultivated Varieties of Pasture Species

    Get PDF
    Mineral deficiencies in livestock are often prevented by using prophylactic supplementation, which is imprecise and inefficient. Instead, the trend for increased species diversity in swards is an opportunity to improve mineral concentrations in the basal diet. Currently there are limited data on the mineral concentrations of different species and botanical groups, particularly for I and Se, which are among the most deficient minerals in livestock diets. We grew 21 pasture species, including some cultivar/wild type comparisons, of grasses, legumes and forbs, as single species stands in a pot study in a standard growth medium. Herbage concentrations of Co, Cu, I, Mn, Se, Zn, S, Mo and Fe showed no consistent differences between the wild and cultivated types. There were significant differences between botanical groups for many minerals tested. Forbs were highest in I and Se, grasses in Mn, and legumes in Cu, Co, Zn and Fe. Comparing species concentrations to recommended livestock intakes, the forbs Achillea millefolium, Cichorium intybus and Plantago lanceolate, and the legumes Medicago lupulina, Trifolium hybridum, and Lotus corniculatus, appear good sources of Co, Cu, I, Se and Zn. Further work is required to ensure these results are consistent in multispecies mixtures, in different soil types, and in field trials

    Response of soil health indicators to dung, urine and mineral fertilizer application in temperate pastures

    Get PDF
    Healthy soils are key to sustainability and food security. In temperate grasslands, not many studies have focused on soil health comparisons between contrasting pasture systems under different management strategies and treatment applications (e.g. manures and inorganic fertilisers). The aim of this study was to assess the responses of soil health indicators to dung, urine and inorganic N fertiliser in three temperate swards: permanent pasture not ploughed for at least 20 years (PP), high sugar ryegrass with white clover targeted at 30% coverage reseeded in 2013 (WC), and high sugar ryegrass reseeded in 2014 (HG). This study was conducted on the North Wyke Farm Platform (UK) from April 2017 to October 2017. Soil health indicators including soil organic carbon (SOC, measured by loss of ignition and elemental analyser), dissolved organic carbon (DOC), total nitrogen (TN), C:N ratio, soil C and N bulk isotopes, pH, bulk density (BD), aggregate stability, ergosterol concentration (as a proxy for fungi biomass), and earthworms (abundance, mass and density) were measured and analysed before and after application of dung and N fertilizer, urine and N fertiliser, and only N fertiliser. The highest SOC, TN, DOC, ergosterol concentration and earthworms as well as the lowest BD were found in PP, likely due to the lack of ploughing. Differences among treatments were observed due to the application of dung, resulting in an improvement in chemical indicators of soil health after 50 days of its application. Ergosterol concentration was significantly higher before treatment applications than at the end of the experiment. No changes were detected in BD and aggregate stability after treatment applications. We conclude that not enough time had passed for the soil to recover after the ploughing and reseeding of the permanent pasture, independently of the sward composition (HG or WC). Our results highlight the strong influence of the soil management legacy in temperate pasture and the positive effects of dung application on soil health over the short term. In addition, we point out the relevance of using standardised methods to report soil health indicators and some methodological limitations

    Elucidating three-way interactions between soil, pasture and animals that regulate nitrous oxide emissions from temperate grazing systems

    Get PDF
    Pasture-based livestock farming contributes considerably to global emissions of nitrous oxide (N2O), a powerful greenhouse gas approximately 265 times more potent than carbon dioxide. Traditionally, the estimation of N2O emissions from grasslands is carried out by means of plot-scale experiments, where externally sourced animal excreta are applied to soils to simulate grazing conditions. This approach, however, fails to account for the impact of different sward types on the composition of excreta and thus the functionality of soil microbiomes, creating unrealistic situations that are seldom observed under commercial agriculture. Using three farming systems employing contrasting pasture management strategies at the North Wyke Farm Platform, an instrumented ruminant grazing trial in Devon, UK, this study measured N2O emissions from soils treated with cattle urine and dung collected within each system as well as standard synthetic urine shared across all systems, and compared them against two forms of controls with and without inorganic nitrogen fertiliser applications. Soil microbial activity was regularly monitored through gene abundance to evaluate interactions between sward types, soil amendments, soil microbiomes and, ultimately, N2O production. Across all systems, N2O emissions attributable to cattle urine and standard synthetic urine were found to be inconsistent with one another due to discrepancy in nitrogen content. Despite previous findings that grasses with elevated levels of water-soluble carbohydrates tend to generate lower levels of N2O, the soil under high sugar grass monoculture in this study recorded higher emissions when receiving excreta from cattle fed the same grass. Combined together, our results demonstrate the importance of evaluating environmental impacts of agriculture at a system scale, so that the feedback mechanisms linking soil, pasture, animals and microbiomes are appropriately considered

    A novel virulence strategy for Pseudomonas aeruginosa mediated by an autotransporter with arginine-specific aminopeptidase activity

    Get PDF
    The opportunistic human pathogen, Pseudomonas aeruginosa, is a major cause of infections in chronic wounds, burns and the lungs of cystic fibrosis patients. The P. aeruginosa genome encodes at least three proteins exhibiting the characteristic three domain structure of autotransporters, but much remains to be understood about the functions of these three proteins and their role in pathogenicity. Autotransporters are the largest family of secreted proteins in Gram-negative bacteria, and those characterised are virulence factors. Here, we demonstrate that the PA0328 autotransporter is a cell-surface tethered, arginine-specific aminopeptidase, and have defined its active site by site directed mutagenesis. Hence, we have assigned PA0328 with the name AaaA, for arginine-specific autotransporter of P. aeruginosa. We show that AaaA provides a fitness advantage in environments where the sole source of nitrogen is peptides with an aminoterminal arginine, and that this could be important for establishing an infection, as the lack of AaaA led to attenuation in a mouse chronic wound infection which correlated with lower levels of the cytokines TNFα, IL-1α, KC and COX-2. Consequently AaaA is an important virulence factor playing a significant role in the successful establishment of P. aeruginosa infections
    • …
    corecore