13 research outputs found

    SCN3A ‐related neurodevelopmental disorder: A spectrum of epilepsy and brain malformation

    Get PDF
    Objective Pathogenic variants in SCN3A , encoding the voltage‐gated sodium channel subunit Nav1.3, cause severe childhood‐onset epilepsy and malformation of cortical development. Here, we define the spectrum of clinical, genetic, and neuroimaging features of SCN3A ‐related neurodevelopmental disorder. Methods Patients were ascertained via an international collaborative network. We compared sodium channels containing wild‐type vs. variant Nav1.3 subunits co‐expressed with β1 and β2 subunits using whole‐cell voltage clamp electrophysiological recordings in a heterologous mammalian system (HEK‐293 T cells). Results Of 22 patients with pathogenic SCN3A variants, most had treatment‐resistant epilepsy beginning in the first year of life (16/21, 76%; median onset, 2 weeks), with severe or profound developmental delay (15/20; 75%). Many, but not all (15/19; 79%), exhibited malformations of cortical development. Pathogenic variants clustered in transmembrane segments 4–6 of domains II‐IV. Most pathogenic missense variants tested (10/11; 91%) displayed gain of channel function, with increased persistent current and/or a leftward shift in the voltage dependence of activation, and all variants associated with malformation of cortical development exhibited gain of channel function. One variant (p.Ile1468Arg) exhibited mixed effects, with gain and partial loss of function. Two variants demonstrated loss of channel function. Interpretation Our study defines SCN3A‐ related neurodevelopmental disorder along a spectrum of severity, but typically including epilepsy and severe or profound developmental delay/intellectual disability. Malformations of cortical development are a characteristic feature of this unusual channelopathy syndrome, present in over 75% of affected individuals. Gain of function at the channel level in developing neurons is likely an important mechanism of disease pathogenesis

    Acute Infantile Liver Failure Due to Mutations in the TRMU Gene

    No full text
    Acute liver failure in infancy accompanied by lactic acidemia was previously shown to result from mtDNA depletion. We report on 13 unrelated infants who presented with acute liver failure and lactic acidemia with normal mtDNA content. Four died during the acute episodes, and the survivors never had a recurrence. The longest follow-up period was 14 years. Using homozygosity mapping, we identified mutations in the TRMU gene, which encodes a mitochondria-specific tRNA-modifying enzyme, tRNA 5-methylaminomethyl-2-thiouridylate methyltransferase. Accordingly, the 2-thiouridylation levels of the mitochondrial tRNAs were markedly reduced. Given that sulfur is a TRMU substrate and its availability is limited during the neonatal period, we propose that there is a window of time whereby patients with TRMU mutations are at increased risk of developing liver failure

    De novo variants in ATP2B1 lead to neurodevelopmental delay

    Get PDF
    : Calcium (Ca2+) is a universal second messenger involved in synaptogenesis and cell survival; consequently, its regulation is important for neurons. ATPase plasma membrane Ca2+ transporting 1 (ATP2B1) belongs to the family of ATP-driven calmodulin-dependent Ca2+ pumps that participate in the regulation of intracellular free Ca2+. Here, we clinically describe a cohort of 12 unrelated individuals with variants in ATP2B1 and an overlapping phenotype of mild to moderate global development delay. Additional common symptoms include autism, seizures, and distal limb abnormalities. Nine probands harbor missense variants, seven of which were in specific functional domains, and three individuals have nonsense variants. 3D structural protein modeling suggested that the variants have a destabilizing effect on the protein. We performed Ca2+ imaging after introducing all nine missense variants in transfected HEK293 cells and showed that all variants lead to a significant decrease in Ca2+ export capacity compared with the wild-type construct, thus proving their pathogenicity. Furthermore, we observed for the same variant set an incorrect intracellular localization of ATP2B1. The genetic findings and the overlapping phenotype of the probands as well as the functional analyses imply that de novo variants in ATP2B1 lead to a monogenic form of neurodevelopmental disorder

    Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response.

    No full text
    Aicardi-Goutières syndrome is a mendelian mimic of congenital infection and also shows overlap with systemic lupus erythematosus at both a clinical and biochemical level. The recent identification of mutations in TREX1 and genes encoding the RNASEH2 complex and studies of the function of TREX1 in DNA metabolism have defined a previously unknown mechanism for the initiation of autoimmunity by interferon-stimulatory nucleic acid. Here we describe mutations in SAMHD1 as the cause of AGS at the AGS5 locus and present data to show that SAMHD1 may act as a negative regulator of the cell-intrinsic antiviral response.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Biallelic MED27 variants lead to variable ponto-cerebello-lental degeneration with movement disorders

    No full text
    corecore