12 research outputs found

    Anti-PAD4 autoantibodies in rheumatoid arthritis: levels in serum over time and impact on PAD4 activity as measured with a small synthetic substrate

    Get PDF
    Isoform 4 of the human peptidylarginine deiminase (hPAD4) enzyme may be responsible for the citrullination of antigens in rheumatoid arthritis (RA) and has been shown to be itself the target of disease-specific autoantibodies. Here, we have tested whether the level of serum anti-hPAD4 antibodies in RA patients is stable over a period of 10 years and whether the antibodies influence hPAD4-mediated deimination of the small substrate N-α-Benzoyl-l-arginine ethyl ester. RA sera (n = 128) obtained at baseline and after 10 years were assessed for anti-hPAD4 antibodies by a specific immunoassay. For 118 RA patients, serum anti-hPAD4 IgG levels were stable over 10 years. Seven patients who were negative for anti-PAD4 IgG at baseline had become positive after 10 years. Further, total IgG from selected RA patients and controls were purified, and a fraction was depleted for anti-hPAD4 antibodies. Kinetic deimination assays were performed with total IgG and depleted fractions. The kcat and Km values of hPAD4-mediated deimination of N-α-Benzoyl-l-arginine ethyl ester were not affected by the depletion of the anti-hPAD4 antibodies from the total IgG pool. In conclusion, RA patients remain positive for anti-hPAD4 antibodies over time and some patients who are initially anti-hPAD4 negative become positive later in the disease course. The anti-hPAD4 antibodies did not affect the enzymatic activity of hPAD4 when the small substrate N-α-Benzoyl-l-arginine ethyl ester was used. However, this finding may not exclude an effect of these autoantibodies on citrullination of protein substrates in RA

    Systematic review regarding metabolic profiling for improved pathophysiological understanding of disease and outcome prediction in respiratory infections

    Full text link

    Exposures of zebrafish through diet to three environmentally relevant mixtures of PAHs produce behavioral disruptions in unexposed F1 and F2 descendant

    Get PDF
    The release of polycyclic aromatic hydrocarbons (PAHs) into the environment has increased very substantially over the last decades. PAHs are hydrophobic molecules which can accumulate in high concentrations in sediments acting then as major secondary sources. Fish contamination can occur through contact or residence nearby sediments or though dietary exposure. In this study, we analyzed certain physiological traits in unexposed fish (F1) issued from parents (F0) exposed through diet to three PAH mixtures at similar and environmentally relevant concentrations but differing in their compositions. For each mixture, no morphological differences were observed between concentrations. An increase in locomotor activity was observed in larvae issued from fish exposed to the highest concentration of a pyrolytic (PY) mixture. On the contrary, a decrease in locomotor activity was observed in larvae issued from heavy oil mixture (HO). In the case of the third mixture, light oil (LO), a reduction of the diurnal activity was observed during the setup of larval activity. Behavioral disruptions persisted in F1-PY juveniles and in their offspring (F2). Endocrine disruption was analyzed using cyp19a1b:GFP transgenic line and revealed disruptions in PY and LO offspring. Since no PAH metabolites were dosed in larvae, these findings suggest possible underlying mechanisms such as altered parental signaling molecule and/or hormone transferred in the gametes, eventually leading to early imprinting. Taken together, these results indicate that physiological disruptions are observed in offspring of fish exposed to PAH mixtures through diet
    corecore