6 research outputs found

    Screensaver: an open source lab information management system (LIMS) for high throughput screening facilities

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Shared-usage high throughput screening (HTS) facilities are becoming more common in academe as large-scale small molecule and genome-scale RNAi screening strategies are adopted for basic research purposes. These shared facilities require a unique informatics infrastructure that must not only provide access to and analysis of screening data, but must also manage the administrative and technical challenges associated with conducting numerous, interleaved screening efforts run by multiple independent research groups.</p> <p>Results</p> <p>We have developed Screensaver, a free, open source, web-based lab information management system (LIMS), to address the informatics needs of our small molecule and RNAi screening facility. Screensaver supports the storage and comparison of screening data sets, as well as the management of information about screens, screeners, libraries, and laboratory work requests. To our knowledge, Screensaver is one of the first applications to support the storage and analysis of data from both genome-scale RNAi screening projects and small molecule screening projects.</p> <p>Conclusions</p> <p>The informatics and administrative needs of an HTS facility may be best managed by a single, integrated, web-accessible application such as Screensaver. Screensaver has proven useful in meeting the requirements of the ICCB-Longwood/NSRB Screening Facility at Harvard Medical School, and has provided similar benefits to other HTS facilities.</p

    Naturally Acquired Antibodies Specific for Plasmodium falciparum Reticulocyte-Binding Protein Homologue 5 Inhibit Parasite Growth and Predict Protection From Malaria

    No full text
    Background. Plasmodium falciparum reticulocyte-binding protein homologue 5 (PfRH5) is a blood-stage parasite protein essential for host erythrocyte invasion. PfRH5-specific antibodies raised in animals inhibit parasite growth in vitro, but the relevance of naturally acquired PfRH5-specific antibodies in humans is unclear. Methods. We assessed pre–malaria season PfRH5-specific immunoglobulin G (IgG) levels in 357 Malian children and adults who were uninfected with Plasmodium. Subsequent P. falciparum infections were detected by polymerase chain reaction every 2 weeks and malaria episodes by weekly physical examination and self-referral for 7 months. The primary outcome was time between the first P. falciparum infection and the first febrile malaria episode. PfRH5-specific IgG was assayed for parasite growth-inhibitory activity. Results. The presence of PfRH5-specific IgG at enrollment was associated with a longer time between the first blood-stage infection and the first malaria episode (PfRH5-seropositive median: 71 days, PfRH5-seronegative median: 18 days; P = .001). This association remained significant after adjustment for age and other factors associated with malaria risk/exposure (hazard ratio, .62; P = .02). Concentrated PfRH5-specific IgG purified from Malians inhibited P. falciparum growth in vitro. Conclusions. Naturally acquired PfRH5-specific IgG inhibits parasite growth in vitro and predicts protection from malaria. These findings strongly support efforts to develop PfRH5 as an urgently needed blood-stage malaria vaccine. Clinical Trials Registration NCT01322581
    corecore